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ABSTRACT

A common test for whether a generative model learns disentangled representa-
tions is its ability to learn style and content as independent factors of variation on
digit datasets. To achieve such disentanglement with variational autoencoders, the
label information is often provided in either a fully-supervised or semi-supervised
fashion. We show, however, that the variational objective is insufficient in explain-
ing the observed style and content disentanglement. Furthermore, we present an
empirical framework to systematically evaluate the disentanglement behavior of
our models. We show that the encoder and decoder independently favor disentan-
gled representations and that this tendency depends on the implicit regularization
by stochastic gradient descent.

1 STYLE VS CONTENT DISENTANGLEMENT

Let D = {x(i), y(i)} be a labeled dataset where x ∈ X is the image and y ∈ Y is the label. A
variational autoencoder (Kingma & Welling, 2013) introduces the latent variable z ∈ Z and can be
trained on labeled data using the variational lower bound

L(p, q) = Ex,y∼DEq(z|x,y) ln
p(x, y, z)

q(z | x, y)
, (1)

where p(x, y, z) = p(y)p(z)p(x | y, z) denotes the generative model with unit Gaussian p(z) and
uniform categorical p(y), and q(z | x, y) denotes the inference model. Similar to Kingma et al.
(2014), we use conditional Gaussians for p(x | y, z) and q(z | x, y), and parameterize both condi-
tional distributions with neural networks. We refer to the underlying neural networks as the encoder
ωq(x, y) = {µq(x, y),Σq(x, y)} and the decoder ωp(y, z) = {µp(y, z),Σp(y, z)}.
Note that µp : Y × Z → X takes a vector of continuous z ∼ N (0, I) and a discrete y ∼
Cat( 1

10 , . . . ,
1
10 ) as input and outputs an image x. For style and content disentanglement on digit

datasets (Mathieu et al., 2016; Siddharth et al., 2017), we say that the decoder disentangles style and
content when the following two conditions hold:

1. The latent variable y is label-preserving. For fixed y ∈ Y , µp(y, z) outputs images of the
same digit class for all z ∈ Z .

2. The latent variable z is style-preserving. For fixed z ∈ Z , µp(y, z) outputs images of the
same style for all y ∈ Y .

1.1 LABEL PRESERVATION

To see that the variational autoencoder objective encourages label preservation, note that the objec-
tive can be rewritten as

L = Ex∼pD(x) [ln p(x)− DKL(pD(y | x)q(z | x, y)‖p(y | x)p(z | x, y))] , (2)
where pD denotes the labeled data distribution. By interpreting pD as part of the variational poste-
rior, we see that minimization of the Kullback-Leibler divergence term encourages the generator’s
true posterior p(y | x) to be a good classifier for the labeled data. In other words, the variational ob-
jective uses posterior regularization to train the generator to properly encode the label information
into the latent variable y.
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1.2 STYLE PRESERVATION

Since y strictly encodes the label information, the image style can only be encoded in z. However,
it is not clear that the model will learn this encoding in a style-preserving fashion. In fact, style
preservation is equivalent to solving a 10-way unsupervised domain alignment problem: each digit
class subset is a separate domain and the goal is find an alignment over the ten domains such that
the mapping from any domain to another occurs in a style-preserving fashion. We now show that
the variational autoencoder objective does not enforce style preservation.

Proposition 1 For fixed p(z) and p(y), let p∗(x | y, z) be a generator that is style-preserving with
corresponding true posterior q∗. If p and q are infinite-capacity models, then there exists p′ and q′
such that L(p∗, q∗) = L(p′, q′) but p′ is not style-preserving.

Proof. Let Z be the random variable for p(z). Consider a set of transformations {Ti : Z → Z}i∈Y
that are distribution-preserving (∀i ∈ Y , Ti(Z) = Z) and distinct (∀ i 6= j, ∃ z ∈ Z such that
Ti(z) 6= Tj(z)). Let p′(x | y, z) = p∗(x | Ty(z), z) and let q′ be the corresponding true posterior. It
follows that L(p∗, q∗) = L(p′, q′). Furthermore, since {Ti} are distinct transformations, ∃ i, j ∈ Y
and z ∈ Z such that p′(x | i, z) and p′(x | j, z) output images of different styles. �

To account for a constrained distribution family, we can consider a variant of Proposition 1 that
restricts p(z), p(x | y, z) and q(z | x, y) to the isotropic Gaussian family and choose {Ti} to be a
set of rigid transformation matrices. Figure 1 shows how label-dependent rotations easily convert a
disentangled generator p∗ into an entangled generator p′ (not style-preserving) despite the two gen-
erators inducing the exact same density over the image space X . In general, any learning algorithm
based on minimizing d(pD(x, y), p(x, y)) according to any divergence d(·, ·) cannot disambiguate
p∗ from p′. While this observation was independently made in Szabó et al. (2017), we specifically
study why learned models preserve style despite the under-constrained objective.

Figure 1: Left to right: Comparison of µ∗p and µ′p on SVHN. We sampled z(1:20). The image at
row/column (i, j) is the output of µp(i, z(j)). Note that at most one decoder can be style-preserving.

2 THE DISENTANGLEMENT BIAS IN SHARED ENCODERS AND DECODERS

Given the ease of constructing generators that are not style-preserving and the flexibility of neural
networks, it is surprising that variational autoencoders consistently learn generators that are label
and style-preserving. Furthermore, it is not obvious if this disentanglement bias arises from the
shared encoder, decoder, or both.

Figure 2: Left to right: output of µp when (1) ωq is split, (2) ωp is split, (3) (ωp, ωq) is split.

To address this question, we exploit an alternative parameterization of the generative and infer-
ence models where the disentanglement bias is absent. Consider ten independent neural networks
{ω(i)

p , ω
(i)
q }i∈Y . Let ωp(y, z) = ω

(y)
p (y, z) and ωq(x, y) = ω

(y)
q (x, y). We shall refer to ω as split
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since it is composed of ten separate neural networks—one for each digit class. Note that training
on the split model (ωp, ωq) is equivalent to training a separate variational autoencoder on each digit
class subset. As shown in Figure 2, since the learned mapping between z and x is non-unique,
the independent training of ten variational autoencoders without shared parameters is unlikely to
achieve style alignment/preservation. By selectively splitting either the encoder or the decoder, we
can thus evaluate the style preservation bias of its counterpart. Figure 2 shows that a shared encoder
or shared decoder is sufficient for achieving disentanglement.

3 IMPLICIT REGULARIZATION BY STOCHASTIC GRADIENT DESCENT

Since the disentanglement bias cannot be attributed to the objective function for infinite-capacity
models, we wish to determine whether it can be explained by the finite model capacity of our neural
networks. Considering Figure 1, for example, the entangled decoder ω′p might not be present in
the hypothesis space of the shared decoder. Inspired by Zhang et al. (2016), we evaluate whether a
shared encoder or decoder is capable of learning an entangled representation.

We first train a variational autoencoder to learn a disentangled inference model q∗(z | x, y). We then
sample z ∼ q∗(z | x, y) from the inference model to construct a dataset {x(i), y(i), z(i)}. Using a set
of label-dependent rotations {Ti}, we now train an encoder on the disentangled regression problem
(x, y) 7→ z and the entangled regression problem (x, y) 7→ Ty(z). Analogously, we trained a
decoder on (y, z) 7→ x and (y, Ty(z)) 7→ x.
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Figure 3: Comparison of the convergence rate and final loss of models trained on the disentangled
versus entangled regression problem.

Figure 3 shows that the shared encoder and decoder converge to similar losses on both the entangled
and disentangled regression problem, demonstrating that both models have sufficient capacity to
learn an entangled representation. However, the convergence rate is significantly faster for the disen-
tangled regression problem. This suggests that stochastic gradient descent preferentially converges
to models with disentangled representations, although why convergence is faster for disentangled
representations remains an open question.

4 DISCUSSION

We considered a definition of style and content disentanglement that decomposes disentanglement
into style and label preservation. We then presented an experimental framework to evaluate the
disentanglement behavior in variational autoencoders and showed both theoretically and empiri-
cally that the variational objective is insufficient in explaining the style-preserving behavior of the
learned model. Our work raises the conceptually challenging question of why our models consis-
tently achieve style and content disentanglement. It is tempting to consider the neural network’s bias
for style preservation in the representation space as the deep representation prior analog of the deep
image prior (Ulyanov et al., 2017). Although we identify model parameterization and stochastic
gradient descent as critical pieces of the puzzle, a complete explanation of disentanglement remains
elusive and is of high theoretical and practical interest. As future work, our experimental framework
can also be applied to analyze generative models that exhibit motion/pose and content disentangle-
ment in videos.
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A WEAKENING THE DISENTANGLEMENT BIAS OF ENCODERS AND
DECODERS

We present additional experimental results that complement the main findings of the paper. We first
consider whether splitting a single layer of the shared encoder ωp or shared decoder ωp is sufficient
to break its style preservation bias. We show in Figure 4 that when the split occurs close to the
representation layer, style preservation is lost. Interestingly, in both the encoder and decoder, we
observe that the further the split occurs from the representation layer, the more likely some degree
of style preservation occurs.

Figure 4: Top row. Encoder ωq is always split. Denote l as the decoder ωp’s first layer. Left to right:
output when the layer {l, . . . , l + 3} is also split. Bottom row. Decoder ωp is always split. Denote
l as the encoder ωq’s last layer . Left to right: output when the layer {l, . . . , l − 3} is also split.
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B ENCODER VS DECODER DISENTANGLEMENT BIAS

Since the disentanglement of µp and µ′p are mutually exclusive (Fig. 1), we can stress-test the style
preservation bias of the encoder versus the decoder by using a training procedure that encodes the
image with ωq , transforms the encoding with a label-dependent rotation, and then decodes with ωp.
Thus, if the decoder ωp learns a disentangled representation then the encoder ωq and the transformed
decoder ω′p cannot, and vice versa. Figure 5 shows that the encoder has a stronger style preservation
bias than the decoder when the representation space is subjected to label-dependent rotation. Inter-
estingly, we also show that if even one of the encoder’s layers is split, the decoder’s bias dominates.
The fact that the shared decoder can learn an entangled representation suggests that its bias for style
preservation is not attributable to limited model capacity.

Figure 5: Label-dependent rotation. Top row. Left to right: output of µp (1) under standard com-
petition conditions (encoder wins), (2) when y is masked from the encoder ωq (encoder wins), (3)
when ωq’s layer l − 3 is split (decoder wins), (4) when ωp’s layer l + 3 is split (encoder wins).
Bottom row. Corresponding output of µ′p. The encoder wins if the bottom row is disentangled, else
the decoder wins.

We can conduct the same encoder versus decoder experiment, but with a reflection matrix instead
of a rotation matrix. In particular, we chose the label-dependent reflection Ti = (−1)1{i<5}. Unlike
the rotation experiment, the encoder’s style preservation bias is weaker than the decoder’s when the
encoder observes y as input. However, when y is masked out, the encoder’s style preservation bias
is stronger.

Figure 6: Label-dependent reflection. Top row. Left to right: output of µp (1) under standard
competition conditions (decoder wins), (2) when y is masked from the encoder ωq (encoder wins),
(3) when ωq’s layer l − 3 is split (decoder wins), (4) when ωp’s layer l + 3 is split (encoder wins).
Bottom row. Corresponding output of µ′p. The encoder wins if the bottom row is disentangled, else
the decoder wins.

In both the rotation and reflection competition experiments, we observe that the opposing model
wins with non-zero probability under the standard competition setting. The exact win rate remains
to be determined.
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