
Under review as a conference paper at ICLR 2018

LEARNING GAUSSIAN POLICIES FROM
SMOOTHED ACTION VALUE FUNCTIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

State-action value functions (i.e., Q-values) are ubiquitous in reinforcement learn-
ing (RL), giving rise to popular algorithms such as SARSA and Q-learning. We
propose a new notion of action value defined by a Gaussian smoothed version
of the expected Q-value. We show that such smoothed Q-values still satisfy a
Bellman equation, making them learnable from experience sampled from an en-
vironment. Moreover, the gradients of expected reward with respect to the mean
and covariance of a parameterized Gaussian policy can be recovered from the
gradient and Hessian of the smoothed Q-value function. Based on these rela-
tionships we develop new algorithms for training a Gaussian policy directly from
a learned smoothed Q-value approximator. Our approach is amenable to proxi-
mal optimization techniques by augmenting the objective with a penalty on KL-
divergence from a previous policy. We find that the ability to learn both a mean
and covariance during training allows this approach to achieve much better results
on standard continuous control benchmarks.

1 INTRODUCTION

Model-free reinforcement learning algorithms often alternate between two concurrent but interact-
ing processes: (1) policy evaluation, where an action value function (i.e., a Q-value) is updated to
obtain a better estimate of the return associated with taking a specific action, and (2) policy im-
provement, where the policy is updated aiming to maximize the current value function. In the past,
different notions of Q-value have led to distinct but important families of RL methods. For example,
SARSA (Rummery & Niranjan, 1994; Sutton & Barto, 1998; Van Seijen et al., 2009) uses the ex-
pected Q-value, defined as the expected return of following the current policy. Q-learning (Watkins,
1989) exploits a hard-max notion of Q-value, defined as the expected return of following an optimal
policy. Soft Q-learning (Haarnoja et al., 2017) and PCL (Nachum et al., 2017a) both use a soft-max
form of Q-value, defined as the future return of following an optimal entropy regularized policy.
Clearly, the choice of Q-value function has a considerable effect on the resulting algorithm; for ex-
ample, restricting the types of policies that can be expressed, and determining the type of exploration
that can be naturally applied.

In this work we introduce a new notion of action value: the smoothed action value function Q̃π .
Unlike previous notions, which associate a value with a specific action at each state, the smoothed Q-
value associates a value with a specific distribution over actions. In particular, the smoothed Q-value
of a state-action pair (s, a) is defined as the expected return of first taking an action sampled from
a normal distribution N(a,Σ(s)), centered at a, then following actions sampled from the current
policy thereafter. In this way, the smoothed Q-value can also be interpreted as a Gaussian-smoothed
or noisy version of the expected Q-value.

We show that smoothed Q-values possess a number of interesting properties that make them at-
tractive for use in RL algorithms. For one, the smoothed Q-values satisfy a single-step Bellman
consistency, which allows bootstrapping to be used to train a function approximator. Secondly, for
Gaussian policies, the standard optimization objective (expected return) can be expressed in terms of
smoothed Q-values. Moreover, the gradient of this objective with respect to the mean and covariance
of the Gaussian policy is equivalent to the gradient and the Hessian of the smoothed Q-value func-
tion, which allows one to derive updates to the policy parameters by having access to the derivatives
of a sufficiently accurate smoothed Q-value function.

1

Under review as a conference paper at ICLR 2018

This observation leads us to propose an algorithm called Smoothie, which in the spirit of (Deep)
Deterministic Policy Gradient (DDPG) (Silver et al., 2014; Lillicrap et al., 2016), trains a policy
using the derivatives of a trained (smoothed) Q-value function, thus avoiding the high-variance of
stochastic updates used in standard policy gradient algorithms (Williams & Peng, 1991; Konda &
Tsitsiklis, 2000). Unlike DDPG, which is well-known to have poor exploratory behavior (Haarnoja
et al., 2017), the approach we develop is able to utilize a non-deterministic Gaussian policy param-
eterized by both a mean and a covariance, thus allowing the policy to be exploratory by default and
alleviating the need for excessive hyperparameter tuning.

Furthermore, we show that Smoothie can be easily adapted to incorporate proximal policy opti-
mization techniques by augmenting the objective with a penalty on KL-divergence from a previous
version of the policy. The inclusion of a KL-penalty is not feasible in the standard DDPG algorithm,
but we show that it is possible with our formulation, and it significantly improves stability and over-
all performance. On standard continuous control benchmarks, our results are competitive with or
exceed state-of-the-art, especially for more difficult tasks in the low-data regime.

2 NOTATION & BACKGROUND

We consider the standard model-free RL framework, where an agent interacts with a stochastic
black-box environment by sequentially observing the state of the environment, emitting an action,
and receiving a reward feedback; the goal is to find an agent that achieves maximal cumulative
discounted reward. This problem can be expressed in terms of a Markov decision process (MDP)
that consists of a state space S and an action space A, where at iteration t the agent encounters
a state st ∈ S and emits an action at ∈ A, after which the environment returns a scalar reward
rt ∼ R(st, at) and places the agent in a new state st+1 ∼ P (st, at).

We model the behavior of the agent using a stochastic policy π that produces a distribution over
feasible actions at each state s as π(a | s). The optimization objective (expected discounted return),
as a function of the policy, can then be expressed in terms of the expected action value function
Qπ(s, a) by,

OER(π) =

∫
S

∫
A
π(a | s)Qπ(s, a) dadρπ(s) , (1)

where ρπ(s) is the stationary distribution of the states under π, and Qπ(s, a) is recursively defined
using the Bellman equation,

Qπ(s, a) = Er,s′
[
r + γ

∫
A
Qπ(s′, a′)π(a′ | s′) da

]
, (2)

where γ ∈ [0, 1] is the discount factor. For brevity, we will often suppress explicit denotation of the
sampling distribution R over immediate rewards and the distribution P over state transitions.

The policy gradient theorem (Sutton et al., 2000) expresses the gradient of OER(πθ) w.r.t. θ, the
tunable parameters of a policy πθ, as,

∇θOER(πθ) =

∫
S

∫
A
∇θπθ(a | s)Qπ(s, a) da dρπ(s) (3)

=

∫
S
Ea∼πθ(a|s) [∇θ log πθ(a | s)Qπ(s, a)] dρπ(s) . (4)

Many reinforcement learning algorithms, including policy gradient and actor-critic variants, trade off
variance and bias when estimating the random variable inside the expectation in (4); for example, by
attempting to estimate Qπ(s, a) accurately using function approximation. In the simplest scenario,
an unbiased estimate of Qπ(s, a) is formed by accumulating discounted rewards from each state
forward using a single Monte Carlo sample.

In this paper, we focus on multivariate Gaussian policies over continuous action spaces, A ≡ Rda .
We represent the observed state of the MDP as a ds-dimensional feature vector Φ(s) ∈ Rds , and
parametrize the Gaussian policy by a mean and covariance function, respectively µ(s) : Rds → Rda
and Σ(s) : Rds → Rda × Rda . These map the observed state of the environment to a Gaussian
distribution,

π(a | s) = N(a | µ(s),Σ(s)) = |2πΣ(s)|−1/2 exp

{
−1

2
‖a− µ(s)‖2Σ(s)−1

}
, (5)

2

Under review as a conference paper at ICLR 2018

where ‖v‖2A = vTAv. Below we develop new RL training methods for this family of parametric
policies, but some of the ideas presented may generalize to other families of policies as well. We
begin the formulation by reviewing some prior work on learning Gaussian policies.

2.1 DETERMINISTIC POLICY GRADIENT

Silver et al. (2014) present a new formulation of the policy gradient, called the deterministic policy
gradient, for the family of Gaussian policies in the limit where the policy covariance approaches
zero. In such a scenario, the policy becomes deterministic because sampling from the policy always
returns the Gaussian mean. The key observation of (Silver et al., 2014) is that under a deterministic
policy π ≡ (µ,Σ→ 0), one can estimate the expected future return from a state s as,

lim
Σ→0

∫
A
π(a | s)Qπ(s, a) da = Qπ(s, µ(s)) . (6)

Then, one can express the gradient of the optimization objective (expected discounted return) for a
parameterized πθ ≡ µθ as,

∇θOER(πθ) =

∫
S
∇θQπ(s, µθ(s))dρ

π(s) =

∫
S

∂Qπ(s, a)

∂a

∣∣
a=µθ(s)

∇θµθ(s)dρπ(s) . (7)

This can be thought of as a characterization of the policy gradient theorem for deterministic policies.

In the limit of Σ→ 0, one can also re-express the Bellman equation (2) as,

Qπ(s, a) = Er,s′ [r +Qπ(s′, µ(s′))] . (8)

Therefore, a value function approximator Qπw can be optimized by minimizing the Bellman error,

E(w) =
∑

(s,a,r,s′)∈D

(Qπw(s, a)− r − γQπw(s′, µ(s′))2 , (9)

for transitions (s, a, r, s′) sampled from a datasetD of interactions of the agent with the environment.
Algorithms like DDPG (Lillicrap et al., 2016) alternate between improving the value function by
gradient descent on (9), and improving the policy based on (7).

In practice, to gain better sample efficiency, Degris et al. (2012) and Silver et al. (2014) replace
the on-policy state distribution ρπ(s) in (7) with an off-policy distribution ρβ(s) based on a replay
buffer. After this substitution, the policy gradient identity in (7) does not hold exactly, however,
prior work finds that this works well in practice and improves sample efficiency. We also adopt a
similar approximation in our method to make use of off-policy data.

3 SMOOTHED ACTION VALUE FUNCTIONS

In this paper, we introduce smoothed action value functions, the gradients of which provide an
effective signal for optimizing the parameters of a Gaussian policy. Our notion of smoothed Q-
values, denoted Q̃π(s, a), differs from ordinary Q-values Qπ(s, a) in that smoothed Q-values do
not assume the first action of the agent is fully specified, but rather they assume that only the mean
of the distribution of the first action is known. Hence, to compute Q̃π(s, a), one has to perform an
expectation of Qπ(s, ã) for actions ã drawn in the vicinity of a. More formally, smoothed action
values are defined as,

Q̃π(s, a) =

∫
A
N(ã | a,Σ(s))Qπ(s, ã)dã . (10)

With this definition of Q̃π , one can re-express the expected reward objective for a Gaussian policy
π ≡ (µ,Σ) as,

OER(π) =

∫
S
Q̃π(s, µ(s))dρπ(s). (11)

The insight that differentiates this approach from prior work including Heess et al. (2015); Ciosek
& Whiteson (2017) is that instead of learning a function approximator for Qπ(s, a) and then draw-
ing samples to approximate the expectation in (10) and its derivative, we directly learn a function
approximator for Q̃π(s, a).

3

Under review as a conference paper at ICLR 2018

The key observation that enables direct bootstrapping of smoothed Q-values, Q̃π(s, a), is that their
form allows a notion of Bellman consistency. First, note that for Gaussian policies π ≡ (µ,Σ) we
have

Qπ(s, a) = Er,s′ [r + γQ̃π(s′, µ(s′))] . (12)

Then, combining (10) and (12), one can derive the following one-step Bellman equation for
smoothed Q-values,

Q̃π(s, a) =

∫
A
N(ã | a,Σ(s))Er̃,s̃′

[
r̃ + γQ̃π(s̃′, µ(s̃′))

]
dã , (13)

where r̃ and s̃′ are sampled from R(s, ã) and P (s, ã). Below, we elaborate on how one can make
use of the derivatives of Q̃π to learn µ and Σ, and how the Bellman equation in (13) enables direct
optimization of Q̃π .

3.1 POLICY IMPROVEMENT - OPTIMIZING (µθ,Σφ) GIVEN Q̃π

We parameterize a Gaussian policy πθ,φ ≡ (µθ,Σφ) in terms of two sets of parameters θ and φ for
the mean and the covariance. The gradient of the objective w.r.t. mean parameters follows from the
policy gradient theorem and is almost identical to (7),

∇θOER(πθ,φ) =

∫
S

∂Q̃π(s, a)

∂a

∣∣
a=µθ(s)

∇θµθ(s)dρπ(s). (14)

Estimating the derivative of the objective w.r.t. covariance parameters is not as straightforward, since
Q̃π is not a direct function of Σ. However, a key observation of this work is that the second derivative
of Q̃π w.r.t. actions is sufficient to exactly compute the derivative of Q̃π w.r.t. Σ,

∂Q̃π(s, a)

∂Σ(s)
=

1

2
· ∂

2Q̃π(s, a)

∂a2
. (15)

A proof of this identity is provided in the Appendix. The proof may be easily derived by expressing
both sides of the equation using standard matrix calculus like ∂

∂A |A|
−1/2 = − 1

2 |A|
−1/2A−1 and

∂
∂A ||v||

2
A−1 = −A−1vvTA−1.

Then, the full derivative w.r.t. φ takes the form,

∇φOER(πθ,φ) =
1

2

∫
S

∂2Q̃π(s, a)

∂a2

∣∣
a=µθ(s)

∇φΣφ(s)dρπ(s). (16)

3.2 POLICY EVALUATION - OPTIMIZING Q̃πw GIVEN (µ,Σ)

We can think of two ways to optimize Q̃πw. The first approach leverages (10) to update Q̃π based on
expected Q-value function Qπ . In such an approach, one trains a parameterized Qπw to approximate
the standard expected Q-value function Qπ using standard methods (see e.g., Rummery & Niranjan
(1994); Sutton & Barto (1998); Van Seijen et al. (2009)). Then, one fits Q̃πw based on Qπw. In
particular, given transitions (s, a, r, s′) sampled from interactions with the environment, one can
trainQπw to minimize the Bellman error (Qπw(s, a)−r−γQπw(s′, a′))2 where a′ ∼ N(µ(s′),Σ(s′)).
Then, Q̃πw can be optimized to minimize the squared error (Q̃πw(s, a) − EãQπw(s, ã))2 where ã ∼
N(a,Σ(s)), using several samples. When the target values in these residuals are treated as fixed
(i.e., using a target network), such a training procedure will achieve a fixed point when Q̃πw(s, a)
satisfies the recursion in the Bellman equation (10).

The second approach requires a single function approximator for Q̃πw(s, a), resulting in a simpler
implementation, and thus we use this approach in our experimental evaluation. Suppose one has ac-
cess to a tuple (s, ã, r̃, s̃′) sampled from a replay buffer with knowledge of the sampling probability
q(ã | s) (possibly unnormalized). Then assuming that this sampling distribution has a full support,
we draw a phantom action a ∼ N(ã,Σ(s)) and optimize Q̃πw(s, a) by minimizing a weighted Bell-
man error 1

q(ã|s) (Q̃πw(s, a) − r̃ − γQ̃πw(s̃′, µ(s̃′))2. For a specific pair of state and action (s, a) the

4

Under review as a conference paper at ICLR 2018

expected value of the objective is,

E(w | (s, a)) = Eq(ã | s),r̃,s̃′
[
N(a | ã,Σ(s))

q(ã | s)
(Q̃πw(s, a)− r̃ − γQ̃πw(s̃′, µ(s̃′)))2

]
. (17)

Note that N(a|ã,Σ(s)) = N(ã|a,Σ(s)). Therefore, when the target value r̃ + γQ̃πw(s̃′, µ(s̃′)) is
treated as fixed (e.g., when using target networks) this training procedure reaches an optimum when
Q̃πw(s, a) satisfies the recursion in the Bellman equation (13).

In practice, we find that it is unnecessary to keep track of the probabilities q(ã | s), and assume
the replay buffer provides a near-uniform distribution of actions conditioned on states. Other recent
work has also benefited from ignoring or heavily damping importance weights (Munos et al., 2016;
Wang et al., 2017; Schulman et al., 2017). However, it is possible when interacting with the envi-
ronment to save the probability of sampled actions along with their transitions, and thus have access
to q(ã | s) ≈ N(ã | µold(s),Σold(s)).

3.3 PROXIMAL POLICY OPTIMIZATION

Policy gradient algorithms are notoriously unstable, particularly in continuous control problems.
Such instability has motivated the development of trust region methods that attempt to mitigate
the issue by constraining each gradient step to lie within a trust region (Schulman et al., 2015),
or augmenting the expected reward objective with a penalty on KL-divergence from a previous
policy (Nachum et al., 2017b; Schulman et al., 2017; Azar et al., 2012). These stabilizing techniques
have thus far not been applicable to algorithms like DDPG, since the policy is deterministic. The
formulation we propose in this paper, however, is easily amenable to trust region optimization.
Specifically, we may augment the objective (11) with a penalty

OTR(π) = OER(π)− λ
∫
S

KL (π ‖ πold) dρπ(s), (18)

where πold ≡ (µold,Σold) is a previous parameterization of the policy. The optimization is straight-
forward, since the KL-divergence of two Gaussians can be expressed analytically.

4 RELATED WORK

This paper follows a long line of work that uses Q-value functions to stably learn a policy, which
in the past has been used to either approximate expected (Rummery & Niranjan, 1994; Van Seijen
et al., 2009; Gu et al., 2017) or optimal (Watkins, 1989; Silver et al., 2014; Nachum et al., 2017a;
Haarnoja et al., 2017; Metz et al., 2017) future value.

Work that is most similar to what we present are methods that exploit gradient information from
the Q-value function to train a policy. Deterministic policy gradient (Silver et al., 2014) is perhaps
the best known of these. The method we propose can be interpreted as a generalization of the
deterministic policy gradient. Indeed, if one takes the limit of the policy covariance Σ(s) as it goes
to 0, the proposed Q-value function becomes the deterministic value function of DDPG, and the
updates for training the Q-value approximator and the policy mean are identical.

Stochastic Value Gradient (SVG) (Heess et al., 2015) also trains stochastic policies using an update
that is similar to DDPG (i.e., SVG(0) with replay). The key differences with our approach are that
SVG does not provide an update for the covariance, and the mean update in SVG estimates the
gradient with a noisy Monte Carlo sample, which we avoid by estimating the smoothed Q-value
function. Although a covariance update could be derived using the same reparameterization trick as
in the mean update, that would also require a noisy Monte Carlo estimate. Methods for updating
the covariance along the gradient of expected reward are essential for applying the subsequent trust
region and proximal policy techniques.

More recently, Ciosek & Whiteson (2017) introduced expected policy gradients (EPG), a general-
ization of DDPG that provides updates for the mean and covariance of a stochastic Gaussian policy
using gradients of an estimated Q-value function. In that work, the expected Q-value used in stan-
dard policy gradient algorithms such as SARSA (Sutton & Barto, 1998; Rummery & Niranjan,
1994; Van Seijen et al., 2009) is estimated. The updates in EPG therefore require approximating

5

Under review as a conference paper at ICLR 2018

an integral of the expected Q-value function. Our analogous process directly estimates an integral
(via the smoothed Q-value function) and avoids approximate integrals, thereby making the updates
simpler. Moreover, while Ciosek & Whiteson (2017) rely on a quadratic Taylor expansion of the es-
timated Q-value function, we instead rely on the strength of neural network function approximators
to directly estimate the smoothed Q-value function.

The novel training scheme we propose for learning the covariance of a Gaussian policy relies on
properties of Gaussian integrals (Bonnet, 1964; Price, 1958). Similar identities have been used in
the past to derive updates for variational auto-encoders (Kingma & Welling, 2014) and Gaussian
back-propagation (Rezende et al., 2014).

Finally, the perspective presented in this paper, where Q-values represent the averaged return of a
distribution of actions rather than a single action, is distinct from recent advances in distributional
RL (Bellemare et al., 2017). Those approaches focus on the distribution of returns of a single action,
whereas we consider the single average return of a distribution of actions. Although we restrict our
attention in this paper to Gaussian policies, an interesting topic for further investigation is to study
the applicability of this new perspective to a wider class of policy distributions.

5 EXPERIMENTS

We utilize the insights from Section 3 to introduce a new RL algorithm, Smoothie. Smoothie main-
tains a parameterized Q̃πw trained via the procedure described in Section 3.2. It then uses the gradient
and Hessian of this approximation to train a Gaussian policy µθ,Σφ using the updates stated in (14)
and (16). See Algorithm 1 for a simplified pseudocode of our algorithm.

Algorithm 1 Smoothie
Input: Environment ENV , learning rates ηπ, ηQ, discount factor γ, KL-penalty λ, batch size B,
number of training steps N , target network lag τ .

Initialize θ, φ, w, set θ′ = θ, φ′ = φ,w′ = w.
for i = 0 to N − 1 do

// Collect experience
Sample action a ∼ N(µθ(s),Σφ(s)) and apply to ENV to yield r and s′.
Insert transition (s, a, r, s′) to replay buffer.

// Train µ,Σ
Sample batch {(sk, ak, rk, s′k)}Bk=1 from replay buffer.

Compute gradients gk =
∂Q̃πw(sk,a)

∂a

∣∣
a=µθ(sk)

.

Compute Hessians Hk =
∂2Q̃πw(sk,a)

∂a2

∣∣
a=µθ(sk)

.
Compute KL-penalties KLk = KL(µθ,Σφ||µθ′ ,Σφ′).
Compute updates

∆θ = 1
B

∑B
k=1 gk∇θµθ(sk)− λ∇θKLk,

∆φ = 1
B

∑B
k=1

1
2Hk∇φΣφ(sk)− λ∇φKLk.

Update θ ← θ + ηπ∆θ, φ← φ+ ηπ∆φ.

// Train Q̃π
Sample batch {(sk, ãk, r̃k, s̃′k)}Bk=1 from replay buffer.
Sample phantom actions ak ∼ N(ãk,Σφ(sk)).
Compute loss L(w) = 1

B

∑B
k=1(Q̃πw(s, a)− r − γQ̃πw′(s̃′, µθ′(s̃′)))2.

Update w ← w − ηQ∇wL(w).

// Update target variables
Update θ′ ← (1− τ)θ′ + τθ, φ′ ← (1− τ)φ′ + τφ, w′ ← (1− τ)w′ + τw.

end for

6

Under review as a conference paper at ICLR 2018

We perform a number of evaluations of Smoothie compared to DDPG. We choose DDPG as a base-
line because it (1) utilizes gradient information of a Q-value approximator, much like our algorithm;
and (2) is a standard algorithm well-known to have achieve good, sample-efficient performance on
continuous control benchmarks.

5.1 A SYNTHETIC TASK

To evaluate Smoothie we begin with a simple synthetic task which allows us to study its behavior
in a restricted setting. We devised a simple single-action one-shot environment in which the reward
function is a mixture of two Gaussians, one better than the other (see Figure 1 (Right)). We initialize
the policy mean to be centered on the worse of the two Gaussians. We plot the learnable policy
mean and standard deviation during training for Smoothie and DDPG in Figure 1 (Left). Smoothie
learns both the mean and variance, while DDPG learns only the mean and the variance plotted is the
exploratory noise, whose scale is kept fixed during training.

As expected we observe that DDPG cannot escape the local optimum. At the beginning of training it
exhibits some movement away from the local optimum (likely due to the initial noisy approximation
given by Qπw), it is unable to progress very far from the initial mean. Note that this is not an issue
of exploration. The exploration scale is high enough that Qπw is aware of the better Gaussian. The
issue is in the update for µθ, which is only with regard to the derivative of Qπw at the current mean.

On the other hand, we find Smoothie is successfully able to solve the task. This is because the
smoothed reward function approximated by Q̃πw has a derivative which clearly points µθ towards the
better Gaussian. We also observe that Smoothie is able to suitably adjust the covariance Σφ during
training. Initially, Σφ decreases due to the concavity of the smoothed reward function. As a region
of convexity is entered, it begins to increase, before again decreasing to near-zero as µθ approaches
the global optimum.

0 5000 10000 15000

Training iteration

−1.0

−0.5

0.0

0.5

1.0

A
ct

io
n

−1.0 −0.5 0.0 0.5 1.0

Action

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R
ew

ar
d

Smoothie DDPG Reward Smoothed Reward

Figure 1: Left: The learnable policy mean and standard deviation during training for Smoothie and
DDPG on a simple one-shot synthetic task. The standard deviation for DDPG is the exploratory
noise kept constant during training. Right: The reward function for the synthetic task along with
its Gaussian-smoothed version. We find that Smoothie can successfully escape the lower-reward
local optimum. We also notice Smoothie increases and decreases its policy variance as the convex-
ity/concavity of the smoothed reward function changes.

5.2 CONTINUOUS CONTROL

We now turn our attention to standard continuous control benchmarks available on OpenAI
Gym (Brockman et al., 2016) utilizing the MuJoCo environment (Todorov et al., 2012).

Our implementations utilize feed forward neural networks for policy and Q-values. We parame-
terize the covariance Σφ as a diagonal given by eφ. The exploration for DDPG is determined by
an Ornstein-Uhlenbeck process (Uhlenbeck & Ornstein, 1930; Lillicrap et al., 2016). Additional
implementation details are provided in the Appendix.

7

Under review as a conference paper at ICLR 2018

HalfCheetah Swimmer Hopper

0.00 0.25 0.50 0.75 1.00

0

2000

4000

6000

8000

0.0 0.5 1.0 1.5 2.0

0

50

100

150

200

250

300

350

0.0 0.5 1.0 1.5 2.0

500

1000

1500

2000

2500

3000

3500

Walker2d Ant Humanoid

0.0 0.5 1.0 1.5 2.0

1000

2000

3000

4000

0.0 0.5 1.0 1.5 2.0

0

1000

2000

3000

4000

0.0 0.5 1.0 1.5 2.0

0

1000

2000

3000

4000

Smoothie with KL-penalty DDPG TRPO

Figure 2: Results of Smoothie, DDPG, and TRPO on continuous control benchmarks. The x-axis
is in millions of environment steps. Each plot shows the average reward and standard deviation
clipped at the min and max of six randomly seeded runs after choosing best hyperparameters. We
see that Smoothie is competitive with DDPG even when DDPG uses a hyperparameter-tuned noise
scale, and Smoothie learns the optimal noise scale (the covariance) during training. Moreoever, we
observe significant advantages in terms of final reward performance, especially in the more difficult
tasks like Hopper, Walker2d, and Humanoid. Across all tasks, TRPO is not sufficiently sample-
efficient to provide a competitive baseline.

We compare the results of Smoothie and DDPG in Figure 2. For each task we performed a hyper-
parameter search over actor learning rate, critic learning rate and reward scale, and plot the average
of six runs for the best hyperparameters. For DDPG we extended the hyperparameter search to also
consider the scale and damping of exploratory noise provided by the Ornstein-Uhlenbeck process.
Smoothie, on the other hand, contains an additional hyperparameter to determine the weight on
KL-penalty.

Despite DDPG having the advantage of its exploration decided by a hyperparameter search while
Smoothie must learn its exploration without supervision, we find that Smoothie performs competi-
tively or better across all tasks, exhibiting a slight advantage in Swimmer and Ant, while showing
more dramatic improvements in Hopper, Walker2d, and Humanoid. The improvement is especially
dramatic for Hopper, where the average reward is doubled. We also highlight the results for Hu-
manoid, which as far as we know, are the best published results for a method that only trains on the
order of millions of environment steps. In contrast, TRPO, which to the best of our knowledge is the
only other algorithm which can achieve better performance, requires on the order of tens of millions
of environment steps to achieve comparable reward. This gives added evidence to the benefits of
using a learnable covariance and not restricting a policy to be deterministic.

Empirically, we found the introduction of a KL-penalty to improve performance of Smoothie, es-
pecially on harder tasks. We present a comparison of results of Smoothie with and without the
KL-penalty on the four harder tasks in Figure 3. A KL-penalty to encourage stability is not possible
in DDPG. Thus, our algorithm provides a much needed solution to the inherent instability in DDPG
training.

8

Under review as a conference paper at ICLR 2018

Hopper Walker2d Ant Humanoid

0.0 0.5 1.0 1.5 2.0

500

1000

1500

2000

2500

3000

3500

0.0 0.5 1.0 1.5 2.0

1000

2000

3000

4000

0.0 0.5 1.0 1.5 2.0

1000

2000

3000

4000

0.0 0.5 1.0 1.5 2.0

1000

2000

3000

4000

Smoothie without KL-penalty Smoothie with KL-penalty

Figure 3: Results of Smoothie with and without a KL-penalty. The x-axis is in millions of en-
vironment steps. We observe benefits of using a proximal policy optimization method, especially
in Hopper and Humanoid, where the performance improvement is significant without sacrificing
sample efficiency.

6 CONCLUSION

We have presented a new Q-value function, Q̃π , that is a Gaussian-smoothed version of the standard
expected Q-value, Qπ . The advantage of using Q̃π over Qπ is that its gradient and Hessian possess
an intimate relationship with the gradient of expected reward with respect to mean and covariance
of a Gaussian policy. The resulting algorithm, Smoothie, is able to successfully learn both mean
and covariance during training, leading to performance that can match or surpass that of DDPG,
especially when incorporating a penalty on divergence from a previous policy.

The success of Q̃π is encouraging. Intuitively it may be argued that learning Q̃π is more sensible
than learningQπ . The smoothed Q-values by definition make the true reward surface smoother, thus
possibly easier to learn; moreover the smoothed Q-values have a more direct relationship with the
expected discounted return objective. We encourage future work to further investigate these claims
as well as techniques to apply the underlying motivations for Q̃π to other types of policies.

REFERENCES

Mohammad Gheshlaghi Azar, Vicenç Gómez, and Hilbert J Kappen. Dynamic policy programming.
JMLR, 13, 2012.

Marc G Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on reinforcement
learning. In ICML, pp. 449–458, 2017.

Georges Bonnet. Transformations des signaux aléatoires a travers les systemes non linéaires sans
mémoire. Annals of Telecommunications, 19(9):203–220, 1964.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. OpenAI Gym. arXiv:1606.01540, 2016.

Kamil Ciosek and Shimon Whiteson. Expected policy gradients. arXiv preprint arXiv:1706.05374,
2017.

Thomas Degris, Martha White, and Richard S Sutton. Off-policy actor-critic. ICML, 2012.

Shixiang Gu, Timothy Lillicrap, Zoubin Ghahramani, Richard E Turner, Bernhard Schölkopf, and
Sergey Levine. Interpolated policy gradient: Merging on-policy and off-policy gradient estimation
for deep reinforcement learning. NIPS, 2017.

Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. Reinforcement learning with
deep energy-based policies. ICML, 2017.

Nicolas Heess, Gregory Wayne, David Silver, Tim Lillicrap, Tom Erez, and Yuval Tassa. Learning
continuous control policies by stochastic value gradients. In NIPS, 2015.

9

Under review as a conference paper at ICLR 2018

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. ICLR, 2014.

Vijay R Konda and John N Tsitsiklis. Actor-critic algorithms, 2000.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. ICLR,
2016.

Luke Metz, Julian Ibarz, Navdeep Jaitly, and James Davidson. Discrete sequential prediction of
continuous actions for deep RL. CoRR, abs/1705.05035, 2017. URL http://arxiv.org/
abs/1705.05035.

Rémi Munos, Tom Stepleton, Anna Harutyunyan, and Marc Bellemare. Safe and efficient off-policy
reinforcement learning. In NIPS, 2016.

Ofir Nachum, Mohammad Norouzi, Kelvin Xu, and Dale Schuurmans. Bridging the gap between
value and policy based reinforcement learning. NIPS, 2017a.

Ofir Nachum, Mohammad Norouzi, Kelvin Xu, and Dale Schuurmans. Trust-pcl: An off-policy
trust region method for continuous control. arXiv preprint arXiv:1707.01891, 2017b.

Robert Price. A useful theorem for nonlinear devices having gaussian inputs. IRE Transactions on
Information Theory, 4(2):69–72, 1958.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and ap-
proximate inference in deep generative models. In International Conference on Machine Learn-
ing, pp. 1278–1286, 2014.

Gavin A Rummery and Mahesan Niranjan. On-line Q-learning using connectionist systems, vol-
ume 37. 1994.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In ICML, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller.
Deterministic policy gradient algorithms. In ICML, 2014.

Richard S. Sutton and Andrew G. Barto. Introduction to Reinforcement Learning. MIT Press, 1998.

Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Mansour. Policy gradient
methods for reinforcement learning with function approximation. NIPS, 2000.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on, pp. 5026–
5033. IEEE, 2012.

George E Uhlenbeck and Leonard S Ornstein. On the theory of the brownian motion. Physical
review, 36(5):823, 1930.

Harm Van Seijen, Hado Van Hasselt, Shimon Whiteson, and Marco Wiering. A theoretical and
empirical analysis of expected sarsa. In Adaptive Dynamic Programming and Reinforcement
Learning, 2009. ADPRL’09. IEEE Symposium on, pp. 177–184. IEEE, 2009.

Ziyu Wang, Victor Bapst, Nicolas Heess, Volodymyr Mnih, Remi Munos, Koray Kavukcuoglu, and
Nando de Freitas. Sample efficient actor-critic with experience replay. ICLR, 2017.

Christopher John Cornish Hellaby Watkins. Learning from delayed rewards. PhD thesis, University
of Cambridge England, 1989.

Ronald J Williams and Jing Peng. Function optimization using connectionist reinforcement learning
algorithms. Connection Science, 1991.

10

http://arxiv.org/abs/1705.05035
http://arxiv.org/abs/1705.05035

Under review as a conference paper at ICLR 2018

A PROOF OF EQUATION (15)

We note that similar identities for Gaussian integrals exist in the literature (Price, 1958; Rezende
et al., 2014) and point the reader to these works for further information.

The specific identity we state may be derived using standard matrix calculus. We make use of the
fact that

∂

∂A
|A|−1/2 = −1

2
|A|−3/2 ∂

∂A
|A| = −1

2
|A|−1/2A−1, (19)

and for symmetric A,
∂

∂A
||v||2A−1 = −A−1vvTA−1. (20)

We omit s from Σ(s) in the following equations for succinctness. The LHS of (15) is∫
A
Qπ(s, ã)

∂

∂Σ
N(ã|a,Σ)dã

=

∫
A
Qπ(s, ã) exp

{
−1

2
||ã− a||2Σ−1

}(
∂

∂Σ
|2πΣ|−1/2 − 1

2
|2πΣ|−1/2 ∂

∂Σ
||ã− a||2Σ−1

)
dã

=
1

2

∫
A
Qπ(s, ã)N(ã|a,Σ)

(
−Σ−1 + Σ−1(ã− a)(ã− a)TΣ−1

)
dã. (21)

Meanwhile, towards tackling the RHS of (15) we note that

∂Q̃π(s, a)

∂a
=

∫
A
Qπ(s, ã)N(ã|a,Σ)Σ−1(ã− a)dã. (22)

Thus we have

∂2Q̃π(s, a)

∂a2
=

∫
A
Qπ(s, ã)

(
Σ−1(ã− a)

∂

∂a
N(ã|a,Σ) +N(ã|a,Σ)

∂

∂a
Σ−1(ã− a)

)
dã (23)

=

∫
A
Qπ(s, ã)N(ã|a,Σ)(Σ−1(ã− a)(ã− a)TΣ−1 − Σ−1)dã. (24)

�

B COMPATIBLE FUNCTION APPROXIMATION

A function approximator Q̃πw of Q̃π should be sufficiently accurate so that updates for µθ,Σφ are

not affected by substituting ∂Q̃πw(s,a)
∂a and ∂2Q̃πw(s,a)

∂a2 for ∂Q̃
π(s,a)
∂a and ∂2Q̃π(s,a)

∂a2 , respectively.

We claim that a Q̃πw is compatible with respect to µθ if

1. ∇aQ̃πw(s, a)
∣∣
a=µθ(s)

= ∇θµθ(s)Tw,

2. ∇w
∫
S

(
∇aQ̃πw(s, a)

∣∣
a=µθ(s)

−∇aQ̃π(s, a)
∣∣
a=µθ(s)

)2

dρπ(s) = 0 (i.e., w minimizes the
expected squared error of the gradients).

Additionally, Q̃πw is compatible with respect to Σφ if

1. ∇2
aQ̃

π
w(s, a)

∣∣
a=µθ(s)

= ∇φΣφ(s)Tw,

2. ∇w
∫
S

(
∇2
aQ̃

π
w(s, a)

∣∣
a=µθ(s)

−∇2
aQ̃

π(s, a)
∣∣
a=µθ(s)

)2

dρπ(s) = 0 (i.e., w minimizes the
expected squared error of the Hessians).

One possible parameterization of Q̃πw may be achieved by taking w = [w0, w1, w2] and parameter-
izing

Q̃πw(s, a) = Vw0(s) + (a− µθ(s))T∇θµθ(s)Tw1 + (a− µθ(s))T∇φΣφ(s)Tw2(a− µθ(s)). (25)

11

Under review as a conference paper at ICLR 2018

Hyperparameter Range Sampling
actor learning rate [1e-6,1e-3] log
critic learning rate [1e-6,1e-3] log

reward scale [0.01,0.3] log
OU damping [1e-4,1e-3] log
OU stddev [1e-3,1.0] log

λ [1e-6, 4e-2] log
discount factor 0.995 fixed

target network lag 0.01 fixed
batch size 128 fixed

clipping on gradients of Q 4.0 fixed
num gradient updates per observation 1 fixed

Huber loss clipping 1.0 fixed

Table 1: Random hyperparameter search procedure. We also include the hyperparameters which
we kept fixed.

Proof. We shall show how the conditions stated for compatibility with respect to Σφ are sufficient.
The reasoning for µθ follows via a similar argument. We also refer the reader to Silver et al. (2014)
which includes a similar procedure for showing compatibility.

From the second condition for compatibility with respect to Σφ we have∫
S

(
∇2
aQ̃

π
w(s, a)

∣∣
a=µθ(s)

−∇2
aQ̃

π(s, a)
∣∣
a=µθ(s)

)
∇w

(
∇2
aQ̃

π
w(s, a)

∣∣
a=µθ(s)

)
dρπ(s) = 0. (26)

We may combine this with the first condition to find∫
S
∇2
aQ̃

π
w(s, a)

∣∣
a=µθ(s)

∇φΣφ(s)dρπ(s) =

∫
S
∇2
aQ̃

π(s, a)
∣∣
a=µθ(s)

∇φΣφ(s)dρπ(s), (27)

which is the desired property for compatibility. �

While it is reassuring to know that there exists a class of function approximators which are compat-
ible, this fact is largely ignored in practice. Not only is the class of compatible functions heavily
restricted in terms of expressiveness, due to the first set of conditions for µθ,Σφ, it is also impossible
to satisfy the second set of conditions without access to derivative and Hessian information of the
true Q̃π . This problem is also present in DDPG, and we feel this issue merits additional investigation
in future work.

C IMPLEMENTATION DETAILS

We utilize feed forward networks for both policy and Q-value approximator. For µθ(s) we use two
hidden layers of dimensions (400, 300) and relu activation functions. For Q̃πw(s, a) and Qπw(s, a)
we first embed the state into a 400 dimensional vector using a fully-connected layer and tanh non-
linearity. We then concatenate the embedded state with a and pass the result through a 1-hidden
layer neural network of dimension 300 with tanh activations. We use a diagonal Σφ(s) = eφ for
Smoothie, with φ initialized to −1.

To find optimal hyperparameters we perform a 100-trial random search over the hyperparameters
specified in Table 1. The OU exploration parameters only apply to DDPG. The λ coefficient on
KL-penalty only applies to Smoothie with a KL-penalty.

12

	Introduction
	Notation & Background
	Deterministic Policy Gradient

	Smoothed Action Value Functions
	Policy Improvement - Optimizing (,) Given
	Policy Evaluation - Optimizing w Given (,)
	Proximal Policy Optimization

	Related Work
	Experiments
	A Synthetic Task
	Continuous Control

	Conclusion
	Proof of Equation (15)
	Compatible Function Approximation
	Implementation Details

