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ABSTRACT

We present the iterative two-pass decomposition flow to accelerate existing con-
volutional neural networks (CNNs). The proposed rank selection algorithm can
effectively determine the proper ranks of the target convolutional layers for the
low rank approximation. Our two-pass CP-decomposition helps prevent from the
instability problem. The iterative flow makes the decomposition of the deeper net-
works systematic. The experiment results shows that VGG16 can be accelerated
with a 6.2× measured speedup while the accuracy drop remains only 1.2%.

1 INTRODUCTION

Deep learning has become of vital importance in a variety of artificial intelligence applications. Re-
cently, convolutional neural networks (CNNs) have been widely applied to have the breakthrough in
improving the recognition accuracy for challenging computer vision tasks such as image classifica-
tion, localization, object detection, and so on (Russakovsky et al. (2015); Krizhevsky et al. (2012);
Simonyan & Zisserman (2014); He et al. (2015)). However, those significant achievements using
CNNs come with the cost of larger network size and higher computational complexity, which leads
to an increasing difficulty for deploying to resource constrained edge devices, or even for the fast
computation on the cloud servers. This paper addresses the acceleration of the existing CNN models
to cope with such burden.

1.1 RELATIVE WORKS

There have been research works on accelerating CNNs in many aspects. Several approaches have
been proposed to simplify the convolution operations. Vasilache et al. (2014) uses Fast Fourier
Transform to accelerate the convolution which is fast for large filters. In Lavin & Gray (2015),
Winograd’s minimal filtering algorithms have been adopted to speed up small-size filters. Prun-
ing aims at removing unessential weights in the filters to minimize the computation. Weights can
be removed after the training (Han et al. (2015); Li et al. (2016); Yu et al. (2017)) or during the
training with the sparsity constraint (Wen et al. (2016); Park et al. (2017)). Quantization reduces
the precision from the 32-bit floating-point computations to the 8-bit fixed-point ones, or even the
binary operations (Hubara et al. (2016); Rastegari et al. (2016)). These approaches are efficient for
implementing the hardware accelerators of the faster inference.

In addition to the attempts of accelerating pre-trained models, some works focus on designing new
models with more efficient computation (Iandola et al. (2016); Wang et al. (2016); Howard et al.
(2017); Zhang et al. (2017)). In general, new models tend to gain more speedup than accelerating
pre-trained models. However, constructing a new CNN from scratch might be difficult without using
a large amount of computing resources.

In our approach, we aim at accelerating existing CNNs using the low rank approximation that a
specific tensor can be represented with several simpler tensors. Jaderberg et al. (2014) has shown the
redundancies in convolutional layers can be substituted by lower rank filters with the 4.5× speedup
in a text recognition application using a simple four layer CNN. Denton et al. (2014) has presented a
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different low-rank decomposition and clustering approach. They reported the 2× speedup on the first
layer of a 15-layer CNN for image classification. They also found that the low rank approximation
has the potential to improve the generalization ability of the CNN.

Our work was inspired by Lebedev et al. (2014) which adopted the CP-ALS, one of the popular CP
decomposition algorithms (Kolda & Bader (2009)). However, only one layer in the network was
decomposed. They also observed the instability problem which causes fine-tuning the decomposed
networks a difficult problem. Later, Kim et al. (2015) successfully decomposed the whole network
with the Tucker Decomposition (Kolda & Bader (2009)). Zhang et al. (2016) took the nonlinear unit
into account to obtain the decomposed filters and reduced the accumulated error. Their nonlinear
asymmetric 3d reconstruction, combined with the technique in Jaderberg et al. (2014) to further
decomposing spatial dimension, achieved the 5× speedup with the accuracy loss of 2% for VGG16.
An additional fine-tuning was applied to improve the loss to 1%.

In Astrid & Lee (2017), the iterative fine-tune has been proposed to overcome the CP instability.
Instead of the decomposition of the entire network, each iteration decomposes one layer with the
fine-tuning of the whole network. Their attempt gradually transforms the dense network into de-
composed form layer by layer, which achieves the less accuracy drop. We also adopt and improve
this concept to further improve the performance, which will be discussed later in 2.1.3.

1.2 CONTRIBUTIONS

Our contributions include the following:

• The proposed two-pass decomposition can prevent from possible instability of CP-
decomposition and improve the accuracy effectively. Training and fine-tuning can be done
with vanilla parameter setting (e.g., learning rate).

• Our iterative flow helps the decomposition of a deeper network in a systematic manner. The
rank selection algorithm can be utilized to determine the target ranks for CP-decomposition.
The proposed approach can be applied to different kinds of deep convolutional networks,
resulting in a general technique to improve the existing models. Our experiment shows that
we can achieve the 6.2× speedup for VGG16 (Simonyan & Zisserman (2014)) while with
the classification accuracy loss of only 1.2% on ImageNet 2012 validation set. The size of
the convolutional layers can be reduced by 85% as well. In addition, our approach can also
speed up ResNet50 (He et al. (2015)) by 1.35× faster with the accuracy loss of 1.51%, and
the model size reduction of 48%.

1.3 LOW RANK APPROXIMATION

In this section, we introduce the low rank approximation to accelerate convolutional layers with the
CANDECOMP/PARAFAC (CP) decomposition technique (Kiers (2000); Kolda & Bader (2009)).

1.3.1 CP DECOMPOSITION FOR CONVOLUTIONAL LAYERS

The CP decomposition factorizes the tensors into a sum of series rank-one tensors. Assume W is
a third-order tensor and ar, br, cr for r = 1, . . . , R are vectors. A rank R decomposition can be
expressed as

W ≈
R∑

r=1

ar ◦ br ◦ cr, (1)

where W ∈ RH×I×J , ar ∈ RH , br ∈ RI , cr ∈ RJ for r = 1, . . . , R, as shown in Figure 1.

In the case of CNNs, the filters are fourth-order tensors in general. Assume W is a fourth-order
tensor and ar, br, cr, dr for r = 1, . . . , R are vectors. A rank R decomposition can be expressed as
follows:

W ≈
R∑

r=1

ar ◦ br ◦ cr ◦ dr, (2)

where W ∈ RCin×Wf×Hf×Cout , ar ∈ RCin ,br ∈ RWf , cr ∈ RHf and dr ∈ RCout for r =
1, . . . , R. Figure 2 shows the original convolution computation.
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Figure 1: The CP decomposition.

Let X be the input features, Y be the output features, W be the filter weights and x∗ = Wf−1
2 , y∗ =

Hf−1
2 . Assume Wf and Hf are both odd numbers. A convolutional layer with Cin input channels,

Cout output channels and filter shape of Wf ×Hf , can be expressed as

Y (x, y, k) =

Cin∑
h=1

Wf∑
i=1

Hin∑
j=1

W (h, i, j, k)X(i+ x− x∗, j + y − y∗, h). (3)

Then the weights in Eq. 3 can be substituted with the decomposed tensors in Eq. 2, i.e.,

Y (x, y, k) =

Cin∑
h=1

Wf∑
i=1

Hf∑
j=1

R∑
r=1

ar(h)br(i)cr(j)dr(k)X(i+ x− x∗, j + y − y∗, h) (4)

=

Cin∑
h=1

ar(h)

Wf∑
i=1

br(i)

Hf∑
j=1

cr(j)

R∑
r=1

dr(k)X(i+ x− x∗, j + y − y∗, h). (5)

Equation 5 can be rewritten as follows:

Y(1)(i+ x− x∗, j + y − y∗, r) =
Cin∑
h=1

ar(h)X(i+ x− x∗, j + y − y∗, h); (6)

Y(2)(x, j + y − y∗, r) =
Wf∑
i=1

br(i)Y(1)(i+ x− x∗, j + y − y∗, r); (7)

Y(3)(x, y, r) =

Hf∑
j=1

cr(j)Y(2)(x, j + y − y∗, r); (8)

Y(4)(x, y, k) =

R∑
r=1

dr(k)Y(3)(x, y, r). (9)

Y(1) and Y(4) perform the 1×1 convolutions on the input and output channels, respectively. In addi-
tion, Y(2) and Y(3) perform the depth-wise convolutions along the filters’ width and height direction,
respectively, as shown in Figure 3. Therefore, the four layers can be applied to substitute the original
convolution layer.

CoutCin

(Wf×Hf×Cin)×Cout

×	Cout

Figure 2: The original convolution.

1.3.2 THE COMPLEXITY AND SPEEDUP

Assume the size of the input features is Win ×Hin × Cin, where Win and Hin are the width and
height of the features, and Cin is the number of input channels. Let the number of output channels
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Figure 3: The decomposed convolution.

be Cout, the filter shape beWf×Hf , and the stride be 1. The complexity of the original convolution
is O(CinWinHinCoutWfHf ) from Eq. 3. If the convolution layer is decomposed with Eq. 6–9, the
complexity becomes O(WinHinR(Cin +Wf + Hf + Cout)). The speedup of decomposing the
single convolutional layer with rank R is

O(
CinWinHinCoutWfHf

WinHinR(Cin +Wf +Hf + Cout)
) = O(

CinCoutWfHf

R(Cin +Wf +Hf + Cout)
). (10)

While substituting a layer, the smaller the rankR for the decomposed layers, the higher the speedup.

1.3.3 THE CP INSTABILITY

As Lebedev et al. (2014) mentioned, training the network with CP decomposition may suffer from
the instability problem that leads to the gradient explosion. The small learning rate is used to cope
with the problem. In addition, part of the decomposed layer is fixed for training. However, with
a small learning rate, the accuracy may improve slowly for decomposing deeper networks. Fixing
decomposed layers also makes the accuracy hard to improve because only a few parameters could
be fine-tuned.

2 PROPOSED FLOW OF ACCELERATING CNNS

In this section, we present the Two-Pass Decomposition to avoid the CP Instability. In addition, the
Iterative Two-Pass Decomposition flow can be applied to improve the accuracy loss when accelerat-
ing the deeper networks.

2.1 TWO-PASS DECOMPOSITION

Our two-pass decomposition consists of four steps to compute the decomposed layer.

Step 1: The 1st Decomposition: Apply the CP decomposition on the original filter tensor to get the
decomposed tensor. In this work, we adopt the CP-ALS algorithm in Kolda & Bader (2009).

Step 2: Restoration: Restore the decomposed tensor back to the dense form.

Step 3: Optimization: Replace the original filter tensor with the restored filter tensor in the target
convolutional layer. Optimize the updated networks with fine-tuned filter weights.

Step 4: The 2nd Decomposition: Decompose the optimized filter tensor again.

The concept to restore the decomposed tensor back to the dense form is to prevent from the CP
instability. We observed that if the network is trained in the restored dense form, the training result
can be more stable because of its smoother convex. In addition, the structure of the restored dense
form tends to be closer to the second low rank form, which also leads to a less decomposition error.

Figure 4 compares the accuracy between our two-pass decomposition and the original CP-ALS
decomposition of VGG16. The CNN layers from Conv1 2 to Conv3 1 are evaluated, with Conv1 2
to Conv2 2 decomposed and fixed. The first layer, Conv1 1, is not computationally intensive and
not decomposed. The ranks of Conv1 2 Conv2 1, and Conv2 2 are 24, 25, and 28, respectively.
In this experiment, different ranks of Conv3 1 are applied to observe the accuracy change. The
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comparison shows that the two-pass CP decomposition retains the relatively high accuracy even
with smaller ranks, i.e., the ranks of 24 and 32 in the figure. On the contrary, with the original CP
decomposition, the accuracy drops significantly when decreasing the rank. Such result leaves our
two-pass CP decomposition more room to speed up the network with lower ranks while maintaining
the accuracy.
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Figure 4: The comparison between the two-pass decomposition and the original CP decomposition,
with 500 batches.

2.1.1 PROPOSED ITERATIVE TWO-PASS DECOMPOSITION FLOW FOR DNNS

Traditionally, the filter weights of the decomposed layers are fixed during the fine-tuned phase to
prevent from the gradient explosion. Our two-pass decomposition provides the better result as com-
pared with the original CP decomposition. However, the accuracy will still degrade for decomposing
the deeper networks, since there will be little room for fine-tuning.

For a DNN with many convolution layers, we propose the Rank Selection algorithm to effectively
determine the rank for each layer. Then our two-pass decomposition technique is applied iteratively
to one group of the layers at a time. The overall flow to decompose the whole CNN is shown in
Figure 5.

For the decomposition, target rank of each layer is a hyperparameter to decide. Our flow takes a
given set of ranks as the input to perform the initial decomposition. After the initial decomposition,
the fitness of each decomposed layer can be calculated. Based on the initial ranks and corresponding
fitnesses, we propose the Rank Selection algorithm to optimize the target ranks for the decomposi-
tion, which will be discussed in Sec. 2.1.2.

The second part of the flow performs the two-pass decomposition iteratively, by grouping the CNN
layers. At the end of each iteration, the whole network will be fine-tuned with the decomposed
layers fixed. The accuracy of the fine-tuning can be further improved with a few more epochs until
the loss is converged. The details will be discussed in Sec. 2.1.3.

Initial 
Rank Rank Selection Two-Pass 

DecompositionDecomposition

Selected 
Rank 

Compressed 
Network

Iterative Two-Pass Decomposition

Fine-tune

Fitness

Figure 5: The proposed iterative two-pass decomposition flow.

2.1.2 OUR RANK SELECTION ALGORITHM

Given any initial ranks for the CNN and a target speedup, the proposed Rank Selection algorithm
determines the optimized rank configuration. LetNl denote the operation complexity of the lth layer
in the CNN, andN ′l be its complexity of the decomposed form with the rank ofRl. Therefore, Nl =
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(l)
out) (see Sec. 1.3.2).

The overall theoretical speedup S of the CNN can be defined as

S =

∑
l∈all convolutional layers(Nl)∑
l∈all convolutional layers(N

′
l )

(11)

CP-ALS decomposition in Nickel (2016) is adopted for our approach. According to Kolda & Bader
(2009); Nickel (2016), the fitness (as the decomposition quality) of a convolutional layer can be
defined as

Fl = 1− ‖Xl − X̂l‖2

‖Xl‖2
(12)

where Xl is the original tensor of the lth layer and X̂l is the approximated tensor.

The product of the fitness Fl and the operation complexity Nl is used to estimate the profit to
improve a specific layer l. If a layer has higher fitness and complexity, we tend to reduce its rank for
the speedup. Otherwise, its ranks can be increased for the accuracy. Algorithm 1 shows the proposed
Rank Selection to help determine the optimized rank configuration. Note that the CP decomposition
with a large rank is time-consuming. So a linear approximation is used to predict the fitness in this
stage.

Algorithm 1 Rank Selection
Input: Rl, Fl, Nl, N ′l for l ∈ all convolutional layers, Starget : target speedup, ε : speedup margin
Output: Selected Ranks for each layer

1: Calculate Initial Speedup S
2: while |S − Starget| > ε do
3: if S < Starget then
4: Let T be the layer with the largest FT ×NT among all layers for the speedup.
5: FT = FT × (RT−1)

RT
. Linear approximation of the new fitness.

6: RT = RT − 1
7: else
8: Let T be the layer with the smallest FT ×NT among all layers for the accuracy.
9: FT = FT × (RT+1)

RT
. Linear approximation of the new fitness.

10: RT = RT + 1
11: end if
12: Update N ′l , S
13: end while

2.1.3 ITERATIVE TWO-PASS DECOMPOSITION FLOW

To prevent from the accuracy degradation, our two-pass decomposition approach can be performed
iteratively, based on the concept from Astrid & Lee (2017). Figure 6 illustrates the three iterations
applied to VGG16 model. Each iteration consists of five steps. The first four steps perform the pro-
posed two-pass decomposition of the target group. E.g., the group of Conv1 2, Conv2 1, Conv2 2 is
decomposed and restored back to the dense form in the first iteration (see Figure 6). Then the whole
network is fine-tuned to optimize the weights. Afterward, the three target layers are decomposed
again. In the fifth step, the whole network is fine-tuned again with these decomposed layers fixed.
This additional step can improve the degraded accuracy further.

The second iteration deals with the group of Conv3 1, Conv3 2, and Conv3 3. Note that the pre-
viously decomposed layers remain fixed in the Optimization and Fine-tuning steps. The process
continues until all the target layers are decomposed.

3 EXPERIMENTAL RESULTS AND DISCUSSIONS

3.1 DECOMPOSING VGG16

The VGG16 model modified from machrisaa (2016) is applied to verify our iterative two-pass de-
composition flow. ImageNet 2012 training set is used for training and the validation set is used
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Figure 6: Iterative two-pass decomposition for VGG16.

for the top-5 single view accuracy measurement. The accuracy of the pre-trained VGG16 model is
89.9% by using AdaDelta Optimizer with default setting in Tensorflow. The speedup is measured
on a single-thread 2.7GHz Intel Core i5 CPU.

All the convolutional layers except the first one, Conv1 1, are decomposed. We adopt the ranks
proposed in Zhang et al. (2016) as the Baseline rank configuration (see Table 1). With the Baseline
configuration as the initial ranks, The Rank-Selection configuration is obtained with the theoretical
speedup of 8.4, which achieves the 6.2× measured speedup of on the single thread CPU.

Table 1: Two rank configurations for VGG16.
Layer Name Baseline RankSelection Layer Name Baseline RankSelection

Conv1 2 11 16 Conv4 1 104 339
Conv2 1 25 68 Conv4 2 92 205
Conv2 2 28 53 Conv4 3 100 246
Conv3 1 52 159 Conv5 1 232 450
Conv3 2 46 93 Conv5 2 224 431
Conv3 3 56 115 Conv5 3 214 416

To compare the different decomposition sequences, two grouping schemes are evaluated, as shown
in Table 2. The In-Order scheme groups the convolutional layers based on their connection order.
On the other hand, The Fitness-Based scheme groups the layers based on the sorting order of the
fitness, from the smallest to the largest. In this experiment, each scheme has three groups of layers.

Table 3 shows the accuracy at the optimization step and final fine-tuning step of each iteration for
the Baseline configuration and Rank-Selection configuration, respectively. Two different grouping
schemes are also applied for each rank configuration. For the quick evaluation, one epoch is applied
for each fine-tuning. We can observe that the Rank-Selection configuration improves the accu-
racy significantly. In addition, the In-Order grouping scheme is much better than the Fitness-Based
scheme for the Baseline rank configuration. However, their difference is vague when applying the
Rank-Selection configuration. We will discuss it further in Sec. 3.3

Table 2: Two grouping schemes for the iterative two-pass decomposition.
Iteration 1 Iteration 2 Iteration 3

In-Order
Con1 2, Conv2 1,
Conv2 2, Conv3 1

Con3 2, Conv3 3,
Conv4 1, Conv4 2

Con4 3, Conv5 1,
Conv5 2, Conv5 3

Fitness-Based
Conv2 2, Conv3 2, Conv3 3,

Conv4 2, Conv4 3
Conv4 1, Conv5 1,
Conv5 2, Conv5 3

Conv1 2, Conv2 1,
Conv3 1

To compare with previous works (Jaderberg et al. (2014); Zhang et al. (2016)), our experiment is
extended with additional epochs to fine-tune until the accuracy improvement is smaller than 0.1%.
Table 4 shows the accuracy drop for each iteration. In this case, the Fitness-Based configuration is
better than the In-Order one (see the discussion in Sec. 3.3). As a result, our method achieves the
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Table 3: Accuracy comparison among different configurations for VGG16 (%).
Iteration 1 Iteration 2 Iteration 3

Optimize Fine-tune Optimize Fine-tune Optimize Fine-tune

Baseline
In-

Order 88.76 88.74 85.34 84.54 80.62 80.06

Fitness-
Based 85.59 85.06 82.55 82.34 80.75 70.34

Rank
Selection

In-
Order 90.05 90.04 89.17 89.08 88.25 88.12

Fitness-
Based 89.11 88.97 88.52 88.44 88.13 87.95

highest measured speedup with the lowest accuracy drop among the works utilizing decomposition
techniques, as shown in Table 5. Note that the asymmetric 3d approach in Zhang et al. (2016)
results in a 2.0% accuracy drop. An additional fine-tuning is explicitly applied to meet the final
1.0% accuracy drop with 5 more epochs and the learning rate of 10−5. Our method only relies on
vanilla fine-tuning to reach the low accuracy drop. The learning rate we used is 10−3.

The CP decomposition can also compress the filter size effectively. With the Rank-Selection con-
figuration, our approach reduces 85% of the convolutional layers (from 57MB to 8.3MB). However,
due to the large size of fully connected layers (about 470MB) in VGG16, the overall reduction of
the entire networks is 9% (from 528MB to 480MB) after the two-pass decomposition flow.

Table 4: Comparison of the accuracy drop among different configurations with the convergence
constraint for VGG16 (%).

Iteration 1 Iteration 2 Iteration 3
Optimize Fine-tune Optimize Fine-tune Optimize Fine-tune

In-
Order (rs)

Accuracy
Drop -0.15 -0.14 0.47 0.57 1.48 1.59

Epochs 1 1 4 2 1 1

Fitness-
Based (rs)

Accuracy
Drop 0.32 0.44 0.97 1.04 1.17 1.20

Epochs 8 2 1 1 2 2

Table 5: Comparison among different works.
Method Actual Speedup Accuracy Drop (%)

Jaderberg et al. (2014) (reported in Zhang et al. (2016)) 4× 9.70%
Zhang et al. (2016) 4× 3.84%

Zhang et al. (2016) 3d 5× 2.00%
Zhang et al. (2016) 3d (fine-tuned) 5× 1.00%

In-Order (rs) 6.2× 1.59%
Fitness-Based (rs) 6.2× 1.20%

3.2 DECOMPOSING RESNET50

The deeper CNN, ResNet50, is also evaluated. The accuracy of the pre-trained model which is modi-
fied from ethereon (2016) is 92.02% with the same training environment of the previous experiment,
except for the learning rate of 10−5.

In this experiment, the 1×1 convolutional layers are excluded for the decomposition. The initial
rank is set to 50 for all target layers. The result of our iterative decomposition is shown in Table 6.
Each iteration is trained with one epoch. After the iterative two-pass decomposition, the measured
speedup is 1.35× and the model size reduces by 48% (98MB→51MB).
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Table 6: Accuracy of ResNet50 using the iterative two-pass decomposition (%)

Accuracy Iteration 1 Iteration 2 Iteration 3
Optimize Fine-tune Optimize Fine-tune Optimize Fine-tune

In-Order 91.40 91.42 90.84 90.90 90.32 90.51

3.3 DISCUSSION

Astrid & Lee (2017) suggests that freezing layers make the fine-tuning greedy, which might cause
the optimization to be stuck in a local minimal. However, our approach works efficiently by iter-
atively decomposing a group of layers with previously layers frozen. The attempt also makes the
optimization converge faster and prevents from the gradient explosion.

Our first evaluation in Table 3 shows that the In-Order grouping scheme performs better in a typical
training and fine-tuning, especially for the Baseline rank configuration. The In-Order scheme may be
suitable for the decomposition with smaller rank configuration. Because the Fitness-Based approach
decomposes those layers of smaller ranks first. But it also makes the accuracy drop quickly in the
former layers of small ranks.

For the Rank-Selection configuration, the Fitness-Based scheme does not lead to a significant accu-
racy drop due to the relatively higher ranks and fitnesses. The layers of lower fitness are decomposed
first. Their accuracy drop can be compensated by fine-tuning the latter layers with higher fitness.
The result in Table 4 also shows that a better accuracy drop may be achieved with a proper conver-
gence constraint.

4 CONCLUSION

The iterative two-pass decomposition flow has been presented to accelerate existing deep CNNs.
Our two-pass decomposition effectively prevents from the CP instability. The Rank Selection algo-
rithm provides the fine-grained rank configuration to achieve the target speedup while maintaining
the accuracy. The experiment results show that VGG16 can be accelerated by 6.2 times with the
accuracy drop of only 1.20% and the size reduction of 85%. In addition, ResNet50 can be speeded
up by 1.35 times with the accuracy drop of 1.51% and the size reduction of 48%.

The future works include the improvement of the grouping scheme and the decomposing order, and
a smarter rank selection with non-linear fitness estimation. In addition, accelerating 1×1 convolu-
tional layers will also be considered for the further improvement on the advanced CNNs.
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APPENDIX A

Figure 7 shows the initial fitnesses of the baseline rank configuration and fitness-based configuration. Note
that the layer order is sorted by the fitnesses of the baseline rank configuration. Because there is only a slight
difference between the sorting of the two configuration, the fitness-based grouping scheme is based on the
sorting of the baseline rank configuration.
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Figure 7: The initial fitnesses of the baseline rank configuration and fitness-based configuration.

Table 7 lists the rank of each layer after the Rank Selection.

Table 7: Rank configuration for ResNet50.
Iteration 1 Iteration 2 Iteration 3

Layer Name Rank Layer Name Rank Layer Name Rank
res2b branch2b 24 res4b branch2b 66 res5a branch2c 250
res2c branch2b 32 res4c branch2b 100 res5b branch2a 199
res3a branch2b 37 res4d branch2b 103 res5b branch2b 153
res3b branch2b 54 res4e branch2b 86 res5b branch2c 250
res3c branch2b 20 res4f branch2b 76 res5c branch2a 250
res3d branch2b 45 res5a branch2a 99 res5c branch2b 128
res4a branch2b 64 res5a branch2b 164 res5c branch2c 250
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