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Camera Caption: The camera moves forward, following the running lady from behind, resulting in slightly unsteady motion with 

shaking. As the video concludes, the camera stops tracking, tilts up, and pans left to reveal the scene ahead.

A lively scene inside a spacious, well-lit restaurant, characterized by wooden floors, large windows with natural 

light, and a mix of modern and rustic decor including exposed brick walls and furniture. An elderly lady walks 

purposefully through the warm, inviting space, her stride steady, bustling with diverse patrons seated enjoying 

meals or conversations at many tables set with cutlery and glasses. The ambiance is cozy yet sophisticated.

Object  Caption: 

Scene  Caption:

An elderly lady with short white hair, wearing a vibrant multicolored blouse and black pants, walks with a 

steady, rhythmic gait. Their arms are slightly bent, holding a small object. Maintaining an upright posture with 

head tilted forward, they move at a consistent pace, suggesting focus, purpose, or familiarity with their path.

Figure 1: The overview of physically-aware multi-modal world modeling framework DynamicVerse.

Abstract

Understanding the dynamic physical world, characterized by its evolving 3D
structure, real-world motion, and semantic content with textual descriptions, is
crucial for human-agent interaction and enables embodied agents to perceive and
act within real environments with human-like capabilities. However, existing
datasets are often derived from limited simulators or utilize traditional Structure-
from-Motion for up-to-scale annotation and offer limited descriptive captioning,
which restricts the capacity of foundation models to accurately interpret real-world
dynamics from monocular videos, commonly sourced from the internet.
To bridge these gaps, we introduce DynamicVerse, a physical-scale, multimodal
4D world modeling framework for dynamic real-world video. We employ large
vision, geometric, and multimodal models to interpret metric-scale static geometry,
real-world dynamic motion, instance-level masks, and holistic descriptive captions.
By integrating window-based Bundle Adjustment with global optimization, our
method converts long real-world video sequences into a comprehensive 4D mul-
timodal format. DynamicVerse delivers a large-scale dataset consists of 100K+
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videos with 800K+ annotated masks and 10M+ frames from internet videos. Ex-
perimental evaluations on three benchmark tasks, namely video depth estimation,
camera pose estimation, and camera intrinsics estimation, demonstrate that our 4D
modeling achieves superior performance in capturing physical-scale measurements
with greater global accuracy than existing methods.

1 Introduction

Humans inhabit a dynamic 3D world where geometric structure and semantic content evolve over time,
constituting a 4D reality (spatial with temporal dimension). Understanding this dynamic environment
is fundamental for developing advanced AI applications in fields such as robotics [1, 2, 3, 4, 5, 6],
extended reality [7, 8, 9], and digital twins [10, 11]. However, building generalizable foundation
models for these downstream tasks faces a longstanding challenge: acquiring high-quality, ground-
truth 4D datasets from real-world environments, given that data-driven solutions increasingly demand
4D data while its collection using multiple sensors remains non-scalable. This raises the question:
Can we develop an automated pipeline capable of generating a real-world 4D dataset at scale?

Current real-world 4D data primarily focus on indoor scenes [12, 13] or autonomous driving scenar-
ios [14], where geometry capture is straightforward, but their diversity is limited. Even synthetic
4D data [15, 16, 17, 18], while controllable, often lack the fidelity and complexity required to truly
represent the real world, resulting in a notable simulation-to-real gap. Moreover, physically-aware
multimodal annotations—including metric-scale 3D geometry, detailed representations of non-rigid
actors (e.g., object size, mask and bounding box, etc.), and descriptive captions of dynamic contents
(i.e., object, camera and scene)—are often absent [19, 20]. This limited data landscape, especially
when contrasted with the progress fueled by large-scale datasets in modalities like images, videos,
and language, underscores the compelling need for a large-scale, diverse, physically-aware, and
semantically rich annotated multi-modal dataset for 4D scene understanding.

Against this background, this paper aims to generate scalable, physically-aware, and multimodal
annotations from massive monocular video data (see Fig. 1) for numerous potential applications, such
as enhancing 4D Vision-Language Models [21], facilitating advanced 3D-aware video generation [22],
and enabling linguistic 4D Gaussian Splatting [23]. However, achieving this goal is not trivial. To the
best of our knowledge, there is currently a significant lack of rich and diverse 4D datasets (see Tab. 1)
adequate for these demanding tasks. To address this data scarcity, we introduce DynamicGen, a novel
automated data curation pipeline (see Fig. 3) designed to generate physically-aware multi-modal 4D
data at scale. This pipeline contains two main stages: (1) metric-scale geometric and moving object
recovery (i.e., object category and mask) from raw videos, and (2) hierarchical dynamic contents
(i.e., object, camera and scene) detailed caption generation. Specifically, the pipeline curates diverse
real-world monocular video sources; employs a filtering strategy to remove outliers such as camera
motion intensity; integrates multiple foundation models (i.e., VFMs, VLMs, LLMs, GFMs) for initial
frame-wise annotation; applies dynamic bundle adjustment to jointly minimize global photometric
error; and concludes with dynamic content captioning at three granularities and human-in-the-loop
quality review to ensure annotation semantic accuracy.

The resulting multi-modal 4D dataset, termed DynamicVerse (see Fig. 1), comprises over 100K
distinct 4D scenes, 800K masklets, and 10M video frames. Each scene is extensively annotated with
multiple modalities: metric-scale point maps, camera parameters, object masks with corresponding
categories, and detailed descriptive captions. We evaluate DynamicGen through three benchmarks:
video depth estimation, camera pose estimation, and camera intrinsics estimation. We demonstrate
the generalization capability of DynamicGen to process web-scale video data and extract multi-modal
information qualitatively. We also conduct human study and GPT-assited evaluation to validate the
quality of generated captions.

Our main contributions are summarized as follows:

• We develop DynamicGen, a novel automated data curation pipeline designed to generate
physically-aware multi-modal 4D data at scale. This pipeline contains two main stages: (1)
metric-scale geometric and moving object recovery from raw videos, and (2) hierarchical detailed
semantic captions generation at three granularities (i.e., object, camera and scene). Powered by
foundation models (i.e., VFMs, VLMs, LLMs, GFMs), DynamicGen efficiently generate 4D data
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at scale, thus addressing the critical scalability, physical reality and modality diversity limitations
of traditional 4D data curation.

• We introduce DynamicVerse, a large-scale 4D dataset featuring diverse dynamic scenes accom-
panied by rich multi-modal annotations including metric-scale point maps, camera parameters,
object masks with corresponding categories, and detailed descriptive captions. DynamicVerse
encompasses 100K+ 4D scenes coupled with 800K+ masklets, sourced through a combination of
massive 2D video datasets and existing 4D datasets. This represents a significant improvement in
terms of data scale, scene and modality diversity compared to prior 4D datasets.

• We validate DynamicGen through three benchmarks: video depth estimation, camera pose and
intrinsics estimation. We demonstrate the generalization capability of DynamicGen to process
web-scale videos and extract multi-modal information qualitatively. We also conduct human
study and GPT-assited evaluation to validate the quality of generated captions.

2 Related Work

Table 1: Comparison of DynamicVerse with large-scale 2D video datasets and existing 4D scene
datasets. DynamicVerse expands the data scale and annotation richness compared to prior works.
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2D Video Dataset
DAVIS2017 [24] 0.2K 10.7K 0.4K - - - -
Youtube-VIS [25] 3.8K - 8,171 - - - -
UVO-dense [26] 1.0K 68.3K 10.2K - - - -
VOST [27] 0.7K 75.5K 1.5K - - - -
BURST [28] 2.9K 195.7K 16.1K - - - -
MOSE [29] 2.1K 638.8K 5.2K - - - -
SA-V [30] 50.9K 4.2M 642.6K - - - -
MiraDATA [31] 330K - - - - - -
4D Scene Dataset
T.Air Shibuya [32] 7 0.7K - Mixed Street Synthetic Yes
MPI Sintel [33] 14 0.7K - - Scripted Synthetic -
FlyingThings3D [34] 220 2K - Mixed Objects Synthetic -
Waymo [14] 1,150 200K - Outdoor Driving Real-world Yes
CoP3D [12] 4,200 600K - Mixed Pets Real-world -
Stereo4D [35] 110,000 10,000K - Mixed S. fisheye Real-world Yes
PointOdyssey [15] 159 200K - Mixed Realistic Synthetic Yes
Spring [16] 47 6K - Mixed Realistic Synthetic Yes
Dynamic Replica [17] 524 145K - Indoor Realistic Synthetic Yes
MVS-Synth [18] 120 12K - Outdoor Urban Synthetic Yes
RealCam-Vid [19] 100K - - Mixed Realistic Synthetic Yes
DynPose-100K [20] 100K 6,806K - Mixed Realistic Synthetic Yes

DynamicVerse 100K+ 13.6M 800K+ Mixed Realistic Real-world Yes

Multi-modal foundation models. The development of numerous large foundation models in recent
years has yielded remarkable performance across multiple tasks such as depth estimation [36, 37,
38, 39, 40], multi-view stereo [41, 42, 43], detection and segmentation [44, 45, 46, 30], human
parsing [47], optical flow estimation [48, 49], and point tracking [50, 51, 38]. We propose that these
models are highly applicable to achieving holistic 4D understanding, and unifying them within a single
framework represents a promising direction for advancing tasks like nonrigid structure from motion.
Our DynamicGen pipeline implements this idea by integrating the following pretrained components:
UniDepthv2 [52] for geometry initialization, CoTracker3 [51] and UniMatch [49] for correspondence
initialization, and Qwen2.5-VL [53] and SA2VA [54] for dynamic object segmentation. This
integration, coupled with multi-stage optimization and regularization, allows us to extract accurate
metric-scale camera poses and 4D geometry from monocular video. Similar to our method, the
concurrently developed Uni4D [55] captures 4D geometry and pose, but it suffers from limited
data modalities and discontinuous geometric estimates. In contrast, our DynamicGen pipeline not
only produces globally refined dense 4D geometry but also supports moving object recovery (i.e.,
object category and mask) and provides fine-grained dynamic content (i.e., object, camera and scene)
caption annotations.
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(a) Moving objects type.

(c) Object actions type. (e) Data source of DynamicVerse.

(b) Camera motion type.

(d) Dynamic Scene (environments) type.

Figure 2: The statistics and data source of DynamicVerse.

Multi-modal datasets. The development of large-scale multi-modal datasets has proven essential
for advancing model performance across numerous domains, including language, image-text (e.g.,
LAION [56, 57], Conceptual Captions [58], WebImageText [59]), and video understanding (e.g.,
DAVIS2017 [24], Youtube-VIS [25], UVO-dense [26], VOST [27], BURST [28], MOSE [29], SA-
V [30], MiraDATA [31]). Extending this success to holistic 4D understanding requires datasets that
capture the dynamic 3D world with rich, multi-modal annotations. Existing 4D datasets, whether
from early reconstruction efforts [15, 16, 17, 18] (limited diversity) or recent large-scale posed video
collections like RealCam-Vid [19] and DynPose-100K [20] (lacking detailed geometry and semantics
beyond pose), and even OBJAVERSE [60] (limited content), fall short of providing the comprehensive
multi-modal information needed. Our DynamicVerse dataset bridges this gap by offering extensive
multi-modal annotations, including metric-scale depth, camera parameters, instance segmentation
with labels, and descriptive captions, specifically designed to facilitate advanced 4D research.

3 DynamicVerse

Overview DynamicVerse is a physical-scale, multi-modal 4D modeling framework for real-world
video, which contains a novel automated data curation pipeline and corresponding large-scale 4D
dataset. The DynamicGen pipeline (see Fig. 3) contains two main stages: (1) metric-scale geometric
and moving object recovery (i.e., object category and mask) from raw videos, and (2) hierarchical
dynamic contents (i.e., object, camera and scene) detailed caption generation. This pipeline primarily
consists of five steps: 4D scene curation (in Sec. 3.1), data filter strategy (in Sec. 3.2), moving
object recovery (in Sec. 3.3), dynamic bundle adjustment (in Sec. 3.4) and dynamic content caption
generation (in Sec. 3.5). The resulting DynamicVerse dataset comprises over 100K distinct 4D
scenes, 800K masklets, and 10M video frames. The data statistics and collection of DynamicVerse
are illustrated in Fig. 2.

3.1 4D scene curation

To address the scarcity of available 4D scene data, DynamicGen unifies video data from vari-
ous real-world video datasets, including DAVIS2017 [24], Youtube-VIS [25], UVO-dense [26],
VOST [27], BURST [28], MOSE [29] and SA-V [30], alongside existing synthetic 4D datasets from
PointOdyssey [15], Spring [16], Dynamic Replica [17], MVS-Synth [18], RealCam-Vid [19] and
DynPose-100K [20]. The inclusion of these datasets is mainly motivated by their potential as scalable
data sources for 4D scene understanding.

3.2 Data filter strategy

Data filtering is a critical step for identifying video data suitable for subsequent dynamic bundle
adjustment. This process presents challenges due to the noisy quality and inherent variability of video
data, which impedes the precise selection of high-quality sequences. To address this, we developed a
filtering strategy incorporating several distinct criteria: proximal depth, focal-length stability, video
blur, camera motion smoothness, and non-perspective distortion. Each of these aspects is quantified
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Raw Videos

Instance Masks

LLM-rephrased

Response (scene-level)

Prompt: Given the <raw video>    , <moving instance masks>    , <instance label>   
 and <moving instance caption>     . Provide a description of the dynamic scene.
Focus on the scene type, instance-scene interaction, instance’s motion pattern, etc.

Raw 2D video datasets with GT 

instance mask & semantic label

Raw dynamic 3D datasets 

with GT camera & depth

Proximal Depth Verification

Data Filter Strategy Dynamic Bundle Adjustment

Moving Object Caption

Raw Data Collection

Stage 1 : Generating Metric-scale Camera, Video Depth, Object Category, Object Mask and Size

Stage 2 : Generating Fine-grained Captions For Moving Objects, Cameras and Dynamic Scenes

Focal-Length Stability

Video Blur Degree

Camera Motion Smoothness

Coarse Camera Initialization

Non-Rigid
Bundle Adjustment

Sliding Window
Global Refinement

Dynamic Masking

Static Area
Bundle Adjustment

<think> Alright, let's break down the attributes step by 
step: First, observe the boy’s action: stand, crouch, … . 
Then, see the boy's attire: light green shirt, … . Next, 
note the shape and movement: agile, … . Then, consider 
the material of the clothing: lightweight, … . Finally, 
take into account the setting and the boy's engagement: 
indoor trampoline park, … .</think>.  <answer> {...} </answer>

LLM-rephrased

Response (object-level)

Prompt: Given the <raw video>   , <moving instance mask>   and
 <instance label>   . Provide a description of the moving instance. 
Focus on its action and attributes (e.g., color, shape, material).

Instance Label

“A Young Boy”

Response

Prompt: Given the <raw video>    , 
<instance label>     , <moving instance 
caption>     , and <dynamic scene 
caption>    . Provide a description of 
the camera motion.  

UniDepth-V2

UniMatch CoTracker-V3

SAM2 & Variants

Powerful Foundation Models

SegAnyMo

Language Models

VGGT

Epipolar Errors

Dynamic Object Coverage

Moving Object Recovery

Dynamic Scene Caption

LLM-aligned

VLM Judgement 

VLM-based object recognition

Semantic-based Segmentation

Physical-aware Size Extraction

<answer> { 
The camera smoothly 

pans right, tracking the 
subject from the side with 
minimal shaking. 
}</answer> 

<answer> {
A young boy in a vibrant green vest with red 

trim and dark pants performs a dynamic sequence. 
Beginning in profile, they turn, extending arms and 
balancing on ready legs. Fluidly shifting from 
standing to a focused crouch, their movements 
display agility and control. The energetic sequence 
concludes with them seated, relaxed yet purposeful, 
embodying athleticism and grace throughout the 
transitions.
} </answer>

Camera Motion Caption

<answer> { 
The camera smoothly pans 

right, tracking the young boy 
in the indoor trampoline 
park with minimal shaking. 
}</answer> 

<answer> {
 Inside a vibrant indoor trampoline park, a young boy in a 

turquoise shirt dynamically jumps, spins, and flips. Brightly lit, 
the park features multiple trampolines with blue padding and 
colorful play structures like orange and red climbing frames. 
Other children in white and pink shirts enjoy the lively, 
energetic atmosphere as the boy's joyful acrobatics highlight 
the scene's playful activity and vibrant setting .
} </answer>

<think> Alright, let's break down the attributes step by step: 
First, identify the scene type: an indoor trampoline park, … . 
Then, note the primary interactive entities :  a young boy, … . 
Next, observe the instance’s motion patterns: jumps, spins, …. 
Then consider the static background components: Padded 
Walls, … . Finally, take into account the spatial relationships and 
interactions among different moving instances and the scene :  the 
boy actively interacts on the trampoline by jumping and 
performing various acrobatic actions. </think>. <answer> {...} </answer>

Random 
forest

Figure 3: The physically-aware multi-modal 4D data generation pipeline DynamicGen.

by a normalized score. We combine these scores as features and employ a Random Forest model
to predict a video quality score ranging from 0 to 5. For model training, we manually annotated
approximately 1,000 videos, assigning scores between 0 (indicating largely unsuitable, poor quality
or insufficient dynamics) and 5 (indicating highly suitable, good quality and sufficient dynamics). We
further apply VLM-based judgment to automatically exclude unsuitable videos before reconstruction.

3.3 Moving object recovery

To accurately identify the main dynamic objects within a video, we integrated multiple foundation
models to achieve reliable segmentation. Specifically, our pipeline first employs Qwen2.5-VL [61]
to identify moving objects and determine their semantic categories. These categories are then used
to prompt SA2VA [54] for generating corresponding object masks. Leveraging the obtained object
masks and geometric annotations, we can apply physical-aware size extraction to annotate the 3D
bounding box for moving objects.

3.4 Dynamic bundle adjustment

Leveraging the high-quality RGB filtered videos, we employed a robust dynamic bundle adjustment
method for annotating metric-scale camera parameters and point maps. This task is challenging
due to dynamic objects occluding the static scene and static scene appearance changes hindering
correspondence estimation. To effectively addresses both difficulties, we design a multi-stage
optimization framework, see Fig. 3, including: (1) dynamic masking, (2) coarse camera initialization,
(3) tracking-based static area bundle adjustment, (4) tracking-based non-rigid bundle adjustment, and
(5) flow-based sliding window global refinement. Compared with traditional Structure-from-Motion
techniques [62] and DUSt3R-based methods [63], our framework not only can handle massive video
data with different resolutions but also yield metric-scale results by leveraging the full power of
various foundation models.

Formulation Given T video RGB frames I = (I1, . . . , IT ) with resolution H ×W , we aim to
estimate for each timestep t = 1, . . . , T : per-frame pointmap Xt ∈ RH×W×3, camera intrinsics Kt,
and camera pose Pt = [Rt|Tt], where Rt and Tt denote the t-th camera’s rotation and translation,
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Figure 4: Qualitative Results of Moving Object Segmentation. We show qualitatively some of our
segmentation results on the Youtube-VIS dataset compared with other methods.

respectively. Here, X contains static points Xstatic and dynamic points Xdyn. We assume all frames
share the same intrinsics K where we optimize focal lengths fx and fy . The overall cost function is
formulated as follows:

CBA(P,Xstatic) + Cflow(Xstatic) + CNR(Xdyn) + Cmotion(Xdyn) + Ccam(R) (1)

where CBA(P,Xstatic) and Cflow(Xstatic) are bundle adjustment terms measuring the reprojection
error between static correspondences and the static 3D structure Xstatic. CNR(Xdyn) is a non-rigid
structure-from-motion term evaluating the consistency of the dynamic point cloud with its tracklets.
Regularization is applied to camera motion smoothness through Ccam(P) and to the dynamic structure
and motion via Cmotion(Xdyn). Each term participates in different optimization stages, which are
described below. Detailed explanations of the cost terms are provided in the supplementary material.

Stage I: Dynamic masking We first extract dynamic masks to filter out the dynamic points for
static area bundle adjustment. Specifically, we use semantic-based and motion-based method to obtain
dynamic masks M = {Mt}Tt=0 = {Mt

sem ∪Mt
flow}Tt=0. For the segmentation-based approach, we

use the generated moving object masks {Mt
sem}Tt=0 in Sec. 3.3. For the flow-based approach, we

employ Unimatch [49] to obtain dense optical flow predictions and compute per-frame epipolar error
maps [64], which indicate the likelihood of pixels belonging to the dynamic foreground. Then we
can obtain dynamic masks Mflow = [E1, E2, . . . , ET ] by thresholding on these epipolar error maps.
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Stage II: Coarse camera initialization In this stage, we start camera initialization by obtaining
video depth D = {Dt}Tt=0 and dense pixel motion Z = {Zk}Kk=0. For video depth estimation, we
use UniDepthV2 [52], a monocular depth estimation network, to estimate initial depth maps D and
initial camera intrinsics Kinit. For dense pixel motion estimation, we utilize Co-TrackerV3 [51] for its
robustness. We apply Co-Tracker bi-directionally on a dense grid every 10 frames to ensure thorough
coverage. We filter and classify tracklets using segmentation masks yielding a set of correspondent
point trajectories {Zk ∈ RT×2}Kk=0 at visible time steps determined by Co-Tracker. Combining
D and Z allows us to establish 2D-to-3D correspondences. This allows us to initialize and tune
camera parameter P by minimizing the following cost function with respect to camera parameters
only. Specifically, we can unproject each video frame’s depth at time t back to 3D and minimize the
following cost function:

min
P

∑
(t′,t)

∑
Zk∈¬M

∥Zk,t′ − πK(π−1
K (Zk,t,Dt, ξt), ξt′)∥22 (1)

where π−1
K is the unprojection function that maps 2D coordinates into 3D world coordinates using

estimated depth Dt. We perform this over all pairs within a temporal sliding window of 5 frames.
Given camera initialization P̂, we unproject our depth prediction into a common world coordinate
system, which provides an initial 4D structure X̂. This is used as initialization for later optimization.

Stage III: Static area bundle adjustment We jointly optimizes camera pose and static geometry by
minimizing the static component-related energy in a bundle adjustment fashion. Formally speaking,
we solve the following:

min
P,Xstatic

CBA(P,Xstatic;Z,M) + Ccam(R) (2)

By enforcing consistency with each other, this improves both the static geometry and the camera
pose quality. We perform a final scene integration by unprojecting correspondences into 3D using
improved pose and filtering outlier noisy points in 3D.

Stage IV: Non-rigid bundle adjustment Given the estimated camera pose, this stage focuses on
inferring dynamic structure. Note that we freeze camera parameters in this stage, as we find that
incorrect geometry and motion evidence often harm camera pose estimation rather than improve it.
Additionally, enabling camera pose optimization introduces extra flexibility in this ill-posed problem,
harming robustness. Formally speaking, we solve the following:

min
Xdyn

CNR(Xdyn;P,Z,M) + Cmotion(Xdyn) (3)

We initialize Xdyn using video depth and our optimized camera pose from last step. This energy
optimization might still leave some high-energy noisy points, often from incorrect cues, motion
boundaries, or occlusions. We filter these outliers based on their energy values in a final step. To
further densify the global point cloud, enabling each pixel to correspond to a 3D point, we perform
depthbased interpolation by computing a scale offset.

Stage V: Sliding window global refinement Given the estimated optical flow, this stage focuses
on refining static structure. Note that we freeze camera parameters in this stage. Formally speaking,
we solve the following:

min
Xstatic

Cflow(Xstatic) (4)

With consideration for accuracy and efficiency, the sliding window global refinement is capable of
significantly enhancing the multi-view consistency of static points and generalizing effectively to
real-world 4D scenes. The detailed process can be found in the appendix.

3.5 Dynamic Content Caption Generation

Drawing upon the emphasis placed by LEO [65] and SceneVerse [66] on the criticality of caption
quality and granularity for comprehensive scene understanding, we design captions at three specific
levels: object, scene, and camera. Object captioning focuses on detailed object motion, scene
captioning describes object-scene interactions, and camera captioning conveys intricate camera
movement. To argument the caption, Large Language Models (LLMs) are employed to automatically
rephrase initial captions and align them with these three granularity levels. Finally, to ensure data
quality, human verification is conducted to filter out low-quality caption annotations.
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Moving object captioning. Moving object captions provide detailed descriptions crucial for object
grounding. However, prior datasets often have incorrect temporal alignment [66] or insufficient
detail [15, 67], while current video captioning methods yield only simple (e.g., Panda-70M [68])
or non-localized descriptions (e.g., Qwen2.5-VL [61]). To address these limitations and generate
detailed, accurate captions for individual objects, we utilize DAM [69], known for its superior
capabilities. Given RGB videos and corresponding object masks, DAM [69] generates detailed
and temporally aligned object descriptions through carefully designed prompts, enabling precise
grounding and richer scene understanding.

Dynamic scene captioning. Scene-level captions are designed to capture global information,
depicting the key objects within the scene along with their associated actions, interactions, and
functionalities. For a comprehensive understanding of the entire dynamic scene, we utilize Qwen2.5-
VL [61] for dynamic scene captioning. To obtain more detailed, fine-grained, and accurate captions,
we propose the use of structured captions. This process involves leveraging the fine-grained moving
object captions as auxiliary input and employing specific prompting to generate the final scene-level
descriptions. In the design of the prompts, we discovered that an explicit Hierarchical Prompt
Design [70] significantly aids the Qwen2.5-VL[61] in comprehending its role, its expected format,
and its operational boundaries. This approach contributes to the stabilization of the output’s format
and enhances the overall quality of the results.

Camera motion captioning. Camera Motion Captioning aims to describe the camera’s trajectory
and movement patterns. Using the powerful VLM [71], we analyze the sequence of inter-frame trans-
formations to identify key motion types like panning, tilting, zooming, and dolly movements. This
kinematic information is then used to generate natural language descriptions, potentially leveraging
template-based generation or LLM prompting, to convey how the viewpoint changes over time.

Caption rephrasing. Following the generation of three distinct caption types (object, scene, and
camera motion), a Large Language Model (LLM) [61] is employed to jointly process them. This step
aligns the dynamic content descriptions across caption types and refines their phrasing to enhance
overall consistency and readability.

Human-in-the-loop quality review. To provide a faithful comparison against larger pretrained
models, human evaluation was used. Addressing persistent errors from source annotation inaccuracies,
we implemented an iterative human-in-the-loop verification during caption construction to identify
errors, trace sources, and revise/remove problematic data.

4 Experiments

In this section , we present experimental results to evaluate the robustness of our DynamicGen
pipeline. Due to the page limit, we direct readers to the appendix for implementation details, more
qualitative results, and more experimental analyses.

4.1 Video Depth Estimation

To evaluate video depth estimation accuracy, we assess several baseline methods, including metric
depth predictors such as Metric3Dv2 [72], Depth-Pro [36], DepthCrafter [37], and Unidepth [39],
which operate without scale or shift alignment. We also consider joint 4D modeling approaches, in-
cluding MonST3R [63] and RCVD [73]. Evaluations are conducted on the Sintel [33] and KITTI [75]
datasets, following standard protocols [37] by applying global shift and scale alignment to the pre-
dicted depth maps. We report absolute relative error (Abs Rel) and the percentage of inlier points
(δ < 1.25), with all methods undergoing least-squares alignment in disparity space. As shown in
Tab. 2, DynamicGen achieves the best overall performance across all datasets and evaluation metrics.
In particular, it consistently outperforms prior approaches in both absolute accuracy and geometric
consistency, demonstrating strong generalization to diverse and dynamic scenes. As illustrated in
Fig. 5, MonST3R consistently struggles with object geometry reconstruction, producing distorted

All research undertaken at Meta AI was limited to general guidance on model architectural design. Meta
did not participate in any model training activities. Fan, Z. contributed to this project prior to the NeurIPS
submission deadline.
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Figure 5: Visual comparisons of 4D reconstruction on in-the-wild data.

Table 2: Video depth evaluation on Sintel and KITTI datasets. Bold and underlined values indicate
best and second best results.

Sintel KITTI

Alignment Category Method Abs↓ δ1.25↑ Abs↓ δ1.25↑

Per-sequence
scale

Joint depth
& pose

Monst3r [63] 0.344 55.9 0.089 91.4
Uni4D [55] 0.289 64.9 0.086 93.3

Per-sequence
scale & shift

Single-frame
depth

Depth-pro [36] 0.280 60.5 0.080 94.2
Metric3D [72] 0.205 71.9 0.039 98.8

Video depth DepthCrafter [37] 0.231 69.0 0.112 88.4

Joint video
depth & pose

Robust-CVD [73] 0.358 49.7 0.182 72.9
CasualSAM [74] 0.292 56.9 0.113 88.3
Uni4D [55] 0.216 72.5 0.098 89.7
DynamicGen(Ours) 0.205 72.9 0.091 91.2

shapes and noisy dynamic masks. Uni4D also exhibits mask imprecision. DynamicGen, however,
achieves the cleanest dynamic segmentations and the strongest dynamic/static reconstructions.

4.2 Camera Pose Estimation

We evaluate our method against recent dynamic scene pose estimation approaches, including learning-
based visual odometry (e.g., LEAP-VO [76], DPVO [77]) and joint depth-pose optimization methods
(e.g., Robust-CVD [73], CasualSAM [74], MonST3R [63]). Experiments are conducted on the
Sintel [33] and TUM-dynamics [78] datasets, following LEAP-VO’s split for Sintel and subsampling
the first 270 frames of TUM-dynamics, as done in MonST3R. Camera trajectories are aligned using
Umeyama alignment [79], and we report Absolute Trajectory Error (ATE), Relative Translation Error
(RPE trans), and Relative Rotation Error (RPE rot). As shown in Tab. 3, DynamicGen consistently
achieves state-of-the-art results across all metrics and datasets, outperforming existing methods in
both translation and rotation accuracy.
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Table 3: Camera Pose Evaluation on Sintel and TUM-dynamic datasets. Bold and underlined values
indicate best and second best results.

Sintel TUM-dynamics

Category Method ATE↓ RPE trans↓ RPE rot↓ ATE↓ RPE trans↓ RPE rot↓

Pose only
DPVO [77] 0.171 0.063 1.291 0.019 0.014 0.406
LEAP-VO [76] 0.035 0.065 1.669 0.025 0.031 2.843

Joint depth
& pose

Robust-CVD [73] 0.368 0.153 3.462 0.096 0.027 2.590
CasualSAM [74] 0.137 0.039 0.630 0.036 0.018 0.745
Monst3r [63] 0.108 0.043 0.729 0.108 0.022 1.371
Uni4D [55] 0.110 0.032 0.338 0.012 0.004 0.335
DynamicGen(Ours) 0.108 0.029 0.282 0.012 0.004 0.331

4.3 Camera Intrinsics Estimation

Camera intrinsics are typically unavailable for most casual videos, especially those sourced from the
Internet. However, accurate intrinsics are critical for reliable pose estimation and 3D reconstruction.
To assess this, we evaluate focal length estimation accuracy on the Sintel dataset, with results
summarized in Tab. 4. UniDepth predicts depth and focal length from a single image, while Dust3r
processes sequential frames but is trained under classical multi-view settings and fails to generalize
well to dynamic scenes. In contrast, DynamicGen demonstrates strong generalization to dynamic
content and achieves the best performance in both Absolute Focal Error (AFE) and Relative Focal
Error (RFE), setting a new state-of-the-art for focal length estimation in unconstrained video scenarios.

Table 4: Camera intrinsics estimation.
Method AFE(px)↓ RFE(%)↓

UniDepth [39] 447.4 0.357
Dust3r [41] 434.0 0.364
DynamicGen(Ours) 413.1 0.241

Table 5: Dynamic Scene Caption evaluation.
Method Acc.↑ Com.↑ Con.↑ Rel.↑ Avg.↑

DO 79.28 76.65 73.23 80.33 77.37
+ SAKFE 80.23 77.46 74.01 81.45 78.29
+ HP 82.57 81.42 71.17 82.56 79.43
+ Rephrasing 82.48 80.50 71.86 83.27 79.53
+ COT 84.38 82.09 75.87 85.56 81.97

4.4 Caption Quality Evaluation

To assess caption quality, we sampled 100 videos from the SA-V dataset [30]. As presented in Table 5,
our experimental results indicate that integrating semantic-aware key frame extraction (SAKFE),
hierarchical prompting (HP), caption rephrasing, and Chain-of-Thought (CoT) prompting [80]
significantly enhances the quality of dynamic scene captions generated by Vision-Language Models
(VLMs). We evaluated caption quality using the LLM-as-Judge metric G-VEval [81], conducting ten
independent evaluations to ensure robust average results. The resulting captions were demonstrably
more accurate, complete, concise, and relevant than those produced by direct output (DO), confirming
the effectiveness of these strategies for improving caption quality in this task.

5 Conclusion

In this work, we address key limitations in traditional 4D data curation regarding scalability, physical
realism, and modality diversity. We introduce DynamicGen, an automated pipeline leveraging
foundation models for video filtering, metric-scale geometry and motion recovery, and hierarchical
semantic captioning from raw videos. DynamicGen’s capabilities are validated through standard
benchmarks on video depth and camera pose/intrinsics estimation, qualitative analyses on diverse
web videos, and human/LLM-based evaluations confirming caption quality. Utilizing DynamicGen,
we construct DynamicVerse, a large-scale 4D dataset with over 100K dynamic scenes and rich
physically grounded multimodal annotations. Together, this work offers a scalable 4D data generation
methodology and a comprehensive new resource to advance 4D scene understanding.
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authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
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groups), privacy considerations, and security considerations.
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being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
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feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: Released models that have a high risk for misuse or dual-use should be released
with necessary safeguards to allow for controlled use of the model, by requiring that users
adhere to usage guidelines or restrictions to access the model or implementing safety filters.
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• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
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are properly credited and are the license and terms of use explicitly mentioned and properly
respected.
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• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of
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• If assets are released, the license, copyright information, and terms of use in the
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has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The new assets introduced in the paper are well documented and provided
alongside the assets.
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• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The answer NA means that the paper does not involve crowdsourcing nor
research with human subjects.
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
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Justification: The answer NA means that the paper does not involve crowdsourcing nor
research with human subjects.
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: as a controller
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Figure 6: DynamicVerse dataset.

A Appendix

In the appendix, we provide more results and analysis and summarize them as follows:

• In Section A.1, we introduce the broader impact of our DynamicVerse framework.

• In Section A.2, we supplement details of dynamic bundle adjustment.

• In Section A.3, we ablate the different components for dynamic bundle adjustment.

• In Section A.4, we provide additional experiments on generated hierarchical captions.

• In Section A.5, we provide more qualitative results of dynamic bundle adjustment.

• In Section A.6, we provide inference speed and computational cost for DynamicGen.

• In Section A.7, we provide the limitation.

A.1 Broader Impact

The introduction of DynamicVerse, with its large-scale, physically-aware, and multimodally annotated
4D dataset derived from real-world videos, is set to significantly influence several advanced research
areas. Our framework’s unique ability to capture metric-scale geometry, real-world motion, instance-
level semantics, and descriptive captions offers an unparalleled resource that can catalyze progress in
the following domains:

• Dynamic 4D Scene Generation: DynamicVerse offers a paradigm shift for Dynamic 4D Scene
Generation. Current methods often rely on limited simulators or struggle to realistically portray
complex real-world physics and motion from internet-sourced content. By accurately interpreting
real-world dynamics from monocular videos and integrating window-based Bundle Adjustment
with global optimization, DynamicVerse converts long video sequences into a comprehensive
4D multimodal format, capturing fine-grained dynamic information. This rich, real-world data
provides an unparalleled training ground for generative models, leading to the creation of highly
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realistic, physically plausible, and semantically coherent dynamic 4D scenes. This has profound
implications for high-fidelity content creation in entertainment (e.g., movies, games), realistic vir-
tual environments for training and simulation (e.g., disaster response, architectural visualization),
and the synthetic generation of diverse data for further AI research, helping to overcome privacy
and data collection limitations.

• 4D Vision-Language Models (4D-VLM): DynamicVerse will greatly accelerate the development
of sophisticated 4D Vision-Language Models that can reason about space, time, and semantics
concurrently. Existing VLMs often operate on 2D images or short video clips with limited
3D awareness. Our framework provides a unique combination of metric-scale 4D geometry,
real-world dynamic motion, and comprehensive textual descriptions for long video sequences,
allowing 4D-VLMs to learn intricate relationships between evolving 3D scenes and natural
language narratives. Such models could enable more advanced human-agent interaction, where
agents can provide detailed textual explanations of complex dynamic events they perceive in 4D,
or understand nuanced, temporally extended instructions involving interactions within a 3D space.
This could revolutionize areas like AI-powered video captioning, temporal question answering in
3D, and the development of embodied AI agents that communicate their understanding of the
dynamic world with human-like richness.

• 4D Language-Grounded Gaussian Splatting (4D-LangSplat): DynamicVerse offers a founda-
tional dataset for advancing 4D-LangSplat methodologies. While current 4D Gaussian Splatting
techniques excel at novel view synthesis of dynamic scenes, their integration with language for
semantic understanding and manipulation is still nascent. Our dataset, rich with 800K+ instance
masks and holistic descriptive captions directly linked to evolving 3D structures and motions at a
physical scale, empowers 4D-LangSplat models. This will enable the development of systems
that can not only reconstruct dynamic scenes with high fidelity but also allow users to query,
edit, and interact with these 4D representations using natural language. For instance, users could
ask an agent to "track the red car that just turned left" or "remove the person walking in front of
the fountain," with the model understanding both the spatial dynamics and the semantic context.
This can significantly enhance applications in robotics, augmented reality, and interactive content
creation by bridging the gap between visual perception and linguistic instruction in dynamic 3D
environments.

In summary, DynamicVerse is poised to serve as a crucial catalyst, providing the data and framework
necessary to bridge the gap between 2D understanding and true 4D world modeling, thereby fostering
advancements in semantic scene understanding, dynamic object interaction, multimodal reasoning,
and realistic content generation.

A.2 Details of Dynamic Bundle Adjustment

Camera parameterization In Eq. (1), ξ ∈ SE(3) represents the camera poses as rigid transforma-
tions. Rotations are parameterized using so(3) rotation vectors, which offer a minimal representation
facilitating direct optimization.

Static Area Bundle Adjustment Term In Eq. (2), the bundle adjustment energy CBA(P,Xstatic)
measures the consistency between the pixel-level correspondences and the 3D structure of static
scene elements. Given the input pixel tracks Z = {Zk}Kk=0 and video segmentation M = {Mt}Tt=0,
we filter all tracks corresponding to static areas and minimize the distance between the projected
pixel location and the observed pixel location:

CBA(P,Xstatic;Z,M) =
∑

Zk∈M

∑
t

wk,t∥Zk,t − πK(Xk, ξt)∥2 (5)

where Xk is the k-th 3D point, Zk,t is the k-th 3D point’s corresponding pixel track’s 2D coordinates
at time t, wk,t ∈ {0, 1} is a visibility indicator and πK is the perspective projection function.

Camera Smoothness Prior In Eq. (2), given the video input, a temporal smoothness prior is
imposed on camera poses. This prior penalizes abrupt changes in relative pose, defined as ξt→t+1 =
ξ−1
t+1 ·ξt. We adaptively reweight this term based on the magnitude of the relative motion. Specifically,

a larger relative motion results in a reduced penalty on its change rate, while a smaller relative motion
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incurs a higher penalty. Formally, this is expressed as:

Ccam(P) =
∑
t

Crot(Rt−1,t,t+1) +
∑
t

Ctrans(Tt−1,t,t+1)

where Crot(Rt−1,t,t+1) = 2||rad(Rt→t+1)−rad(Rt−1→t)||
||rad(Rt−1→t)||+||rad(Rt→t+1)|| and Ctrans(tt−1,t,t+1) =

2||tt→t+1−tt−1→t||
||tt−1→t||+||tt→t+1|| ; rad converts the rotation matrix into absolute radians.

Non-Rigid Bundle Adjustment Term In Eq. (3), for dynamic objects, we impose a nonrigid
bundle adjustment term, ENR(Xdyn), which measures the discrepancy between the dynamic point
cloud and pixel tracklets. Here, each pixel tracklet corresponds to a dynamic 3D point sequence,
{Xk,t}, optimized for each observed tracklet:

CNR(Xdyn,P,Z,M) =
∑

zk∈M

∑
t

wk,t∥Zk,t − πK(Xk,t, ξt)∥2 (6)

where Xk,t ∈ R3 is the k-th dynamic point’s location at t.

Dynamic Motion Prior In Eq. (3), Cmotion(Xdyn) is a regularization term that encodes the charac-
teristics of the dynamic structure. It contains two prior terms that are used to regularize the dynamic
structure, both of which have demonstrated effectiveness in previous work.

Cmotion(Xdyn) = Carap(Xdyn) + Csmooth(Xdyn). (7)

Carap represents an as-rigid-as-possible (ARAP) prior [82] designed to penalize extreme deformations
that compromise local rigidity. Specifically, for each dynamic control point k, its nearest neighbors
are identified using k-Nearest Neighbors (KNN) on the remaining tracks. We then enforce that the
relative distances among these neighboring pairs remain consistent, preventing sudden changes

Carap =
∑
t

∑
(k,m)

wkm∥d(Xk,t,Xm,t)− d(Xk,t+1,Xm,t+1)∥2 (8)

where d(, ) is the L2 distance and wkm,t = 1 if all relevant points are visible.

Csmooth is a simple smoothness term that promotes temporal smoothness for the dynamic point cloud:

Csmooth =
∑
t

∑
Xk∈Xdyn

wk,t∥Xk,t −Xk,t+1∥2. (9)

Despite simplicity, both motion terms are crucial in our formulation, as they significantly reduce
ambiguities in 4D dynamic structure estimation, which is highly ill-posed. Unlike other methods, we
do not assume strong modelbased motion priors, such as rigid motion [83], articulated motion [84],
or a linear motion basis [85].

Optical Flow Prior In Eq. (4), we also use a flow projection loss to encourage the global pointmaps
to be consistent with the estimated flow for the confident, static regions of the actual frames. More
precisely, given two frames t, t′, using their global pointmaps, camera extrinsics and intrinsics,
we compute the flow fields from taking the global pointmap Xt, assuming the scene is static, and
then moving the camera from t to t′. We denote this value Fglobal: t→t′

cam , similar to the term defined
in the confident static region computation above. Then we can encourage this to be close to the
estimated flow, Ft→t′

est , in the regions which are confidently static Xglobal: t→t′

staic according to the global
parameters:

Cflow(Xstatic) =
∑

W i∈W

∑
t′∈W i

∥Xglobal: t→t′ · (Fglobal: t→t′

cam − Ft→t′
est )∥1, (10)

where · indicates element-wise multiplication. Note that the confident dynamic mask is initialized
using the foundation models as described in Sec. 3.3. During the optimization, we use the global
static pointmaps and camera parameters to compute Fglobal

cam and update the confident dynamic mask.
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A.3 Ablation Study on Different Components for Dynamic Bundle Adjustment

Our dynamic BA pipeline introduces three key components absent in prior work like Uni4D [55],
which systematically improve the decomposition of static/dynamic elements and global consistency:

• (a) Epi-Mask-Based Dynamics Filtering: We introduce a geometric filtering step using an
epipolar-based mask ("Epi-mask") to achieve a cleaner separation between static background
and dynamic foreground pixels before bundle adjustment. This leads to more stable camera pose
estimation and background reconstruction.

• (b) VLM-Based Semantic Dynamics Analysis: We leverage a Vision-Language Model (VLM)
for a high-level, semantic understanding of motion. This enables intelligent, motion-aware
keyframe extraction and provides robust masks for dynamic objects, a significant improvement
over purely geometric or flow-based segmentation.

• (c) Optical Flow-Based Sliding Window Global Refinement: To address error accumulation and
temporal drift common in long videos, we implement a global refinement strategy over a sliding
window. This enforces long-range temporal consistency, correcting errors that a frame-by-frame
or local BA approach would miss.

Table 6: Components Ablation on Sintel.
Ablations (a) (b) (c) ATE↓ RPEtrans↓ RPErot↓ Abs↓ δ1.25↑
Baseline 0.114694 0.032125 0.347920 0.216433 0.725167
Ablation-1 ✓ 0.114065 0.032250 0.335198 0.215058 0.726943
Ablation-2 ✓ 0.11053 0.033122 0.334005 0.210339 0.722999
Ablation-3 ✓ 0.114694 0.032125 0.347920 0.214282 0.724084
Ablation-4 ✓ ✓ 0.108459 0.028906 0.281979 0.205892 0.727616
Ablation-5 ✓ ✓ 0.114065 0.032250 0.335198 0.214143 0.725534
Ablation-6 ✓ ✓ 0.110530 0.033122 0.334005 0.207329 0.725784

DynamicGen (Ours) ✓ ✓ ✓ 0.108459 0.028906 0.281979 0.204574 0.728961

A.4 Additional experiments on generated hierarchical captions.

We performed three distinct experiments to validate the high quality of our hierarchical semantic
annotations:

• (a) Object-Level Semantics via 4D-LangSplat [67]: To validate the annotations produced
by our DynamicGen framework, we performed a time-sensitive querying experiment using a
4D-LangSplat model. For this evaluation, we trained the model on the "americano" scene from the
HyperNeRF dataset and benchmarked it against a re-implemented 4D-LangSplat* baseline. The
results, presented in Tab. 7, demonstrate that our approach yields substantial gains in Accuracy
and volumetric Intersection over Union (vIoU). This superior performance confirms that our
precise object masks and labels are highly effective for demanding multi-modal applications.

Table 7: Quantitative comparisons of time-sensitive querying on the HyperNeRF [86] dataset.

Method americano
Acc(%) vIoU(%)

4D-LangSplat* [67] 53.84 27.55
DynamicGen 64.42 51.65

• (b) Scene-Level Semantics via G-VEval [81]: To rigorously assess our scene-level captions, we
moved beyond single-score metrics and employed a more granular evaluation using the ACCR
framework in G-VEval benchmark. This approach provides a comprehensive, multi-dimensional
assessment of caption quality across four key axes: Accuracy, Completeness, Conciseness,
and Relevance. On a random sample of 100 videos from SA-V data, our generated captions
demonstrated high performance across all four criteria, as detailed in the Tab. 8. The strong
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performance across these metrics confirms that our captions are not only factually accurate
and relevant to the video content, but also complete in their coverage of events and efficiently
concise. This robust, multi-faceted quality makes them highly suitable and reliable for demanding
downstream applications.

Table 8: Evaluation of generated captions using the ACCR framework from G-VEval.
Evaluation Criteria Accuracy↑ Completeness↑ Conciseness↑ Relevance↑ Average↑
Scene-Level Captions 84.38 82.09 75.87 85.56 81.97

• (c) Camera-Level Semantics via Human Study: We conducted a formal human study to
quantitatively analyze the quality of the final camera motion captions. Following prior work [71],
we asked human evaluators to rate our captions on three criteria: (1) Clearness (clarity of
information), (2) Conciseness (brevity without losing clarity), and (3) Grammar & Fluency.
On a sub-sample of 88 videos from our dataset (i.e., filtered DAVIS), our captions performed
excellently. The results, presented in Tab. 9 showed that over 60.22% of the captions were rated
as both clear and fluent, while also receiving high scores for conciseness. This confirms the
effectiveness of our generation and quality control process.

Table 9: Human evaluation results for the generated camera captions. Scores indicate the percentage
of captions that met each quality criterion.

Human Evaluation Rated as Clear Rated as Fluent Rated as Concise
Camera Captions 85.22% 89.77% 67.04%

A.5 More qualitative results of dynamic bundle adjustment

We present additional qualitative reconstruction results in Fig. 8, demonstrating the generalizability
and performance of our pipeline on real-world data.

A.6 Inference Speed and Computational Cost for DynamicGen

For a reproducible analysis of computational performance, we processed the entire Sintel training set
(23 videos) on NVIDIA H20 GPUs. A detailed breakdown of the average processing time and peak
VRAM consumption for each component of our pipeline is provided in Table 10.

Table 10: Computational Cost Analysis.
Module Hardware Used Avg. Time / Sintel Peak VRAM Notes

Video (mins) (GB)
1. Motion-aware Keyframe Extraction 1x H20 GPU ∼0.1 ∼10 Selects representative frames

2. VLM-Based Semantic Analysis (Qwen-VL) 2x H20 GPU ∼1.6 ∼60 Identifies dynamic elements

3. Moving Object Segmentation (SA2VA) 1x H20 GPU ∼0.8 ∼30 Per-object video segmentation

4. Dynamic Bundle Adjustment 1x CPU Core + 1x H20 GPU ∼12.2 ∼30 Main time bottleneck

5. Moving Object Captioning 2x H20 GPU ∼2.0 ∼24 Object-level descriptions

6. Dynamic Scene Captioning 2x H20 GPU ∼3.0 ∼40 Scene-level descriptions

7. Camera Motion Captioning 2x H20 GPU ∼2.0 ∼40 Camera-level descriptions

8. Caption Rephrasing 1x H20 GPU ∼2.0 ∼24 LLM-based refinement for consis-
tency and conciseness

Total (per video) H20 GPU ∼23.7 ∼60 Peak VRAM, not sum

A.7 Limitations

Despite its considerable capabilities, DynamicVerse exhibits several inherent limitations. First,
its reliance on in-the-wild internet videos introduces significant noise and quality variance. This
can compromise the fidelity of metric-scale geometry and motion recovery, particularly in complex,
cluttered, or occluded scenes that fall outside the typical distribution of the foundation models’ training
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Figure 7: Examples captions on DAVIS dataset.

data. Second, the substantial computational overhead required to process long video sequences with
large-scale models presents a practical barrier to real-time performance and scalable deployment.
Finally, while extensive, the dataset cannot exhaustively capture the long tail of real-world phenomena.
Consequently, the model’s generalization to truly novel environments is fundamentally tethered to
the intrinsic biases and capabilities of its underlying foundation models.

These limitations raise AI-safety concerns: (i) privacy and security risks, since metric-scale recon-
structions from web videos can expose sensitive interiors or critical infrastructure and facilitate
covert mapping or surveillance; and (ii) miscalibrated confidence under distribution shift, producing
plausible but erroneous geometry and dynamics that misguide downstream robotic or AR planners.
Biases and licensing gaps in foundation models and web data may further perpetuate representational
harms and legal or IP issues. A practical mitigation is to prefilter ineligible videos using policy
rules and automated detectors (e.g., content with PII, sensitive interiors or infrastructure, minors, or
restricted licenses).
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Figure 8: Qualitative Results on in-the-wild data. We show qualitatively some of our reconstruction
results on in-the-wild data. For full reconstruction, please refer to our attached supplementary
webpage.
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Figure 9: Qualitative Results of moving object Segmentation. We show qualitatively some of our
segmentation results on the Youtube-VIS dataset compared with other baselines.
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