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A B S T R A C T

Natural language generation plays a critical role in spoken dialogue systems. We
present a new approach to natural language generation for task-oriented dialogue
using recurrent neural networks in an encoder-decoder framework. In contrast
to previous work, our model uses both lexicalized and delexicalized components
i.e. slot-value pairs for dialogue acts, with slots and corresponding values aligned
together. This allows our model to learn from all available data including the
slot-value pairing, rather than being restricted to delexicalized slots. We show that
this helps our model generate more natural sentences with better grammar. We
further improve our model’s performance by transferring weights learnt from a
pretrained sentence auto-encoder. Human evaluation of our best-performing model
indicates that it generates sentences which users find more appealing.

1 I N T R O D U C T I O N

Traditionally, task-oriented spoken dialogue systems (SDS) rely on template-based, hand-crafted
rules for natural language generation (NLG). However, this approach does not scale well to complex
domains and datasets. Previous papers have explored alternatives using corpus-based n-gram mod-
els (Oh & Rudnicky, 2002), tree-based models (Walker et al., 2007), SVM rerankers (Kondadadi
et al., 2013), and Reinforcement Learning models (Rieser & Lemon, 2010).

Recently, models based on recurrent neural networks (RNNs) have been successfully applied to
natural language generation tasks such as image captioning (Xu et al., 2015; Karpathy & Li, 2015),
video description (Yao et al., 2015; Sharma, 2016), and machine translation (Bahdanau et al., 2015).
In the domain of task-oriented SDS, RNN-based models have been used for NLG in both traditional
multi-component processing pipelines (Wen et al., 2015a;b) and more recent systems designed for
end-to-end training (Wen et al., 2017).

In the context of task-oriented dialog systems, the NLG task consists of translating one or multiple
dialog act slot-value pairs, i.e. (INFORM-NAME, Super Ramen), (INFORM-AREA, near the plaza)
into a well-formed sentence (Rajkumar et al., 2009) such as “Super Ramen is located near the
plaza”. Existing RNN-based models (Wen et al., 2015a) tackle this problem by relying only on
the delexicalized part of the act slot-value pairs, i.e. the model only considers the act and slot (e.g.
INFORM-NAME) and ignores the lexical values (e.g. Super Ramen). Wen et al. (2015b) propose a
model that can use lexicalized values. However, since they do not align slots with their values, the
model has no way of knowing which value corresponds to which slot. These methods ignore linguistic
relationships in the lexicalized part of a slot-value pair (e.g. between the words “near”, “the”, and
“plaza”), and between the lexicalized part and its surrounding context (e.g. between “located” and
“near”). As illustrated in Figure 1, ignoring these often leads to grammatically incorrect sentences.

In this paper, we develop an RNN-based approach which considers both lexicalized and delexicalized
dialogue act slot-value pairs. Our model outperforms existing approaches measured in both auto-
mated (BLEU-4 (Papineni et al., 2002), METEOR (Lavie & Agarwal, 2007), ROUGE (Lin, 2004),
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Generated output:

INFORM-FOOD INFORM-FOOD3 7

There are no restaurants around which serve INFORM-FOOD food.

Delexicalized slot input:
Lexicalized value input: chinese pizza

Figure 1: Models which use only delexicalized slots as input often generate grammatically incorrect
sentences, since the correct grammatical form depends on the lexicalized slot-values.

CIDEr (Vedantam et al., 2015)) and human evaluation. Moreover, we show that the performance of
our model can be improved further by transferring weights from a pretrained sentence auto-encoder.

2 M O D E L

Our model (named ld-sc-LSTM1) is composed of an RNN encoder and an RNN decoder (see Fig. 3).

Encoder The encoder is a 1-layer, bi-directional LSTM (Hochreiter & Schmidhuber, 1997). It takes
as input a list of slot-value pairs for which a sentence must be produced and outputs a representation
taking into account both the delexicalized and the lexicalized parts of each dialogue act slot-value
pair. Particularly, for each input slot-value pair t, the encoder receives an input vector zt which is
formed by concatenating vectors mt and et. The vector mt is a one-hot encoding of the delexicalized
part. The vector et is formed by taking the mean of the word embeddings of the lexicalized part.
Figure 2 illustrates how the encoder input is created for a given dialogue act.

0 1 0 0...

+

near the plaza

word
embeddings

et
mt

zt

INFORM-AREA

Figure 2: The encoder input at time-step
t for the dialogue act (INFORM-AREA,
near the plaza).
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Figure 3: The encoder-decoder framework for our mod-
els: the encoder learns a representation of the dialogue
act slot-value pairs and the decoder translates them into
a natural language sentence. bos is a special token for
the beginning of sentence.

Decoder The decoder translates the en-
coding of the dialogue act slot-value pairs
into a fluent sentence. Our decoder uses sc-
LSTM (Wen et al., 2015b) units. The “dia-
logue act” vector in the sc-LSTM can func-
tion similarly to a memory that remembers
which acts are yet to be translated (Wen
et al., 2015b). The initial value of the dia-
logue act vector is set to d0 =

∑M
t=1 mt,

where M is the number of encoder time-
steps. This is a binary vector whose entries
are set to 1 for the dialogue acts that need
to be included in the output sentence.

The encoder information is compressed
into a “context” vector x obtained by
average-pooling the forward and backward
hidden states of the encoder LSTMs across the time-dimension, i.e. the number of input act slot-value
pairs. The vector x is used to initialize the hidden state h0 and the memory cell c0 in the decoder
sc-LSTM: h0 = tanh(Whxx+bhx), c0 = tanh(Wcxx+bcx). The word embedding of the word output
in the previous time-step is also an input to the decoder sc-LSTM. The hidden states of the sc-LSTM
are passed to softmax layers which produce a word or a delexicalized slot at each time-step. Later,
the slots are replaced with their lexicalized values. The model produces words up to a predefined
maximum length or until it outputs the symbol eos. Our model is summarized in Figure 3.

1lexicalized delexicalized- semantically controlled- LSTM
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Table 1: Comparison of performance on the CF and DSTC2 (see Appendix A) datasets. † denotes
statistical significance (Welch’s t-test p < 0.05 respectively) with respect to the baselines for H.

CF DSTC2

Model B-4 M R L C H B-4 M R L C H

LSTM 0.277 0.284 0.502 2.080 3.552 0.797 0.532 0.847 7.375 2.962
d-sc-LSTM 0.291 0.288 0.513 2.231 3.504 0.805 0.555 0.867 7.605 3.218

ld-sc LSTM 0.308 0.293 0.518 2.329 3.838 0.822 0.565 0.892 8.133 3.700†

transfer-ld-sc LSTM 0.317 0.298 0.526 2.370 3.614 0.832 0.578 0.894 8.248 3.926†

Metrics: BLEU-4 (B-4), METEOR (M), ROUGE L (R L), CIDEr (C), and Human evaluation (H)

Loss function and Regularization We use the negative log-likelihood along with regularization
as the loss function as proposed by Wen et al. (2015b),

L = −
T∑

t=1

y>t log(pt) + ‖dT ‖+
T∑

t=1

ηξ‖dt−dt−1‖,

where yt is the ground truth word distribution, pt is the predicted word distribution, T is the number
of time-steps in the decoder, and η = 0.0001 and ξ = 100 are scalars. The term ‖dT ‖ pushes the
model to generate all the slots it is supposed to generate so that at the last time-step there are no slots
remaining. The last term encourages the model not to drop multiple “dialogue act” vector elements at
once since the decoder can only generate one slot/word at each time-step.

Decoding We use beam search for decoding at test time with a beam width of 10 and slot error rate
(ERR) as used in the recent literature (Wen et al., 2015b). The λ parameter of the ERR cost was set
to 1000 to severely discourage the decoding from generating sentences which either contain missing
or redundant slots.

Transfer learning In order to improve the grammar in generated sentences in domains where
training data is limited, we pretrain a sentence auto-encoder on sentences about the same topic, e.g.,
restaurant reviews for our case. The model learns a representation of an input sentence (with an
encoder) and then uses the representation to re-generate the input sentence (with a separate decoder).
The encoder here receives just the word embeddings for the input sentence (as there are no dialogue
acts). The decoder uses LSTM units instead of sc-LSTM. After training, we use the hidden LSTM
weights of the auto-encoder decoder as initial values of the corresponding hidden weights of the
sc-LSTM decoder (Wf , Wi, Wo and Wc) in the ld-sc-LSTM model. These weights are fine-tuned
along with the other weights of the ld-sc-LSTM model. We name this model transfer-ld-sc-LSTM.

3 R E S U LT S

We evaluate BLEU-4, METEOR, ROUGE L, CIDEr scores using the generated sentence as the
candidate caption and the ground truth as the reference caption. We use publicly available coco-
caption2 code to calculate these metrics. Results for CF and DSTC2 (see Appendix A) datasets are
shown in Table 1. The baseline LSTM, d-sc-LSTM models do not contain our recurrent multi-step
lexicalized encoder. The d-sc-LSTM model differs from the sc-LSTM model of Wen et al. (2015b)
in that it does not use lexicalized values in the dialogue act vector and it does not have a backward
reranker. The ld-sc-LSTM and the transfer-ld-sc-LSTM consistently perform better than the other
baselines in terms of automated metrics. All four models use only a forward reranker.

We present the average scores assigned to each model’s sentences by five human judges in Table 1.
Our models statistically outperform the baselines for both datasets. Although transfer-ld-sc-LSTM
performs better than ld-sc-LSTM on the DSTC2 dataset, the difference in the scores is not statistically
significant. We note that this may also be due to the limited number of examples in our human rated
set which places constraints on the practicality of p-values. Differences in human evaluation and

2https://github.com/tylin/coco-caption
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automated metrics are to be expected as these metrics do not strongly correlate with human scores
(Liu et al., 2016).

Table 2: Comparison of top responses generated for
some dialogue acts on the CF and DSTC2 datasets.

(OFFER-NAME, Super Ramen)
(INFORM-FOOD, pizza)
1. Super Ramen serves pizza food.
2. Super Ramen serves pizza food.
3. Super Ramen serves pizza.
4. Super Ramen serves pizza.

(INFORM-FOOD, pizza)
(INFORM-ADDR, near 108 Queen Street)
1. I am searching for pizza places at near 108 Queen

Street.
2. I am searching for pizza restaurants at near 108

Queen Street.
3. I am searching for pizza places near 108 Queen Street
4. I am searching for pizza places near 108 Queen Street

(EXPLICIT CONFIRMATION-FOOD, dontcare)
1. You are looking for a dontcare restaurant right?
2. You are looking for a dontcare restaurant right?
3. You are looking for a restaurant serving any kind of

food right?
4. You are looking for a restaurant serving any kind of

food right?

(CANTHELP-FOOD, Japanese)
(CANTHELP-PRICERANGE, under 30 dollars)
1. No Japanese under 30 dollars
2. No Japanese under 30 dollars
3. I’m sorry but there is no Japanese restaurant for under

30 dollars.
4. There are no Japanese restaurants in under 30 dollars.

1→ LSTM 2→ d-sc-LSTM
3→ ld-sc-LSTM 4→transfer-ld-sc-LSTM

Table 2 compares responses generated by
several models for the same dialogue acts.
In the first example, the LSTM and the d-
sc-LSTM generate “OFFER-NAME serves
INFORM-FOOD food.” since this works
with many cuisine values such as Chinese,
Indian and Japanese. In the same example,
the ld-sc-LSTM and transfer-ld-sc-LSTM
generate “OFFER-NAME serves INFORM-
FOOD.”. By learning from the lexicalized
values of the slots, these models can cap-
ture that “pizza” should not be followed by
“food”. The remaining examples also demon-
strate our approach’s grammatical continuity
around generated slots. Our models do not
require any modification to work with special
or negative values like dontcare. Overall, we
found that the ld-sc-LSTM and the transfer-
ld-sc-LSTM models are less prone to making
grammatical errors, which is also confirmed
by their human assessment scores.

4 C O N C L U S I O N

We proposed a recurrent encoder-decoder
model for NLG that learns from both lexical-
ized and delexicalized tokens. We evaluated
our model with several popular metrics used
in the NLP and MT literatures, and also asked
humans to evaluate the generated responses.
Our models consistently outperformed exist-
ing RNN-based approaches on the CF restau-

rant domain dataset and the publicly available DSTC2 dataset. Our transfer learning experiments
showed that bootstrapping with weights from a pretrained sentence auto-encoder can result in the
generation of better responses. Exposing the deep neural network to the complete data (lexicalized
and delexicalized; slots aligned with values) led to a more powerful model.
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A D ATA S E T S A N D H U M A N E VA L U AT I O N

Table 3: Statistics for the CF and DSTC2 datasets

CF DSTC2

Train Test Train Test

#words 15,143 2,033 240,337 127,858
#sentences 1,200 211 15,611 9,890
#vocabulary 690 286 660 166

LMD: restaurant reviews This dataset
comprises sentences collected from online
restaurant reviews. We collected reviews
written in English and sorted them on the ba-
sis of highest occurrence of the words phone,
postcode, price, food, area, restaurant, nice,
address, reservation, and book. We then
trained a sentence auto-encoder on the top

5 000 sentences and used it as a source of pretrained weights for our transfer-ld-sc-LSTM model.

CF: CrowdFlower restaurant search We collected this dataset by releasing separate tasks for each
dialogue act on CrowdFlower3. The dialogue acts were inform, offer, request, implicit confirmation,
explicit confirmation, canthelp. These dialogue acts were associated with the slots name, address,
phone, area, postcode, food, pricerange. We report results on a test set obtained using a stratified
85%/15% train/test split. The dialogue act slot-value pairs were tagged by human experts after
collecting the raw data.

DSTC2: Dialogue State Tracking Challenge 2 This dataset was extracted from the DSTC2
(Henderson et al., 2014) dataset, which already contains templated machine responses annotated
with dialogue acts and slot-value pairs. The dialogue acts used were inform, offer, request, implicit
confirmation, explicit confirmation, canthelp, select, welcome message, repeat, reqmore, with the
same slot types as the CF dataset.

In both CF and DSTC2, the request act was allowed to have only empty-valued slots and for other
acts dontcare values were allowed in addition to words from the general vocabulary. We use 10% of
the training set for validation. Statistics for both datasets are provided in Table 3.

Human evaluation of responses We selected a random set of 100 dialogue acts from each dataset’s
test set and the corresponding top response generated by all of the models, then asked 5 human judges
to score them on a scale of 1 to 5, with 1 indicating least appropriate for the given dialogue acts
and 5 indicating most appropriate. In each trial, we presented 4 sentences to the judges, each from
a different model, along with the corresponding dialogue acts. The judges were informed that all
sentences had been generated from different models and not presented in any particular order.

B T R A I N I N G D E TA I L S

Hyper-parameters The number of layers in the decoder, the decoder hidden state dimension, the
encoder hidden state dimension and the word embedding dimensionality are set using the validation
set. The reading coefficient of the sc-LSTM units, α, is set to 1 and the maximum length of T is set
to 30. We employ the Adam optimizer (Kingma & Ba, 2015) for training and we apply a dropout
(Srivastava et al., 2014) of 0.5 at all non-recurrent connections.

3https://www.crowdflower.com

6

https://www.crowdflower.com

	1 Introduction
	2 Model
	3 Results
	4 Conclusion
	A Datasets and human evaluation
	B Training details

