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ABSTRACT

We present a general-purpose method to train Markov chain Monte Carlo ker-
nels, parameterized by deep neural networks, that converge and mix quickly to
their target distribution. Our method generalizes Hamiltonian Monte Carlo and is
trained to maximize expected squared jumped distance, a proxy for mixing speed.
We demonstrate large empirical gains on a collection of simple but challenging
distributions, for instance achieving a 106× improvement in effective sample size
in one case, and mixing when standard HMC makes no measurable progress in a
second. Finally, we show quantitative and qualitative gains on a real-world task:
latent-variable generative modeling. We release an open source TensorFlow im-
plementation of the algorithm.

1 INTRODUCTION

High-dimensional distributions that are only analytically tractable up to a normalizing constant are
ubiquitous in many fields. For instance, they arise in protein folding (Schütte et al., 1999), physics
simulations (Olsson, 1995), and machine learning (Andrieu et al., 2003). Sampling from such dis-
tributions is a critical task for learning and inference (MacKay, 2003), however it is an extremely
hard problem in general.

Markov Chain Monte Carlo (MCMC) methods promise a solution to this problem. They operate
by generating a sequence of correlated samples that converge in distribution to the target. This
convergence is most often guaranteed through detailed balance, a sufficient condition for the chain
to have the target equilibrium distribution. In practice, for any proposal distribution, one can ensure
detailed balance through a Metropolis-Hastings (Hastings, 1970) accept/reject step.

Despite theoretical guarantees of eventual convergence, in practice convergence and mixing speed
depend strongly on choosing a proposal that works well for the task at hand. What’s more, it is
often more art than science to know when an MCMC chain has converged (“burned-in”), and when
the chain has produced a new uncorrelated sample (“mixed”). Additionally, the reliance on detailed
balance, which assigns equal probability to the forward and reverse transitions, often encourages
random-walk behavior and thus slows exploration of the space (Ichiki & Ohzeki, 2013).

For densities over continuous spaces, Hamiltonian Monte Carlo (HMC; Duane et al., 1987; Neal,
2011) introduces independent, auxiliary momentum variables, and computes a new state by inte-
grating Hamiltonian dynamics. This method can traverse long distances in state space with a single
Metropolis-Hastings test. This is the state-of-the-art method for sampling in many domains. How-
ever, HMC can perform poorly in a number of settings. While HMC mixes quickly spatially, it
struggles at mixing across energy levels due to its volume-preserving dynamics. HMC also does
not work well with multi-modal distributions, as the probability of sampling a large enough mo-
mentum to traverse a very low-density region is negligibly small. Furthermore, HMC struggles with
ill-conditioned energy landscapes (Girolami & Calderhead, 2011) and deals poorly with rapidly
changing gradients (Sohl-Dickstein et al., 2014).

Recently, probabilistic models parameterized by deep neural networks have achieved great success
at approximately sampling from highly complex, multi-modal empirical distributions (Kingma &
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Welling, 2013; Rezende et al., 2014; Goodfellow et al., 2014; Bengio et al., 2014; Sohl-Dickstein
et al., 2015). Building on these successes, we present a method that, given an analytically described
distribution, automatically returns an exact sampler with good convergence and mixing properties,
from a class of highly expressive parametric models. The proposed family of samplers is a gen-
eralization of HMC; it transforms the HMC trajectory using parametric functions (deep networks
in our experiments), while retaining theoretical guarantees with a tractable Metropolis-Hastings
accept/reject step. The sampler is trained to minimize a variation on expected squared jumped dis-
tance (similar in spirit to Pasarica & Gelman (2010)). Our parameterization reduces easily to stan-
dard HMC. It is further capable of emulating several common extensions of HMC such as within-
trajectory tempering (Neal, 1996) and diagonal mass matrices (Bennett, 1975).

We evaluate our method on distributions where HMC usually struggles, as well as on a the real-world
task of training latent-variable generative models.

Our contributions are as follows:

• We introduce a generic training procedure which takes as input a distribution defined by an
energy function, and returns a fast-mixing MCMC kernel.

• We show significant empirical gains on various distributions where HMC performs poorly.

• We finally evaluate our method on the real-world task of training and sampling from a latent
variable generative model, where we show improvement in the model’s log-likelihood, and
greater complexity in the distribution of posterior samples.

2 RELATED WORK

Adaptively modifying proposal distributions to improve convergence and mixing has been explored
in the past (Andrieu & Thoms, 2008). In the case of HMC, prior work has reduced the need to
choose step size (Neal, 2011) or number of leapfrog steps (Hoffman & Gelman, 2014) by adaptively
tuning those parameters. Salimans et al. (2015) proposed an alternate scheme based on variational
inference. We adopt the much simpler approach of Pasarica & Gelman (2010), who show that choos-
ing the hyperparameters of a proposal distribution to maximize expected squared jumped distance
is both principled and effective in practice.

Previous work has also explored applying models from machine learning to MCMC tasks. Kernel
methods have been used both for learning a proposal distribution (Sejdinovic et al., 2014) and for
approximating the gradient of the energy (Strathmann et al., 2015). In physics, Restricted and semi-
Restricted Boltzmann machines have been used both to build approximations of the energy function
which allow more rapid sampling (Liu et al., 2017; Huang & Wang, 2017), and to motivate new
hand-designed proposals (Wang, 2017).

Most similar to our approach is recent work from Song et al. (2017), which uses adversarial training
of a volume-preserving transformation, which is subsequently used as an MCMC proposal distribu-
tion. While promising, this technique has several limitations. It does not use gradient information,
which is often crucial to maintaining high acceptance rates, especially in high dimensions. It also
can only indirectly measure the quality of the generated sample using adversarial training, which
is notoriously unstable, suffers from “mode collapse” (where only a portion of a target distribution
is covered), and often requires objective modification to train in practice (Arjovsky et al., 2017).
Finally, since the proposal transformation preserves volume, it can suffer from the same difficulties
in mixing across energy levels as HMC, as we illustrate in Section 5.

To compute the Metropolis-Hastings acceptance probability for a deterministic transition, the oper-
ator must be invertible and have a tractable Jacobian. Recent work (Dinh et al., 2016), introduces
RNVP, an invertible transformation that operates by, at each layer, modifying only a subset of the
variables by a function that depends solely on the remaining variables. This is exactly invertible with
an efficiently computable Jacobian. Furthermore, by chaining enough of these layers, the model can
be made arbitrarily expressive. This parameterization will directly motivate our extension of the
leapfrog integrator in HMC.
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3 BACKGROUND

3.1 MCMC METHODS AND METROPOLIS-HASTINGS

Let p be a target distribution, analytically known up to a constant, over a space X . Markov chain
Monte Carlo (MCMC) methods (Neal, 1993) aim to provide samples from p. To that end, MCMC
methods construct a Markov Chain whose stationary distribution is the target distribution p. Obtain-
ing samples then corresponds to simulating a Markov Chain, i.e., given an initial distribution π0 and
a transition kernel K, constructing the following sequence of random variables:

X0 ∼ π0, Xt+1 ∼ K(·|Xt). (1)

In order for p to be the stationary distribution of the chain, three conditions must be satisfied: K
must be irreducible and aperiodic (these are usually mild technical conditions) and p has to be a fixed
point of K. This last condition can be expressed as: p(x′) =

∫
K(x′|x)p(x)dx. This condition is

most often satisfied by satisfying the stronger detailed balance condition, which can be written as:
p(x′)K(x|x′) = p(x)K(x′|x).

Given any proposal distribution q, satisfying mild conditions, we can easily construct a transition
kernel that respects detailed balance using Metropolis-Hastings (Hastings, 1970) accept/reject rules.
More formally, starting from x0 ∼ π0, at each step t, we sample x′ ∼ q(·|Xt), and with probability
A(x′|xt) = min

(
1, p(x

′)q(xt|x′)
p(xt)q(x′|xt)

)
, accept x′ as the next sample xt+1 in the chain. If we reject

x′, then we retain the previous state and xt+1 = xt. For typical proposals this algorithm has
strong asymptotic guarantees. But in practice one must often choose between very low acceptance
probabilities and very cautious proposals, both of which lead to slow mixing. For continuous state
spaces, Hamiltonian Monte Carlo (HMC; Neal, 2011) tackles this problem by proposing updates
that move far in state space while staying roughly on iso-probability contours of p.

3.2 HAMILTONIAN MONTE CARLO

Without loss of generality, we assume p (x) to be defined by an energy function U (x), s.t.
p(x) ∝ exp(−U(x)), and where the state x ∈ Rn. HMC extends the state space with an additional
momentum vector v ∈ Rn, where v is distributed independently from x, as p(v) ∝ exp(− 1

2v
T v)

(i.e., identity-covariance Gaussian). From an augmented state ξ , (x, v), HMC produces a proposed
state ξ′ = (x′, v′) by approximately integrating Hamiltonian dynamics jointly on x and v, withU (x)
taken to be the potential energy, and 1

2v
T v the kinetic energy. Since Hamiltonian dynamics conserve

the total energy of a system, their approximate integration moves along approximate iso-probability
contours of p(x, v) = p(x)p(v).

The dynamics are typically simulated using the leapfrog integrator (Hairer et al., 2003; Leimkuhler
& Reich, 2004), which for a single time step consists of:

v
1
2 = v − ε

2∂xU(x); x′ = x+ εv
1
2 ; v′ = v − ε

2∂xU(x′). (2)

Following Sohl-Dickstein et al. (2014), we write the action of the leapfrog integrator in terms of
an operator L: Lξ , L(x, v) , (x′, v′), and introduce a momentum flip operator F: F(x, v) ,
(x,−v). It is important to note two properties of these operators. First, the transformation FL is
an involution, i.e. FLFL(x, v) = FL(x′,−v′) = (x, v). Second, the transformations from (x, v)

to (x, v
1
2 ), from (x, v

1
2 ) to (x′, v

1
2 ), and from (x′, v

1
2 ) to (x′, v′) are all volume-preserving shear

transformations i.e., only one of the variables (x or v) changes, by an amount determined by the
other one. The determinant of the Jacobian,

∣∣∣∂[FLξ]
∂ξT

∣∣∣, is thus easy to compute. For vanilla HMC∣∣∣∂[FLξ]
∂ξT

∣∣∣ = 1, but we will leave it in symbolic form for use in Section 4. The Metropolis-Hastings-
Green (Hastings, 1970; Green, 1995) acceptance probability for the HMC proposal is made simple
by these two properties, and is

A(FLξ|ξ) = min
(

1, p(FLξ)
p(ξ)

∣∣∣∂[FLξ]
∂ξT

∣∣∣). (3)
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4 L2HMC: TRAINING MCMC SAMPLERS

In this section, we describe our proposed method L2HMC (for ‘Learning To Hamiltonian Monte
Carlo’). Given access to only an energy function U (and not samples), L2HMC learns a parametric
leapfrog operator Lθ over an augmented state space. We begin by describing what desiderata we
have for Lθ, then go into detail on how we parameterize our sampler. Finally, we conclude this
section by describing our training procedure.

4.1 AUGMENTING HMC

HMC is a powerful algorithm, but it can still struggle even on very simple problems. For example, a
two-dimensional multivariate Gaussian with an ill-conditioned covariance matrix can take arbitrarily
long to traverse (even if the covariance is diagonal), whereas it is trivial to sample directly from it.
Another problem is that HMC can only move between energy levels via a random walk (Neal, 2011),
which leads to slow mixing in some models. Finally, HMC cannot easily traverse low-density zones.
For example, given a simple Gaussian mixture model, HMC cannot mix between modes without
recourse to additional tricks, as illustrated in Figure 1b. These observations determine the list of
desiderata for our learned MCMC kernel: fast mixing, fast burn-in, mixing across energy levels, and
mixing between modes.

While pursuing these goals, we must take care to ensure that our proposal operator retains two key
features of the leapfrog operator used in HMC: it must be invertible, and the determinant of its
Jacobian must be tractable. The leapfrog operator satisfies these properties by ensuring that each
sub-update only affects a subset of the variables, and that no sub-update depends nonlinearly on
any of the variables being updated. We are free to generalize the leapfrog operator in any way that
preserves these properties. In particular, we are free to translate and rescale each sub-update of the
leapfrog operator, so long as we are careful to ensure that these translation and scale terms do not
depend on the variables being updated.

4.1.1 STATE SPACE

As in HMC, we begin by augmenting the current state x ∈ Rn with a continuous momentum variable
v ∈ Rn drawn from a standard normal. We also introduce a binary direction variable d ∈ {−1, 1},
drawn from a uniform distribution. We will denote the complete augmented state as ξ , (x, v, d),
with probability density p(ξ) = p(x)p(v)p(d). Finally, to each step t of the operator Lθ we assign
a fixed random binary mask mt ∈ {0, 1}n that will determine which variables are affected by each
sub-update. We draw mt uniformly from the set of binary vectors satisfying

∑n
i=1m

t
i = bn2 c, that

is, half of the entries of mt are 0 and half are 1. For convenience, we write m̄t = 1 − mt and
xmt = x�mt (� denotes element-wise multiplication, and 1 the all ones vector).

4.1.2 UPDATE STEPS

We now describe the details of our augmented leapfrog integrator Lθ, for a single time-step t, and
for direction d = 1.

We first update the momenta v. This update can only depend on a subset ζ1 , (x, ∂xU(x), t) of the
full state, which excludes v. It takes the form

v′ = v � exp( ε2Sv(ζ1))− ε
2 (∂xU(x)� exp(εQv(ζ1)) + Tv(ζ1)) . (4)

We have introduced three new functions of ζ1: Tv , Qv , and Sv . Tv is a translation, exp(Qv) rescales
the gradient, and exp( ε2Sv) rescales the momentum. The determinant of the Jacobian of this trans-
formation is exp

(
ε
21 · Sv(ζ1)

)
. Note that if Tv ,Qv , and Sv are all zero, then we recover the standard

leapfrog momentum update.

We now update x. As hinted above, to make our transformation more expressive, we first update a
subset of the coordinates of x, followed by the complementary subset. The first update, which yields
x′ and affects only xmt , depends on the state subset ζ2 , (xm̄t , v, t). Conversely, with x′ defined
below, the second update only affects x′m̄t and depends only on ζ3 , (x′mt , v, t):

x′ = xm̄t +mt � [x� exp(εSx(ζ2)) + ε(v′ � exp(εQx(ζ2)) + Tx(ζ2))]

x′′ = x′mt + m̄t � [x′ � exp(εSx(ζ3)) + ε(v′ � exp(εQx(ζ3)) + Tx(ζ3))] .
(5)

4



Published as a conference paper at ICLR 2018

Again, Tx is a translation, exp(Qx) rescales the effect of the momenta, exp(εSx) rescales the posi-
tions x, and we recover the original leapfrog position update if Tx = Qx = Sx = 0. The determinant
of the Jacobian of the first transformation is exp (εmt · Sx(ζ2)), and the determinant of the Jacobian
of the second transformation is exp (εm̄t · Sx(ζ3)).

Finally, we update v again, based on the subset ζ4 , (x′′, ∂xU(x′′), t):

v′′ = v′ � exp( ε2Sv(ζ4))− ε
2 (∂xU(x′′)� exp(εQv(ζ4)) + Tv(ζ4)). (6)

This update has the same form as the momentum update in equation 4.

To give intuition into these terms, the scaling applied to the momentum can enable, among other
things, acceleration in low-density zones, to facilitate mixing between modes. The scaling term
applied to the gradient of the energy may allow better conditioning of the energy landscape (e.g., by
learning a diagonal inertia tensor), or partial ignoring of the energy gradient for rapidly oscillating
energies.

The corresponding integrator for d = −1 is given in Appendix A; it essentially just inverts the
updates in equations 4, 5 and 6. For all experiments, the functions Q,S, T are implemented using
multi-layer perceptrons, with shared weights. We encode the current time step in the MLP input.

Our leapfrog operator Lθ corresponds to running M steps of this modified leapfrog, Lθξ =
Lθ(x, v, d) = (x′′×M , v′′×M , d), and our flip operator F reverses the direction variable d, Fξ =
(x, v,−d). Written in terms of these modified operators, our proposal and acceptance probability
are identical to those for standard HMC. Note, however, that this parameterization enables learning
non-volume-preserving transformations, as the determinant of the Jacobian is a function of Sx and
Sv that does not necessarily evaluate to 1. This quantity is derived in Appendix B.

4.1.3 MCMC TRANSITIONS

For convenience, we denote by R an operator that re-samples the momentum and direction. I.e.,
given ξ = (x, v, d), Rξ = (x, v′, d′) where v′ ∼ N (0, I), d′ ∼ U ({−1, 1}). Sampling thus
consists of alternating application of the FLθ and R, in the following two steps each of which is a
Markov transition that satisfies detailed balance with respect to p:

1. ξ′ = FLθξ with probability A(FLθξ|ξ) (Equation 3), otherwise ξ′ = ξ.
2. ξ′ = Rξ

This parameterization is effectively a generalization of standard HMC as it is non-volume preserv-
ing, with learnable parameters, and easily reduces to standard HMC for Q,S, T = 0.

4.2 LOSS AND TRAINING PROCEDURE

We need some criterion to train the parameters θ that control the functions Q, S, and T . We choose
a loss designed to reduce mixing time. Specifically, we aim to minimize lag-one autocorrelation.
This is equivalent to maximizing expected squared jumped distance (Pasarica & Gelman, 2010).
For ξ, ξ′ in the extended state space, we define δ(ξ′, ξ) = δ((x′, v′, d′), (x, v, d)) = ||x − x′||22.
Expected squared jumped distance is thus Eξ∼p(ξ) [δ(FLθξ, ξ)A(FLθξ|ξ)]. However, this loss need
not encourage mixing across the entire state space. Indeed, maximizing this objective can lead
to regions of state space where almost no mixing occurs, so long as the average squared distance
traversed remains high. To optimize both for typical and worst case behavior, we include a reciprocal
term in the loss,

`λ(ξ, ξ′, A(ξ′|ξ)) = λ2

δ(ξ,ξ′)A(ξ′|ξ) −
δ(ξ,ξ′)A(ξ′|ξ)

λ2 , (7)

where λ is a scale parameter, capturing the characteristic length scale of the problem. The second
term encourages typical moves to be large, while the first term strongly penalizes the sampler if it is
ever in a state where it cannot move effectively – δ(ξ, ξ′) being small resulting in a large loss value.
We train our sampler by minimizing this loss over both the target distribution and initialization dis-
tribution. Formally, given an initial distribution π0 over X , we define q(ξ) = π0(x)N (v; 0, I)p(d),
and minimize

L(θ) , Ep(ξ) [`λ(ξ,FLθξ, A(FLθξ|ξ))] + λbEq(ξ) [`λ(ξ,FLθξ, A(FLθξ|ξ))] . (8)

5



Published as a conference paper at ICLR 2018

The first term of this loss encourages mixing as it considers our operator applied on draws from the
distribution; the second term rewards fast burn-in; λb controls the strength of the ‘burn-in’ regular-
ization. Given this loss, we exactly describe our training procedure in Algorithm 1. It is important
to note that each training iteration can be done with only one pass through the network and can be
efficiently batched. We further emphasize that this training procedure can be applied to any learn-
able operator whose Jacobian’s determinant is tractable, making it a general framework for training
MCMC proposals.

Algorithm 1 Training L2HMC

Input: Energy function U : X → R and its gradient ∇xU : X → X , initial distribution over
the augmented state space q, number of iterations niters, number of leapfrogs M , learning rate
schedule (αt)t≤niters

, batch size N , scale parameter λ and regularization strength λb.
Initialize the parameters of the sampler θ.
Initialize {ξ(i)

p }i≤N from q(ξ).
for t = 0 to niters − 1 do

Sample a minibatch {ξ(i)
q }i≤N from q(ξ).

L ← 0
for i = 1 to N do

ξ
(i)
p ← Rξ

(i)
p

L ← L+ `λ

(
ξ

(i)
p ,FLθξ

(i)
p , A(FLθξ

(i)
p |ξ(i)

p )
)

+ λb`λ

(
ξ

(i)
q ,FLθξ

(i)
q , A(FLθξ

(i)
q |ξ(i)

q )
)

ξ
(i)
p ← FLθξ

(i)
p with probability A(FLθξ

(i)
p |ξ(i)

p ).
end for
θ ← θ − αt∇θL

end for

5 EXPERIMENTS

We present an empirical evaluation of our trained sampler on a diverse set of energy functions. We
first present results on a collection of toy distributions capturing common pathologies of energy
landscapes, followed by results on a task from machine learning: maximum-likelihood training of
deep generative models. For each, we compare against HMC with well-tuned step length and show
significant gains in mixing time. Code implementing our algorithm is available online1.

5.1 VARIED COLLECTION OF ENERGY FUNCTIONS

We evaluate our L2HMC sampler on a diverse collection of energy functions, each posing different
challenges for standard HMC.

Ill-Conditioned Gaussian (ICG): Gaussian distribution with diagonal covariance spaced log-
linearly between 10−2 and 102. This demonstrates that L2HMC can learn a diagonal inertia tensor.

Strongly correlated Gaussian (SCG): We rotate a diagonal Gaussian with variances [102, 10−2] by
π
4 . This is an extreme version of an example from Neal (2011). This problem shows that, although
our parametric sampler only applies element-wise transformations, it can adapt to structure which is
not axis-aligned.

Mixture of Gaussians (MoG): Mixture of two isotropic Gaussians with σ2 = 0.1, and centroids
separated by distance 4. The means are thus about 12 standard deviations apart, making it almost
impossible for HMC to mix between modes.

Rough Well: Similar to an example from Sohl-Dickstein et al. (2014), for a given η > 0, U(x) =
1
2x

Tx+η
∑
i cos(xiη ). For small η the energy itself is altered negligibly, but its gradient is perturbed

by a high frequency noise oscillating between −1 and 1. In our experiments, we choose η = 10−2.

For each of these distributions, we compare against HMC with the same number of leapfrog steps
and a well-tuned step-size. To compare mixing time, we plot auto-correlation for each method and

1https://github.com/brain-research/l2hmc.
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Distribution ESS-L2HMC ESS-HMC Ratio

50-d ICG 7.83× 10−1 1.65× 10−2 36.6
Rough Well 6.25× 10−1 1.16× 10−1 5.4
2-d SCG 4.97× 10−1 4.69× 10−3 106.2
MoG 3.24× 10−2 � 2.61× 10−4 � 124

(c) ESS per Metropolis-Hastings step
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Figure 1: L2HMC mixes faster than well-tuned HMC, and than A-NICE-MC, on a collection of toy distribu-
tions.

report effective sample size (ESS). We compute those quantities in the same way as Sohl-Dickstein
et al. (2014). We observe that samplers trained with L2HMC show greatly improved autocorrelation
and ESS on the presented tasks, providing more than 106× improved ESS on the SCG task. In
addition, for the MoG, we show that L2HMC can easily mix between modes while standard HMC
gets stuck in a mode, unable to traverse the low density zone. Experimental details, as well as a
comparison with LAHMC (Sohl-Dickstein et al., 2014), are shown in Appendix C.

Comparison to A-NICE-MC (Song et al., 2017) In addition to the well known challenges as-
sociated with adversarial training (Arjovsky et al., 2017), we note that parameterization using a
volume-preserving operator can dramatically fail on simple energy landscapes. We build off of the
mog2 experiment presented in (Song et al., 2017), which is a 2-d mixture of isotropic Gaussians
separated by a distance of 10 with variances 0.5. We consider that setup but increase the ratio of
variances: σ2

1 = 3, σ2
2 = 0.05. We show in Figure 1d sample chains trained with L2HMC and

A-NICE-MC; A-NICE-MC cannot effectively mix between the two modes as only a fraction of the
volume of the large mode can be mapped to the small one, making it highly improbable to traverse.
This is also an issue for HMC. On the other hand, L2HMC can both traverse the low-density region
between modes, and map a larger volume in the left mode to a smaller volume in the right mode. It
is important to note that the distance between both clusters is less than in the mog2 case, and it is
thus a good diagnostic of the shortcomings of volume-preserving transformations.

5.2 LATENT-VARIABLE GENERATIVE MODEL

We apply our learned sampler to the task of training, and sampling from the posterior of, a latent-
variable generative model. The model consists of a latent variable z ∼ p(z), where we choose
p(z) = N (z; 0, I), and a conditional distribution p(x|z) which generates the image x. Given a
family of parametric ‘decoders’ {z 7→ p(x|z;φ), φ ∈ Φ}, and a set of samples D = {x(i)}i≤N ,
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Figure 2: Training and held-out log-likelihood for models trained with L2HMC, HMC, and the ELBO (VAE).

training involves finding φ∗ = arg maxφ∈Φ p(D;φ). However, the log-likelihood is intractable as
p(x;φ) =

∫
p(x|z;φ)p(z)dz. To remedy that problem, Kingma & Welling (2013) proposed jointly

training an approximate posterior qψ that maximizes a tractable lower-bound on the log-likelihood:

LELBO(x, φ, ψ) = Eqψ(z|x) [p(x|z;φ)]−KL(qψ(z|x)||p(z)) ≤ p(x), (9)

where qψ(z|x) is a tractable conditional distribution with parameters ψ, typically parameterized by
a neural network. Recently, to improve upon well-known pitfalls like over-pruning (Burda et al.,
2015) of the VAE, Hoffman (2017) proposed HMC-DLGM. For a data sample x(i), after obtaining
a sample from the approximate posterior qψ(·|x(i)), Hoffman (2017) runs a MCMC algorithm with
energy function U(z, x(i)) = − log p(z) − log p(x(i)|z;φ) to obtain a more exact posterior sample
from p(z|x(i);φ). Given that better posterior sample z′, the algorithm maximizes log p(x(i)|z′;φ).

To show the benefits of L2HMC, we borrow the method from Hoffman (2017), but replace
HMC by jointly training an L2HMC sampler to improve the efficiency of the posterior sam-
pling. We call this model L2HMC-DLGM. A diagram of our model and a formal description
of our training procedure are presented in Appendix D. We define, for ξ = {z, v, d}, r(ξ|x;ψ) ,
qψ(z|x)N (v; 0, I)U (d; {−1, 1}).

In the subsequent sections, we compare our method to the standard VAE model from Kingma &
Welling (2013) and HMC-DGLM from Hoffman (2017). It is important to note that, since our sam-
pler is trained jointly with pφ and qψ , it performs exactly the same number of gradient computations
of the energy function as HMC. We first show that training a latent variable generative model with
L2HMC results in better generative models both qualitatively and quantitatively. We then show that
our improved sampler enables a more expressive, non-Gaussian, posterior.

Implementation details: Our decoder (pφ) is a neural network with 2 fully connected layers, with
1024 units each and softplus non-linearities, and outputs Bernoulli activation probabilities for each
pixel. The encoder (qψ) has the same architecture, returning mean and variance for the approximate
posterior. Our model was trained for 300 epochs with Adam (Kingma & Ba, 2014) and a learning
rate α = 10−3. All experiments were done on the dynamically binarized MNIST dataset (LeCun).

5.2.1 SAMPLE QUALITY AND DATA LIKELIHOOD

We first present samples from decoders trained with L2HMC, HMC and the ELBO (i.e. vanilla
VAE). Although higher log likelihood does not necessarily correspond to better samples (Theis
et al., 2015), we can see in Figure 5, shown in the Appendix, that the decoder trained with L2HMC
generates sharper samples than the compared methods.

We now compare our method to HMC in terms of log-likelihood of the data. As we previously
stated, the marginal likelihood of a data point x ∈ X is not tractable as it requires integrating p(x, z)
over a high-dimensional space. However, we can estimate it using annealed importance sampling
(AIS; Neal (2001)). Following Wu et al. (2016), we evaluate our generative models on both training
and held-out data. In Figure 2, we plot the data’s log-likelihood against the number of gradient
computation steps for both HMC-DGLM and L2HMC-DGLM. We can see that for a similar number
of gradient computations, L2HMC-DGLM achieves higher likelihood for both training and held-out
data. This is a strong indication that L2HMC provides significantly better posterior samples.
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(a) Block Gibbs inpainting of the top half of an MNIST digit, using (top)
L2HMC as a posterior sampler, and (bottom) qψ as a posterior sampler. (b) Non-Gaussian posterior

Figure 3: Demonstrations of the value of a more expressive posterior approximation.

5.2.2 INCREASED EXPRESSIVITY OF THE POSTERIOR

In the standard VAE framework, approximate posteriors are often parametrized by a Gaussian, thus
making a strong assumption of uni-modality. In this section, we show that using L2HMC to sample
from the posterior enables learning of a richer posterior landscape.

Block Gibbs Sampling To highlight our ability to capture more expressive posteriors, we in-paint
the top of an image using Block Gibbs Sampling using the approximate posterior or L2HMC. For-
mally, let x0 be the starting image. We denote top or bottom-half pixels as xtop

0 and xbottom
0 . At

each step t, we sample z(t) ∼ p(z|xt; θ), sample x̃ ∼ p(x|zt; θ). We then set xtop
t+1 = x̃top and

xbottom
t+1 = xbottom

0 . We compare the results obtained by sampling from p(z|x; θ) using qψ (i.e. the
approximate posterior) vs. our trained sampler. The results are reported in Figure 3a. We can see that
L2HMC easily mixes between modes (3, 5, 8, and plausibly 9 in the figure) while the approximate
posterior gets stuck on the same reconstructed digit (3 in the figure).

Visualization of the posterior After training a decoder with L2HMC, we randomly choose an
element x0 ∈ D and run 512 parallel L2HMC chains for 20, 000 Metropolis-Hastings steps. We
then find the direction of highest variance, project the samples along that direction and show a
histogram in Figure 3b. This plot shows non-Gaussianity in the latent space for the posterior. Using
our improved sampler enables the decoder to make use of a more expressive posterior, and enables
the encoder to sample from this non-Gaussian posterior.

6 FUTURE WORK

The loss in Section 4.2 targets lag-one autocorrelation. It should be possible to extend this to also
target lag-two and higher autocorrelations. It should also be possible to extend this loss to reward
fast decay in the autocorrelation of other statistics of the samples, for instance the sample energy
as well as the sample position. These additional statistics could also include learned statistics of
the samples, combining benefits of the adversarial approach of (Song et al., 2017) with the current
work.

Our learned generalization of HMC should prove complementary to several other research directions
related to HMC. It would be interesting to explore combining our work with the use of HMC in a
minibatch setting (Chen et al., 2014); with shadow Hamiltonians (Izaguirre & Hampton, 2004); with
gradient pre-conditioning approaches similar to those used in Riemannian HMC (Girolami et al.,
2009; Betancourt, 2013); with the use of alternative HMC accept-reject rules (Sohl-Dickstein et al.,
2014; Berger et al., 2015); with the use of non-canonical Hamiltonian dynamics (Tripuraneni et al.,
2016); with variants of AIS adapted to HMC proposals (Sohl-Dickstein & Culpepper, 2012); with
the extension of HMC to discrete state spaces (Zhang et al., 2012); and with the use of alternative
Hamiltonian integrators (Creutz & Gocksch, 1989; Chao et al., 2015).

Finally, our work is also complementary to other methods not utilizing gradient information. For
example, we could incorporate the intuition behind Multiple Try Metropolis schemes (Martino &
Read, 2013) by having several parametric operators and training each one when used. In addition,
one could draw inspiration from the adaptive literature (Haario et al., 2001; Andrieu & Thoms, 2008)
or component-wise strategies (Gilks & Wild, 1992).
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7 CONCLUSION

In this work, we presented a general method to train expressive MCMC kernels parameterized with
deep neural networks. Given a target distribution p, analytically known up to a constant, our method
provides a fast-mixing sampler, able to efficiently explore the state space. Our hope is that our
method can be utilized in a “black-box” manner, in domains where sampling constitutes a huge
bottleneck such as protein foldings (Schütte et al., 1999) or physics simulations (Olsson, 1995).
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Appendix
A REVERSE LEAPFROG OPERATOR

Let ξ = {x, v, d} in the extended state space with d = −1. Here, we describe the leapfrog updates
for a single time step t, this consists of inverting the equations presented in the corresponding section.

Let ζ1 = {x, v, t}, we have:

v′ =
[
v +

ε

2
(∂xU(x)� exp(εQv(ζ1)) + Tv(ζ1))

]
� exp(−Sv(ζ1)). (10)

With the notation from Section 4, let ζ2 , {xmt , v, t}
x′ = xmt + m̄t � [(x− ε(exp(εQx(ζ2))� v′ + Tx(ζ2))]� exp(−εSv(ζ2)). (11)

Let us denote ζ3 , {x′m̄t , v, t}:
x′′ = xm̄t +mt � [(x′ − ε(exp(εQx(ζ3))� v′ + Tx(ζ3))]� exp(−εSv(ζ3)). (12)

Finally, the last update, with ζ4 , {x′′, ∂xU(x′′), t}:

v′ =
[
v +

ε

2
(∂xU(x′′)� exp(εQv(ζ4)) + Tv(ζ4))

]
� exp(−Sv(ζ4)). (13)

It is important to note that to invert Lθ, these steps should be ran for t from M to 1.

B DETERMINANT OF THE JACOBIAN

Given the derivations (and notations) from Section 4, for the forward operator Lθ, we can immedi-
ately compute the Jacobian:

log

∣∣∣∣∂[FLθξ]

∂ξT

∣∣∣∣ = d
∑
t≤M

[ ε
2
1 · Sv(ζt1) + εmt · Sx(ζt2) + εm̄t · Sx(ζt3) +

ε

2
1 · Sv(ζt4)

]
. (14)

Where ζti denotes the intermediary variable ζi at time step t and d is the direction of ξ i.e. ξ =
{x, v, d}.

C EXPERIMENTAL DETAILS OF SECTION 5

C.1 IMPLEMENTATION DETAILS

First of all, we keep separate parameters for the network responsible for updating v and those updat-
ing x. The architectures are the same. Let us take the example ofQv, Sv, Tv . The time step t is given
as input to the MLP, encoded as τ(t) =

(
cos( 2πt

M ), sin( 2πt
M )
)
. σ(·) denotes the ReLU non-linearity.

For nh hidden units per layer:

• We first compute h1 = σ(W1x+W2v +W3τ(t) + b) (h ∈ Rnh ).
• h2 = σ(W4h+ b4) ∈ Rnh

• Sv = λstanh(Wsh2 + bs), Qv = λqtanh(Wqh2 + bq), Tv = Wth2 + bt.

In Section 5.1, the Q,S, T are neural networks with 2 hidden layers with 10 (100 for the 50-d ICG)
units and ReLU non-linearities. We train with Adam (Kingma & Ba, 2014) and a learning rate
α = 10−3. We train for 5, 000 iterations with a batch size of 200.

λb was set to 0 for ICG and SCG and to 1 for MoG and Rough Well. For the MoG tasks, we train our
sampler with a temperature parameter that we continuously anneal; we evaluate the trained sampler
without using temperature.
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...qψ(z|x(i)) pφ(x|z(i)J )x(i) z
(i)
0 z

(i)
J

Kθ(z|z(i)j , x(i))

Figure 4: Diagram of our L2HMC-DGLM model. Nodes are functions of their parents. Round
nodes are deterministic, diamond nodes are stochastic and the doubly-circled node is observed.

C.2 AUTO-CORRELATION AND ESS

Let (xτ )τ≤T be a set of correlated samples converging to the distribution p with mean µ and covari-
ance Σ. We define auto-correlation at time t as:

ρt ,
1

Trace(Σ)(T − t)
∑

τ≤T−t−1

(xτ − µ)T (xτ+t − µ). (15)

We can now define effective sample size (ESS) as:

ESS ((xτ )τ≤T ) ,
1

1 + 2
∑
t ρt

. (16)

Similar to Hoffman & Gelman (2014), we truncate the sum when the auto-correlation goes below
0.05.

C.3 COMPARISON WITH LAHMC

We compare our trained sampler with LAHMC (Sohl-Dickstein et al., 2014). Results are reported in
Table 1. L2HMC largely outperforms LAHMC on all task. LAHMC is also unable to mix between
modes for the MoG task. We also note that L2HMC could be easily combined with LAHMC, by
replacing the leapfrog integrator of LAHMC with the learned one of L2HMC.

Distribution Gradient Evaluations ESS-L2HMC ESS-LAHMC Ratio

50-d ICG 2000 156.6 21.4 7.3
Rough Well 200 12.5 8.6 1.5
2-d SCG 5000 116 16.7 14.9
MoG 20, 000 65.0 � 0.53 � 123.5

Table 1: ESS for a fixed number of gradient evaluations.

D L2HMC-DGLM

D.1 TRAINING ALGORITHM

In this section, we present our training algorithm as well as a diagram explaining L2HMC-DGLM.
For conciseness, given our operator Lθ, we denote by Kθ(·|x) the distribution over next state given
sampling of a momentum and direction and the Metropolis-Hastings step.

D.2 IMPLEMENTATION DETAILS OF L2HMC-DGLM

Similar to our L2HMC training on unconditional sampling, we share weights across Q,S and T .
In addition, the auxiliary variable x (here the image from MNIST) is first passed through a 2-layer
neural network, with softplus non-linearities and 512 hidden units. This input is given to both
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Algorithm 2 L2HMC for latent variable generative models

Input: dataset D, number of iterations niters, number of Metropolis-Hastings step J , number of
leapfrogs M , and learning rate schedule (αt)t≤niters

.
Randomly initialize the decoder’s parameters φ and the approximate posterior ψ. Initialize the
parameters of the sampler θ with M leapfrog steps.
for t = 0 to niters − 1 do

Randomly sample a minibatch B from the dataset D.
LELBO,LSampler,LDecoder ← 0

for x(b) ∈ B do
Sample ξ(b)

0 ∼ r(·|x(b);ψ).
LELBO ← p(x(b)|z(b)

0 ;φ)−KL(qψ(z|x(b))||p(z)) . With ξ(b)
0 = {z(b)

0 , v
(b)
0 , d

(b)
0 }

Define the energy function Ux(b)(z) = − log p(x(b)|z; θ)− log p(z)
LSampler ← 0

λ←
√

Var(qψ(z
(b)
0 |x(b))

for j = 0 to J − 1 do
ξ

(b)
j ← Rξ

(b)
j

LSampler ← LSampler + `λ(ξ
(b)
j ,FLθξ

(b)
j , A(FLθξ

(b)
j |ξ

(b)
j ))

Set ξ(b)
j+1 to FLθξ

(b)
j with probability A(FLθξ

(b)
j |ξ

(b)
j ).

end for
LDecoder ← LDecoder + log p(x(b)|z(s)

J ;φ) . With ξ(b)
J = {z(b)

J , v
(b)
J , d

(b)
J }

end for
φ← φ+ αt∇φLDecoder

ψ ← ψ + αt∇ψLELBO

θ ← θ + αt∇θLSampler

end for

(a) L2HMC (b) HMC (c) VAE

Figure 5: L2HMC-DGLM decoder produces sharper mean activations.

networks {·}x and {·}v . The architecture then consists of 2 hidden layers of 200 units and ReLU
non-linearities. For λ (scale parameter of the loss), we use the standard deviation of the approximate
posterior.

AIS Evaluation For each data point, we run 20 Markov Chains in parallel, 10, 000 annealing steps
with 10 leapfrogs per step and choose the step size for an acceptance rate of 0.65.

D.3 MNIST SAMPLES

We show in Figure 5 samples from the three evaluated models: VAE (Kingma & Welling, 2013),
HMC-DGLM (Hoffman, 2017) and L2HMC-DGLM.
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