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VOCABULARY-INFORMED VISUAL FEATURE AUGMEN-
TATION FOR ONE-SHOT LEARNING

ABSTRACT

A natural solution for one-shot learning is to augment training data to handle
the data deficiency problem. However, directly augmenting in the image domain
may not necessarily generate training data that sufficiently explore the intra-class
space for one-shot classification. Inspired by the recent vocabulary-informed
learning, we propose to generate synthetic training data with the guide of the
semantic word space. Essentially, we train an auto-encoder as a bridge to enable
the transformation between the image feature space and the semantic space. Besides
directly augmenting image features, we transform the image features to semantic
space using the encoder and perform the data augmentation. The decoder then
synthesizes the image features for the augmented instances from the semantic space.
Experiments on three datasets show that our data augmentation method effectively
improves the performance of one-shot classification. Extensive study shows that
data augmented from semantic space are complementary with those from the image
space, and thus boost the classification accuracy dramatically. Source code and
dataset will be available.

1 MOTIVATION AND INTRODUCTION

The success of recent machine learning (especially the deep learning) greatly relies on the training
process on hundreds or thousands of labelled training instances of each class. However in practice, it
might be extremely expensive or infeasible to obtain many labelled data, e.g. for objects in dangerous
environment with limited access. On the other hand, human can recognize an object category easily
with only a few shots of training examples Thrun (1996). Inspired by such an ability of humans,
one-shot learning aims at building classifiers from a few or even a single example.

The major obstacle of learning good classifiers in one-shot learning setting is the lack of enough
training data. Thus a natural recipe for one-shot learning is to augment the data, which has been
conducted in various ways. The dominant approach adopted by previous work is to bring in more
images Krizhevsky et al. (2012) for each category as training data. These additional augmented
training images could be borrowed from unlabelled data Fu et al. (2015) or other relevant categories
Wang & Hebert (2016a;b); Li & Hoiem (2016); Lim et al. (2011) in an unsupervised or semi-
supervised fashion; however the semantic signals of augmented data are often noisy and unreliable
and may suffer from negative transfer when the augmented data are from different classes. On the
other hand, synthetic images rendered from virtual examples Movshovitz-Attias (2015); Park &
Ramanan (2015); Movshovitz-Attias et al. (2015); Dosovitskiy et al. (2015); Zhu et al. (2016b); Opelt
et al. (2006) are semantically correct but require careful domain adaptation to transfer the knowledge
to the real image domain. In contrast, we propose to directly augment training data in the image
feature domain rather than the original image. Augmenting data in image feature domain allows us to
interact with useful discriminative signals more directly. The most similar work to us is Zhu et al.
(2016b); Opelt et al. (2006), where the feature patches (e.g. HOG) of the object parts are combined to
synthesize new feature representation. However, their approach requires strong heuristics and spatial
information to learn the combination. On the contrary, we augment data in compact deep learning
based feature space, which is stronger for classification but contains limited the spatial information.

A straightforward approach to augment image feature is to add random vectors to the feature of each
single training image. However, the cutting plane for the classification is usually not in a regular
shape, e.g. a hyper ball, and such a simple disturbance, e.g. sampled from Gaussian distribution,
may not sufficiently explore the intra-class space for each individual category. Our idea of data
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Figure 1: Overview of our framework. We extract image feature and project it to the semantic
space using the encoder. After augmenting data in semantic space, we use the decoder to obtain the
corresponding image feature for augmented semantic feature. Both real and augmented data are used
to train the classification model.

augmentation is to bring in the additional knowledge by leveraging the semantic space pre-trained by
linguistic models such as google word2vec Mikolov et al. (2013) from a huge repository of linguistic
corpora. In semantic space, similar concepts are supposed to have similar feature, such that the
overall space demonstrates superior manifold continuity over semantic meaning, which is ideal for
data augmentation. To leverage such good property, we learn a mapping (f(x)) to transform the
image feature into the semantic space, where we add Gaussian random vectors on the semantic
feature from the only training image. We then learn an inverse mapping (g(x)), from the semantic to
image, to convert the synthesized semantic features into image features, which are then fed into the
classification model during the training. In experiment, we found the data augmented in semantic
space complements the data augmented in the image feature domain. Each set of augmented data can
improve the performance individually, and the best performance is achieved by adding them together.

The semantic space also allows us to leverage the knowledge resides in the vocabulary space. Like in
the image feature domain where not all the spots corresponds to a meaningful input image Sabour
et al. (2016), it might also be the case for the semantic space where not all the points represents a real
concept. As such, we adopt a non-parametric approach to synthesize training data in the semantic
domain leveraging the huge repository of linguistic corpora. Specifically, we calculate the semantic
feature for a large number of vocabulary and phrases Mikolov et al. (2013) as a pool of candidate
semantic features, from where we search for nearest neighbors for the given training instance as the
augmented data. The semantic feature augmented in this way is then guaranteed to represent certain
concepts that can be described by some words. Such nearest neighbors set is semantically similar to
the training data and can thus help increase the intra-class coverage and differentiate the one-shot
categories. For example, as visualized in Fig. 5(b), the neighbors of training instances in “killer
whale” are corresponding to the semantic features of related topics, such as “sea lions” and “orcas”,
which are different from the other one-shot training categories such as “grizzly bear”.

The mapping between feature spaces, f(x) and g(x), can be learned with a variety of models. In
practice, we found that the auto-encoder is an elegant and effective framework to learn two mapping
at the same time. Taken an image feature as input, the encoder (f(x)) learns to produce semantic
feature, and the decoder (g(x)) learns to recover the image feature. The auto-encoder also allows an
end-to-end training, which optimizes the image feature extractor, feature space mappings, and the
classification model jointly.

The contribution of this paper are mainly in three aspects. First, we propose to perform data
augmentation directly in compact and discriminative image feature space rather than the original
image domain. Second, we leverage the semantic space for data augmentation, which brings
additional chance to explore the intra-class space thoroughly. Last, we propose a simply yet elegant
deep learning architecture that allows end-to-end training for optimal performance.

1.1 RELATED WORK

One-shot learning is inspired by the celebrated aspects of human learning Jankowski et al. (2011);
Lake & Salakhutdinov (2013) of being able to learn about new concepts from very few examples.
Generalizing to recognize new classes with only few examples Bart & Ullman (2005) is quite beyond
the capability of typical machine learning tools, which nevertheless require hundreds or thousands of
training examples. The gradient-based strategies inevitably re-learn the parameters from a few scraps
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of information and leads to catastrophic fails of generalizability of models. We can roughly divide
the existing one-shot learning into two groups as discussed below in term of whether transferring
extra knowledge to help learning one-shot tasks.

1.1.1 DIRECT ONE-SHOT LEARNING APPROACHES

One-shot learning in this category can be implemented via instance-based learning (such as nearest
neighbour or K-nearest neighbour), non-parameteric methods Fei-Fei et al. (2003; 2006); Tommasi &
Caputo (2009), or deep generative models Rezende et al. (2016); Santoro et al. (2016), or Bayesian
auto-encoders Kingma & Welling (2014). These approaches directly learn the one-shot learning
model, rather than assume an auxiliary set of helping transfer knowledge as in Sec. 1.1.2. Thus these
works only employ a rich class of generative models to explain the observed data, rather than directly
augmenting the training data in the feature space like our work.

1.1.2 KNOWLEDGE TRANSFER BASED ONE-SHOT LEARNING APPROACHES

This category of one-shot learning can also be explored via learning to learn Thrun (1996), which is
also known as transfer learning Pan & Yang (2010), or meta-learning JVilalta & Drissi (2002). The
key insight is to transfer the knowledge from auxiliary data/categories to recognize new categories
with few examples by either sharing features Bart & Ullman (2005); Hertz et al. (2016); Fleuret &
Blanchard (2005); Amit et al. (2007); Wolf & Martin (2005); Torralba et al. (2007), or semantic
attributes Fu et al. (2013); Lampert et al. (2013); Rohrbach et al. (2013; 2010), or contextual
information Torralba et al. (2010). Especially, the recent deep meta-learning has received increasing
attention for one-shot learning Santoro et al. (2016); Bertinetto et al. (2016); Koch et al. (2015);
Habibian et al. (2014a;b); Zheng et al. (2016); Vinyals et al. (2016); Zhang et al. (2016); Lake &
Salakhutdinov (2013).

One general strategy of such category is to learning an embedding space by different tools such as
neural networks, e.g., siamese network Bromley et al. (1993); Koch et al. (2015) or discriminative
methods (e.g., Support Vector Regressors (SVR) Farhadi et al. (2009); Lampert et al. (2013); Kienzle
& Chellapilla (2006)), metric learning methods Quattoni et al. (2008); Fink (2005); Vinyals et al.
(2016), or kernel embedding method Wolf et al. (2009); Hertz et al. (2016). Particularly, one of most
common embedding ways is semantic embedding which is normally explored by projecting the visual
features and semantic entities into a common new space. Such projections can use various forms of
corresponding loss functions, such as ReViSE Tsai et al. (2017), SJE Akata et al. (2015), WSABIE
Weston et al. (2011), ALE Akata et al. (2013), DeViSE Frome et al. (2013), and CCA Fu et al. (2014).

Recently, transfer based one-shot learning approaches have been quite heavily studied in machine
learning community Vinyals et al. (2016); Snell et al. (2017); Santoro et al. (2016); Bertinetto et al.
(2016). However, this type of approaches still requires and relies on the well-labelled, well-organized
and large enough auxiliary set of similar visual information, while such auxiliary set requires expertise
knowledge and might be expensive to obtain in many real world scenario. In contrast, the idea of our
framework solves one-shot learning from the perspective of directly augmenting visual features and
thus can also work when we do not have enough auxiliary dataset.

1.1.3 ONE-SHOT LEARNING BY AUGMENTING TRAINING INSTANCES

In principle, augmenting training instances have been exploited in supervised learning settings by
many previous works Krizhevsky et al. (2012); thus training data augmentation can also be employed
to alleviate the problem of lacking instances in one-shot learning settings. In particular, this type
of approaches have been explored via various ways: (1) Learning one-shot models by utilizing the
manifold information of large amount of unlabelled data in a semi-supervised or transductive learning
way Fu et al. (2015); (2) Adaptively learning the one-shot classifiers from off-shelf trained models
Wang & Hebert (2016a;b); Li & Hoiem (2016); (3) Borrowing examples from relevant categories Lim
et al. (2011) or semantic vocabularies Fu & Sigal (2016); Ba et al. (2015) to augment the training set;
(4) synthesizing new labelled training data by rendering virtual examples Movshovitz-Attias (2015);
Park & Ramanan (2015); Movshovitz-Attias et al. (2015); Dosovitskiy et al. (2015) or composing
synthesized representations Zhu et al. (2016b); Opelt et al. (2006) or distorting existing training
examples Krizhevsky et al. (2012); (5) Generating new examples by Generative Adversarial Networks
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(GANs) Zhu et al. (2017; 2016a); Goodfellow et al. (2014); Reed et al. (2016); Radford et al. (2016);
Mao et al. (2017); Durugkar et al. (2017); Huang et al. (2017)

Previous methods may suffer from different problems: the manifold information may be not useful for
one-shot learners; there may be negative transfer when the off-shell models or relevant categories are
very different from one-shot classes; rendering, composing new virtual examples or distorting training
examples may either need experience of domain expertise or only works for different domains. GANs
based approaches mostly focused on learning good generators to synthesize “realistic” images to
“cheat” the discriminators, while the synthesized images are not learned to preserve the discriminative
information, which, is in contrast to our network structure, where the discriminative instances are
synthesized in visual feature domain.

2 METHODOLOGY

In this section, we introduce the detail of our algorithm for one-shot classification. In a high level,
our approach relies on continuity of the manifold in semantic space to synthesize training data, which
is complementary with the data augmented directly from the image feature domain, and thus increase
the generalization capability of the model. To achieve this, we learn a two-sided mapping between
the image feature space and the semantic space in a single deep auto-encoder. With the help of these
mappings, the data augmentation can be done in the semantic space, which is combined with the data
augmented in the image space together to train the one-shot classification model.

Problem setup. The training image dataset Ds = {Ii, zi}Ns
i=1 of Ns samples. Ii indicates the raw

pixel matrix of image i. zi ∈ Ws is a class label and the corresponding vocabulary wi taken from the
vocabulary setW . The vocabularyW is learned by word2vec Mikolov et al. (2013) on large-scale
corpus; each vocabulary entity w ∈ W is projected as a semantic vector u ∈ Rd.

2.1 DEEP AUTO-ENCODER EMBEDDING NETWORK

The deep auto-encoder embedding network learns the mapping between the Image Feature Space
(IFS) to the Semantic Space (S-S). Linear mapping has been used in previous work Fu & Sigal (2016).
However, practically, such a mapping should be highly non-linear; and thus a deep auto-encoder
framework with supervision on the bottleneck layer is introduced here. The whole deep auto-encoder
includes two main components, i.e. image feature extractor, and auto-encoder.

Image feature extractor converts the raw images into image feature vectors by the pre-trained deep
convolutional network. We use pre-trained VGG-16 network Chatfield et al. (2014) which consists
of 13 convolutional and 3 fully connected layers. For an input image Ii, the image feature extractor
output the 4096-dimensional feature vector xi from the fc7 layer.

Auto-encoder network can be divided into the encoder and decoder. The encoder is composed of
five fully connected layers with the 4096, 2048, 1024, 512, and 256 neurons accordingly followed by
non-linear kernel RELU. The structure is detailed in Fig. 2(a). The encoder part learns the mapping
from IFS to S-S, i.e., ûi = f (xi) by projecting the image feature vectors to corresponding semantic
feature vectors. The decoder has exactly the symmetry architecture with the encoder learning the map
from S-S to IFS, i.e., x̂i = g (ui). It is attached after the semantic feature to reconstruct the image
feature. Note that different from the standard unsupervised auto-encoder, our deep auto-encoder
network tries to embed the IFS and S-S. In other word, the latent representation space learned
by auto-encoder network is the semantic space, which should be posed as additional supervised
information when learning such an embedding. Thus the loss function is

J (Θ) = Exi∈Ds

[
(xi − x̂i)

2
+ (ûi − ui)

2
]

+ λP (Θ) (1)

where Θ indicates the parameter set of auto-encoder network and P (·) is the regularized penalty
function. We use L2−penalty in experiments. The Image feature extractor and auto-encoder networks
are trained on Ds.
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(a) Auto-encoder for feature mapping (b) Data Augmentation in Semantic Space

Figure 2: (a) Auto-encoder Network. We use fully connected layers and the number indicates
the amount of neurons. Each fully connected layer is followed by non-linear kernel RELU. (b)
Augmenting data in semantic space using auto-encoder. The training image (in blue box) feature
is mapped to the semantic space (blue text), where nearest neighbor (red text) are searched. The
neighboring semantic features are then projected back to the image feature domain as the augmented
features (red box). Noted that for purpose of visualization, we demonstrate with images and words
which are actually feature vectors.

2.2 DATA AUGMENTATION

We perform data augmentation in two domains and combine them together to train the classification
model. Not necessary to have the augmented images, our goal is to generate more image features as
the training data for each category.

Augmentation via Image Feature Space. A natural way of augmenting the training data is via the
image feature space. Given the features xi of training instance i, the augmented data xF can be
sampled from the corresponding Feature Gaussian, i.e., xF

i ∼ N
(
xi, σ

FE
)
, σF ∈ R is the variance

of each feature dimension; E is the identity matrix. σF controls the deviation of noise added. To
make the augmented feature vector xF

i still be representative enough of the class of xi, we empirically
set σF as 10% of the distance between xi and its nearest training instance xj (zi 6= zj) as this gives
the best performance.

Augmentation via Semantic Space. We introduce two types of augmentation in semantic space.

(1) Semantic Gaussian: the same as Feature Gaussian, we can explore the continuity of the manifold
in the semantic space. Given the features xi of training instance i, the augmented data xG can be
sampled from the corresponding Semantic Gaussian, i.e., xG

i ∼ g
(
N
(
ûi, σ

GE
))

, σG ∈ R is the
variance of each semantic dimension. The σG is also empirically set as the 10% of the distance
between ûi and its nearest semantic vector ûj (zi 6= zj).

(2) Semantic Neighborhood (Fig 2(b)): Note that the semantic space is not uniformly dense; the
distributions of words of vocabulary may depend on the frequency of words in the linguistic corpora.
This indicates that the intra-class deviation of different category might be different, and a gaussian
distribution with a fixed standard deviation may not suit all the categories. Thus, given the feature
xi of training instance i, the augmented data xH can be sampled from the corresponding Semantic
Neighborhood , i.e., xH

i ∼ g (uj), uj ∈ Neigh (ûi), wj ∈ W and Neigh (ûi) ⊆ W . The
Neigh (ûi) indicates the nearest neighborhood vocabulary set of ûi. These neighbors correspond to
the most similar examples in the semantic space to our real training instance, and thus can be used to
augment training data.

2.3 ONE-SHOT CLASSIFICATION AND TRAINING STRATEGY

As mentioned above, the image feature extractor and auto-encoder networks are trained from Ds;
and training set together with augmented dataset are employed to train the one-shot classifiers.
Specifically, we can now employ the augmented dataset

{[
xi;x

A
i

]
, zi
}
,xA

i ∈
{
xF
i ,x

G
i ,x

H
i

}
to

better train the one-shot classification model. Specifically, the original and augmented image features
are grouped together and fed into the classification network. As shown in Fig. 1, the one-shot
classification model consists of two fully connected layer (with ReLu) and a soft-max layer for
classification.
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Figure 3: Example images from ShapeNet Multiview dataset. As a reflection of the real indoor
scene, the categories are chosen to cover various types of furniture, whereas including fine-grained
categories as well.

3 EXPERIMENTS

In this section, we evaluate our method on three datasets which cover a variety of cases in real
application. We also conduct analysis and ablation study to demonstrate the effectiveness of our data
augmentation method.

3.1 EXPERIMENTAL SETUP

Dataset. We choose three datasets that are representative for different types of classification problem.
To highlight the effectiveness of our data augmentation, we focus on more challenging scenario where
the difference between classes are comparatively smaller than usual.

Animals with Attributes (AwA) dataset: AwA consists of 50 classes of animals (30,475 images in
total). As the classes are all about animal, the difference between classes are smaller than arbitrary
cases, such as table and dog in which data augmentation would be comparatively easy.

Cub-bird 200-2011 dataset Wah et al. (2011) contains 11,788 images of 200 categories of birds. This
dataset is especially designed for fine-grained recognition, where the data augmentation is extremely
hard as the difference between categories are fairly small.

ShapeNet Multiview dataset: Indoor scene understanding is yet another scenario where one-shot
learning is especially useful. The capability to recognize furniture in a few shots is a desirable
feature for indoor robots. To evaluate in this scenario, we create a synthetic dataset containing 4660
photo-realistic rendering of indoor furnitures. We select 233 object 3D models from 24 fine-grained
furniture related classes from ShapeNet Core V2. For each model, we set up environment illumination
and render photo-realistic color images from 20 cameras looking at the object from different direction
and distance. Fig. 3 shows some example images from our synthetic indoor furniture dataset.

Settings and Parameters. The dropout rate and learning rate of the auto-encoder network is set to
0.8 and 1e−4 respectively to prevent overfitting. The batch size is set to 50. The network is trained by
Stochastic Gradient Descendent (SGD), and usually converges in 300 epochs. The learning rate of
image feature extractor is set to 1e−8 in the fine-tuning step. To prevent randomness due to the small
training set, all experiments are repeated for 10 times, and the average performances over all runs
are reported. We employ the mean accuracy (i.e. mean of the diagonal of the confusion matrix) to
evaluate the classification. The source codes and the synthetic dataset will be released. The same
100-dimensional vocabulary dictionary used in Fu & Sigal (2016) is used here.

3.2 DOES THE DATA AUGMENTATION MATTER?

To answer this question, we conduct the experiments in one-shot learning scenario on all three
datasets.
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(%) No data augmentation Number of instances augmented Chance-level1 5 10
AwA 17.50 27.98 30.43 30.57 2.50

Cub-bird 5.29 7.16 7.89 8.21 0.50
Shapenet 14.21 17.04 18.51 18.18 4.17

Table 1: The classification accuracy of one-shot learning on three dataset. “Number of instances
augmented” indicates how many virtual instances are generated from one training instance in each
type of data augmentation method. The standard deviation is 0.5 ∼ 1.3%.

Comparing with/without data augmentation. For each dataset, we randomly sample 1 instance
from each category for training, and take all the other images for testing. All three types of data aug-
mentation are used, and the results are shown in Tab. 1. We vary the number of instances augmented
for each training instance. As a standard baseline for comparison, we also show the performance
with the same classification network introduced in Sec. 2.3 without any data augmentation.

Most importantly, on all of the three datasets, training with our augmented data significantly improves
the classification accuracy over the cases without any data augmentation. Particularly on AwA dataset,
our framework dramatically increase the accuracy by 13.07 absolute point, which almost double the
baseline. This validates that our deep auto-encoder embedding framework effectively augments the
training features which bring in additional information that can be leveraged by the classification
model. Note that all the results in Tab. 1 are significantly better than the accuracy of chance-level.

Fig. 5(a) shows the confusion matrix on AwA before (top) and after (bottom) augmenting 10 instances
per class. Without data augmentation, the confusion matrix has vertical bands indicating consistent
misclassification; in contrast, the one with data augmentation has the clearer diagonal structure, which
demonstrates the data augmentation helps to resolve the ambiguity across categories.

3.3 DOES THE SEMANTIC SPACE AUGMENTATION MATTER?

To answer this question, we further conduct the one-shot learning experiment to evaluate the effec-
tiveness of each type of data augmentation. Specifically, on each dataset, we use 1 instance per class
for training, and each training instance is augmented by 5 instances. We compare the results of (1)
without data augmentation (No Aug); and data augmentation by (2) Feature Gaussian (FeatG), (3)
Semantic Gaussian (SemG), (4) both Feature Gaussian and Semantic Gaussian (FeatG+SemG), (5)
Semantic Neighborhood (SemN); (6) Feature Gaussian and Semantic Neighborhood (FeatG+SemN);
and (7) all together (FeatG+SemN+SemG). The results are shown in Tab. 2.

We notice that on all three datasets, the results of combining all three types of augmentation achieve
the best performance, outperforming all the other methods by a clear margin. Specifically, the result
of each single type of data augmentation can already beat the situation with no data augmentation,
and combining data augmented from both image feature space and semantic space outperforms the
case of using only one feature space. This indicates that these three types of data augmentation are
complementary to each other. The combinations of Feature Gaussian and Semantic Neighborhood
(FeatG+SemN) have the second best results on all three dataset. This shows that these two types of
data augmentation are most complementary to each other.

Fig. 5(b) shows the visualization of semantic space. Intuitively, the neighborhood vocabulary of each
training prototype can help differentiate the corresponding prototypes with the other training proto-
types. Thus these vocabulary in the neighborhood set of one prototype, i.e. Semantic Neighborhood,
can be used to reliably augment the data.

To visually demonstrate the effect of exploring semantic space, we visualize some classification results
on AWA in Fig. 4. Each training image is followed by three testing images that are misclassified as the
categories below before the augmentation, which are later correctly classified after the augmentation.
These testing images are visually similar to other categories, but different with the only training
image on the left, and thus are extremely hard to recognize correctly. Our augmentation explore the
semantic space and build connection between the testing images and the training image.
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Table 2: The results of combining different types of data augmentation in our framework.
“FeatG”, “SemG”, and “SemN” denote the data augmentation methods by Feature Gaussian, Semantic
Gaussian and Semantic Neighborhood respectively. Combining augmented data from both space
achieves the best performance.

Number of training Models No data augmentation Number of instances augmented
instances/class 1 5 10

1

NN 17.50± 2.8 27.98± 1.3 30.43± 0.9 30.57± 0.8
LR 5.07± 1.1 6.19± 1.5 7.42± 0.2 8.31± 0.4

Near-N 21.96± 1.2 26.45± 0.9 27.26± 1.6 26.85± 0.4
SVR 18.28± 1.6 24.78± 1.4 24.96± 0.8 24.83± 0.1

Table 3: One-shot Learning Performance on AwA dataset w.r.t number of training instances
per category. NN, LR, Near-N and SVR indicate neural network, logistic regression, nearest
neighbour and support vector regressor for classification and feature mapping. The chance rate is 2.5.

Number of training Models No data augmentation Number of instances augmented
instances/class 1 5 10

3
NN 35.87 45.69 45.61 47.15
LR 16.77 19.06 18.23 18.65

SVR 25.13 32.92 32.63 30.41

5
NN 47.11 54.75 53.78 51.36
LR 25.92 26.72 26.24 26.70

SVR 37.73 37.87 36.92 40.10

Table 4: Few-shot learning performance on AwA dataset w.r.t number of training instances per
category. NN, LR, and SVR indicate neural network, logistic regression, and support vector regressor
for classification and feature mapping. The standard deviation is 0.5 ∼ 1.3%.
Training data

Grizzly bear Deer Cow

Deer

Cow Antelope

Sheep

CollieGorilla

Tiger Cow Lion

Deer

Siamese cat Gorilla Bobcat

Testing data Training data Testing data

Figure 4: Visualization of the classification results. Each training image is followed by three
testing images that are misclassified as the categories below before the augmentation, which are later
correctly classified after the augmeantation. These testing images are visually different with the only
training data, ambiguous with other categories, and thus hard to recognize. Our augmentation can
help to correctly recognize them.
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(a) Confusion matrix (b) Visualization of the semantic space

Figure 5: (a) Confusion matrix on AWA before (top) and after (bottom) data augmentation.
Learning with our augmented data shows clear diagnal pattern in the confusion matrix. Visualization
of the semantic space. We show the t-SNE visualization of the semantic feature space. The words
in boxes are the mapping of training image in the semantic space, and close neighbors are shown.
The neighborhoods extend the single training data to a space semantically meaningful.

3.4 DOES DATA AUGMENTATION STILL MATTER WHEN MORE TRAINING DATA IS AVAILABLE?

We evaluate on AWA to demonstrate the behavior of our data augmentation approach with different
number of training instances per category. We compare the one-shot learning results in Tab. 3
and few-shot learning results in Tab. 4. For each training instance, we augment 1, 5, 10 instances
respectively. Surprisingly, our data augmentation managed to improve the performance dramatically
for all the cases, though the performance get saturated earlier with more training instances given for
each category, i.e. augmenting 1 instance per category gives the best performance for 5 instance per
class. This validates that our data augmentation can effectively utilize the information from each
individual training instance to generate good augmented data. Interestingly, the performance does not
keep increasing all the time as more instances are augmented, as shown in Tab. 4. It is largely due to
the increasing possibility of augmenting non-discriminative noisy instances with a large number of
instances augmented.

3.5 DOES THE DEEP LEARNING ARCHITECTURE MATTER?

To demonstrate if our deep learning architecture is optimal and suitable for data augmentation, we
run the same experiment in the previous section but replacing deep auto-encoder embedding with
other supervised model, such as logistic regression (LR)1, and support vector regressor (SVR), and
the results are shown in Tab. 3 as well.

As can be seen, our data augmentation method consistently improve the classification accuracy with
either LR or SVR. This demonstrates that our method is not constrained to work only with deep
learning architecture, but can be generalized to work ubiquitously well with many different kinds
of models. Nevertheless, the deep auto-encoder based model still shows superior base performance
with no data augmentation and brings in much larger performance gain compared to the other two
traditional models. This implies that the auto-encoder achieves a better mapping between two feature
spaces, and the end-to-end learning allows joint optimization of the whole system in order to achieve
optimal performance.

1Note SVM is not used here since it is unstable when trained by 1 training instance per class.
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3.6 DOES THE DATA AUGMENTATION CAN ALSO HELP THE OTHER STATE-OF-THE-ART
ONE-SHOT LEARNING METHODS?

Note that our vocabulary-informed feature augmentation framework is actually orthogonal to the
one-shot learning approaches. Thus it is also interesting to see whether our augmented features can
also be used to help those previous work. To demonstrate this point, we run the codes of SS-Voc Fu &
Sigal (2016) on the 10-way target classes from AWA dataset without and with the data augmentation.
The classification accuracy is improved from 0.432 to 0.453 after using the data agumentation. This
validates that the our feature augmentation complements typical one-shot learning algorthms.

4 CONCLUSION

We propose a vocabulary-informed data augmentation method for one-shot classification. We
demonstrate that the data augmented from the semantic space complements the image feature domain
and thus can further increase the overall classification performance. Future research can be held by
investigating more generalized feature representation, extending the current system to zero-shot and
open-set learning problem, or deploying in real applications.
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