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Abstract

Pretrained Transformers exhibit strong in-context learning (ICL) capabilities, en-
abling them to perform new tasks from a few examples without parameter updates.
However, their ICL performance often deteriorates under distribution shifts be-
tween pretraining and test-time data. Recent empirical work suggests that adjusting
the attention temperature—a scaling factor in the softmax—can improve the per-
formance of Transformers under such distribution shifts, yet its theoretical role
remains poorly understood. In this work, we provide the first theoretical analy-
sis of attention temperature in the context of ICL with pretrained Transformers.
Focusing on a simplified setting with “linearized softmax” attention, we derive
closed-form expressions for the generalization error under distribution shifts. Our
analysis reveals that distributional changes in input covariance or label noise can
significantly impair ICL, and that an optimal attention temperature exists which
provably minimizes this error. We validate our theory through simulations on
linear regression tasks and experiments with LLaMA2-7B on question-answering
benchmarks. Our results establish attention temperature as a critical lever for robust
in-context learning, offering both theoretical insight and practical guidance for
tuning pretrained Transformers under distribution shift.

1 Introduction

Transformers [27]] have become the cornerstone of modern Al systems, powering state-of-the-art
models such as ChatGPT, Gemini, and DeepSeek. A key capability underlying their success is
in-context learning (ICL)—the ability to adapt to new tasks directly from prompts, without modifying
internal weights [4]. This emergent behavior has sparked significant interest in understanding the
mechanisms behind ICL [2, 29], as well as how factors such as task diversity and model scale
influence performance [30} 33].

Despite its promise, ICL remains sensitive to distribution shifts between pretraining and downstream
tasks. Empirical and theoretical studies have shown that such shifts can degrade performance [33],
raising critical questions about the robustness and adaptability of pretrained Transformers.

At the heart of the Transformer architecture lies the self-attention mechanism, formally expressed as

(KZ)T(QZ)>

T

Attention(Z) := V' Z - softmax ( (1
where Z is the input, and Q, K, and V are the query, key, and value weight matrices, respectively.
The parameter 7 > 0, known as the attention temperature, modulates the sharpness of the softmax
distribution. While the original Transformer set 7 = /d}, [27] where dy, is the dimension of the key
matrix, later works in both NLP and vision have found that tuning or learning attention temperature
can improve performance [[16} 36} 21} 1315} 37]].
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Temperature controls how sharply attention weights focus on certain inputs—a property that could
play a critical role under distribution shift. Surprisingly, despite its operational importance, the
effect of temperature on the ICL behavior of pretrained Transformers has received little theoretical
attention. This gap is particularly relevant in practice, where distribution mismatch between training
and deployment is the norm.

This work — In this paper, we present a theoretical and empirical investigation of the attention
temperature in the context of ICL. Our main focus is on how tuning temperature can improve
the generalization performance of pretrained Transformers under distribution shifts. We study
this question in the setting of linear regression tasks, which serve as a tractable framework for
understanding ICL [9] 35]. Departing from prior work that considers linear attention, we analyze a
Transformer with linearized softmax attention, which retains the essential temperature-dependent
behavior of standard attention while allowing for mathematical tractability.

Our analysis identifies a closed-form expression for the optimal temperature—the value of 7 that
minimizes generalization error during inference. We show that this optimal temperature depends
explicitly on the nature of the distribution shift, and that setting it appropriately can recover or
even surpass baseline ICL performance. We validate our theoretical predictions through extensive
experiments on both synthetic (linear regression) and real-world (question answering with LL.Ms)
tasks, demonstrating that temperature tuning offers a simple yet powerful mechanism to improve
robustness.

Contributions — Our work makes the following contributions:

1. We theoretically characterize the optimal attention temperature for pretrained Transformers with
linearized softmax attention in in-context learning tasks.

2. We analyze the generalization behavior of such models under a broad range of distribution shifts,
using a relaxed set of assumptions compared to prior work.

3. We establish a clear theoretical and empirical link between distribution shifts and temperature,
showing that tuning temperature significantly enhances ICL performance across tasks.

Taken together, our results offer new insights into the interplay between temperature, distribution
shift, and generalization in in-context learning, with implications for both theory and practice in the
deployment of pretrained Transformers.

2 Related work

In-context learning — The ICL capability of Transformers was first brought to prominence by [4]],
leading to a surge of empirical and theoretical investigations. Several works have demonstrated that
ICL performance improves with model scale [30, |19} 25]], underscoring its importance in modern Al
systems.

To better understand this phenomenon, synthetic tasks such as linear regression have served as
controlled testbeds for analyzing ICL in Transformers [9} 35| 124]. A prevailing hypothesis in recent
theoretical work is that Transformers implicitly learn algorithms during pretraining, which they
subsequently execute during inference [3, [14, 2} [1, 29} (18} [7} 35 [15} 20]. However, there remains
ongoing debate over the precise nature of these learned procedures.

In this context, simplified Transformer variants—particularly those using linear attention—have
proven useful for gaining analytical insights. Notably, [35] showed that linear Transformers approxi-
mate Bayes-optimal inference in linear regression tasks, even under distribution shift.

Our work builds on this line of research but focuses specifically on the role of the temperature
parameter in attention. Unlike [35], we (i) employ linearized softmax attention to isolate the influence
of temperature, (ii) study how temperature adjustments can mitigate the effects of distribution
shifts, and (iii) derive and evaluate the optimal temperature for improving ICL performance. These
contributions extend prior analyses and provide a deeper understanding of how tuning temperature
can enhance Transformer generalization under distributional variations.

Linear vs. softmax attention — A parallel thread of research investigates the comparative efficacy
of linear and softmax attention mechanisms, which is directly relevant to our study since temperature
is traditionally associated with softmax attention. While linear attention has gained popularity for its
computational efficiency, it is often outperformed by softmax-based counterparts, prompting efforts
to close this performance gap [6} 22]].



87
88
89
90
91

92
93
94
95
96

97
98
99
100

101

102
103
104

105
106

107

108
109
110
111
112

113

114

115
116

117
118

119
120

121

122
123

124

125

126

A key development in this area is the work of [11], who demonstrated that a linearized variant of
softmax attention can closely match the performance of standard softmax attention. Motivated by this
finding, we adopt the “linearized softmax” formulation, allowing for tractable theoretical analysis
while preserving the critical role of temperature. This approach facilitates a principled investigation
of how temperature tuning impacts ICL in pretrained Transformers.

Temperature — Despite its central role in attention mechanisms, the temperature parameter
remains underexplored in the context of ICL. Recent work by [28]] proposes adaptive temperature
as a means to sharpen softmax outputs, and temperature adjustments are sometimes reported in
empirical studies of pretrained LLMs [26]]. However, a systematic analysis of temperature’s effect on
ICL—yparticularly under distribution shift—has been lacking.

To address this gap, we provide a theoretical and empirical investigation of temperature within
Transformers using “linearized softmax” attention. Our results clarify how the optimal temperature
depends on the data distribution and how it can be tuned to reduce generalization error in in-context
learning scenarios.

3 Setting

We describe the setup for analyzing ICL in linear regression using pretrained Transformers, covering
the data model, linearized attention with reparameterization, evaluation metrics, and the Bayes-
optimal benchmark.

Notation — We follow standard notation from [10]. The spectral norm of matrix M is denoted by
||M ||, and the trace by Tr(M ). Matrix entries and slices are denoted as M; ;, M. ;, and M, ..

3.1 Problem setup: In-context learning for linear regression

We study the ICL abilities of pretrained Transformers on linear regression tasks. Given a sequence of
tokens, i.e., input-label pairs, {x1,y1, T2,Y2, ..., ®1_1, Y11, T }, where each input vector z; € R?
and corresponding label y; € R are independently sampled from an unknown joint distribution, the
model must predict y; using only the context {(x;, y;) i;% and the query x;, where [ — 1 is referred
as the “context length”. Each (x;, y;) pair is sampled i.i.d. from a joint distribution defined by:

i~ N (e, B2), yi=w xi+e, €~N0,0%), 2)

where the task vector w ~ N (py,, 3y,) is fixed within a context but varies across tasks.
Assumption 3.1 (Well-Behaved Data Distributions). There exist constants ¢y, co, c3 > 0 such that:

||’J‘T||7 HHwH S C1, Amin(z.’c)a )\min(zw) Z C2, Amax(zx); Amax(zw) S C3.

This assumption ensures well-behaved distributions by bounding the means and covariances of input
and task vectors, offering greater flexibility than the more restrictive setup in [33]].

Assumption 3.2 (High-Dimensional Regime). The context length ! and input dimension d diverge
jointly: I, d — oo.

This assumption reflects realistic settings where both context length and input dimension grow,
aligning with modern ML trends and enabling analysis of generalization in high-dimensional regimes.

Under this set of assumptions, we define ICL for linear regression tasks as follows:

Definition 3.3 (In-Context Learning (ICL)). A model succeeds at ICL for linear regression if its
generalization error nearly matches that of the Bayes-optimal linear model (defined in Section[3.6).

3.2 Modeling attention with transformers
Following the convention established in [35], we embed the input sequence into an embedding matrix:

Ty o T T (d+1)x1
= R 3
yioc Y1 0 < ’ )

where the last column corresponds to the query input with no label.
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Using the embedding matrix, the softmax self-attention output is given by:

(KZ)T(QZ)) | @

T

S := Z + V Z - softmax <

where K, @, and V are the key, query, and value matrices, respectively, and 7 is the temperature.
Here, we denote the model’s prediction as Sy 1,; — the last element in the final row.
3.3 Linearized attention approximation

To analytically study the effect of temperature on ICL, we adopt a linearized approximation of
softmax attention (see Appendix [B|for the derivation):

1 K2)T(QzZ 1< (KZ NT(0Z
T l 4 T
7j=1
where { := Eq41 is the predicted label. Unlike traditional linear attention (e.g., [35]):
1
Z+-VZ(KZ)'(QZ2) 6)

l

our linearized version preserves normalization properties, improving interpretability and robustness.

Remark 3.4 (Linear vs. Linearized Attention). Linearized attention preserves row-wise normalization,
making it more robust to variations in input means — a key failure mode of linear attention in ICL.
Appendix [C|illustrates this distinction.

3.4 Reparametrization of linearized attention

To streamline analysis, we reparametrize the matrices V and M := K7 Q as:

* * M11 *
V = M = 7
L:;q vgg] ’ {mQTl *] ’ O

where only wva1, v29, Moy, and My, influence the prediction §(Z; V', M). The remaining terms
are denoted by * as they are not relevant for predicting y; in this context. The prediction from the
linearized attention model can thus be expressed as a function of M and V, ie., 4(Z;V, M) :=
E 441, This form parallels the approach in [35]], allowing for tractable theoretical analysis.

By analyzing this reparameterization, we gain a deeper understanding of how the model parameters
interact with the data to address the ICL problem effectively. This foundational insight will provide
the necessary basis for discussing the pretraining of these parameters in Section [d.1]

3.5 Evaluating generalization performance

We focus on evaluating the performance of our attention model by assessing its generalization error.
For a given set of parameters (V', M), the model’s generalization (ICL) error is:

G(V,M) := E —§(Z;V,M))*|, 8
( ) R (v = 9( ) ®)

where D¢t denotes the distribution of the test set, which includes input-output pairs that the model
has not encountered during training. In this context, the ICL task assesses the genuine ICL capabilities
of the linearized attention module. Here, the task vectors in the test set differ from those encountered
during training, requiring the model to infer these new vectors based solely on the provided context.

3.6 Bayes-optimal ridge estimator

The Bayes-optimal ridge estimator provides a robust framework for estimating the task vector w
given a prior distribution and a set of [ — 1 samples. It is defined as:

. XTX N\ /(XTy _
WRBayes = ( 0_2 + Ewl) (a.Qy + Ewlﬂw> ) (9)
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where X is the centered input matrix and ¥ is the centered label vector. This estimator integrates
data information while incorporating prior beliefs about the distribution of w, effectively balancing
bias and variance, hence serves as the gold standard against which we compare model predictions.
The terms including X! introduce a regularization effect, which is especially beneficial in high-
dimensional settings.

The derivation of this estimator, detailed in Appendix [A] illustrates how Bayesian principles can
inform regression techniques by combining observed data with prior distributions to yield more
reliable predictions. In our context, the inputs and labels originate from the prompt matrix Z, and the
prediction of the Bayes-optimal linear model for any input @ is given by wgayesm.

4 Theoretical results

In this section, we present our main theoretical results on the behavior of the linearized attention model
in the context of ICL. We begin by showing how to pretrain the model to approximate the Bayes-
optimal linear predictor, thereby grounding its predictive performance. We then identify specific
conditions under which the model fails to generalize under distribution shifts at test time, revealing
key limitations of linearized attention in ICL. Following this, we provide a detailed characterization
of its generalization error, offering a principled framework for analyzing performance. Finally, we
investigate the role of the temperature parameter and demonstrate that tuning it appropriately can
substantially improve generalization—especially in cases where the model initially fails to perform
effective in-context learning.

4.1 Model pretraining

We begin our pretraining analysis by observing that the prediction generated by the linearized attention
model can be reduced to the following form (see Appendix [D|for the derivation):

. 1,
9(Z;V,M) :=Ej11, = ;wAtt(CzwaCzyacyy§M7V)Twl +bart (82,555 V),  (10)

where Wt (Cray Coy, Cyy; M, V) € R and bayi (s, s; V) € R. s, and s, denote the sample
means of the input x and the label y, respectively, and C,, and C,, are the sample covariances
corresponding to Cov(x) and Cov(x, y). These statistics are computed from the prompt matrix Z.

For pretraining, we optimize the parameters V' and M using m samples of (Z,y;) drawn from
the distribution D", where each Z contains [ — 1 (, y) pairs intended for ICL. Building upon
prior work that connects ICL in linear regression to the Bayes-optimal ridge estimator [35} 24]],
we configure M and V' to emulate Bayes-optimal ridge regression. Specifically, we aim for
wAtt(sz C.ty; M, V) ~ ﬁ]Bayes and bAtt(sm; Sy; V) ~ 0.

Lemma 4.1 (Pretrained Parameters). When the temperature parameter is set to T = 1 during
pretraining, the following parameter configuration approximates the Bayes-optimal estimator in ([9):

N N —1
XTX 2
My, =d (ml + ”lzq,f) . ma =0, (11)
~ ~ —1
_ o2 ([ XTX -1 _ 1
Uzl—m W w Mw,; U22—ga

where X € R™*4 js the centered input matrix formed from ml samples of x. This configuration
aligns the linearized attention model with Bayes-optimal ridge regression. The quantities ., and
3w can be estimated from the pretraining data. A detailed derivation is provided in Appendix|[E]

This lemma establishes a theoretical connection between the pretrained parameters and the Bayes-
optimal estimator, reinforcing the foundation of our approach.

Moreover, specific instances of Lemma 4. T|recover settings explored in prior studies. For example,
under the assumptions ¥, = ¥, = I, g, = 0, and 0 = 0, [29] employ M;; = Cov(x)!
and v2; = 0 within a linear attention framework. Our formulation generalizes this by allowing
v91 # 0, which reflects our assumption that p,, # 0—a departure from earlier works. In our
self-attention-based analysis, v21 encodes task vector bias. Additionally, our choice of M7, explicitly



199
200

201

202
203
204

205
206
207
208

210
211
212

213
214

215

216
217
218
219

220
221
222

223
224
225

226
227
228
229
230
231

232
233
234
235
236
237

238
239
240
241

242
243
244
245
246

accounts for label noise (02), thereby enhancing the model’s adaptability and maintaining a Bayesian
interpretation.

We further comment on task diversity and parameter optimality in the following two remarks:

Remark 4.2. A high degree of task diversity (i.e., the number of distinct tasks) is crucial for enabling
in-context learning [33]]. In our framework, task diversity significantly affects the accuracy of
estimating 1., and 3, during pretraining.

Remark 4.3. Although the pretrained parameters specified in Lemma[4.T|may not be optimal in all
scenarios, they are analytically valuable for understanding the effects of distribution shifts and the
influence of the temperature parameter in ICL. Notably, our characterization of ICL performance and
temperature optimality does not rely on these specific parameter choices.

Based on Lemma[4.1] we arrive at the following corollary:

Corollary 4.4. Suppose there is no distribution shift between training and inference. Then, under the
parameter configuration of Lemma the linearized attention model emulates the Bayes-optimal
linear model, implying that it is capable of in-context learning according to Definition

Since the pretrained model succeeds in ICL for D¢t = D!"%" e next investigate how distribution
shifts affect its ICL performance.

4.2 Effect of distribution shift

In this section, we explore scenarios where Diest £ pirain indicating a shift in the input, task, or
noise distribution after pretraining the linearized attention model. We consider three cases: (1) a shift
in the input distribution (altered mean or covariance), (2) a shift in the task distribution, and (3) a
change in the noise levels.

To evaluate the impact of these distribution shifts on ICL performance, we assess whether adjustments
to M and/or V are necessary to match the Bayes-optimal linear model under the new distribution. If
so, the model is considered sensitive to the shift. Otherwise, it is deemed robust.

Case I: Shift in input distribution —  Recall that inputs are drawn as x; ~ N(ps, X2), as defined
in (2). Let plrei, Btrain and plest, B35t denote the input means and covariances for pretraining

and testing, respectively. We consider two subcases:

(i) Shift in mean (7" # ples?): The mean shift does not affect the linearized attention model
since it uses centered inputs. However, this impacts the linear attention model, which operates on
uncentered inputs, as discussed in Remark

(ii) Shift in covariance (32" £ 3lesty. A covariance shift necessitates retraining, as My is
tailored to the pretraining input covariance. A mismatch leads to a significant deviation from the
Bayes-optimal estimator, consistent with findings in prior work on linear attention [35]].

Case II: Shift in Task Distribution — The task vectors follow w ~ N(pty,3,,). Let
plrain sitrain gang ptest 3itest pe the mean and covariance of the task distribution during pre-
training and testing, respectively. The linearized attention model can incorporate p!7%" and Xtrein
via the pretrained parameters M7, and v2; (see Lemma . However, as the context length [
increases, the model’s dependence on the task distribution diminishes. Thus, shifts in the task

distribution primarily affect ICL performance for small /.

Case III: Shift in noise distribution — Finally, consider a change in the noise distribution: €; ~
N(0,0?), with 02, and o7, ., denoting pretraining and testing noise variances. If 07, ... # 02,
the parameters M, and v2; become suboptimal relative to the Bayes-optimal linear model. However,
as with the task distribution, the impact of noise shift diminishes as [ — oo.

Summary — The linearized attention model is robust to shifts in input mean but sensitive to input
covariance changes. Shifts in task or noise distribution reduce ICL performance at small [, though
increasing [ mitigates these effects. In Section 4.4} we explore optimal temperature selection as a way
to enhance robustness. First, we analyze the generalization error of the linearized attention model in
the next section.
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Figure 1: Experiments with Transformer (Linearized Attention) on ICL under distribution shifts.
Parameters are set using . “Here, d = 50, m = 5000 (a new task per sample), o = 0.1,
Nt;azn — Ng’azn _ 0, and Exrazn — Eg’azn =1.

4.3 In-context learning performance

We analyze the in-context learning (ICL) performance of the linearized attention model by evaluating
the generalization error defined in (8). To establish a general setting for the subsequent results, we
impose the following assumption on the pretrained parameters:

Assumption 4.5. There exists a constant ¢ > 0 such that
c c
1M < ed, Ima] =0, foall < —0 o] < o

Note that the pretrained parameters obtained in Lemma [.1] satisfy Assumption 5] with high
probability under Assumptions[3.1H3.2} However, the generalization error result stated below holds
for any parameters M, V' that satisfy Assumption[4.5]

Theorem 4.6 (Generalization error for ICL). Suppose Assumptions[3.IH3.2|and[.3]hold. At test time,
assume the input, task, and noise distributions are given by N'(pt, X2), N (fw, 2w ), and N'(0, 02),
respectively. Define

A=3,+ /J/aclfl’ga B:=3, + qug-

Then, the generalization error is
G(V,M) = % Tr (AM{, FiMy,) — %Tr (A (FoMy; + M FY)) + Tr (AB) + 02, (12)
where
F, = (2361% + % (v§202 + Tr(Bzgc)) I) > (13)

Fy = (p,v3, +v22B)E,, (14)

and

— T T 2
B := V22 My Vo + V22U21 Uy, + 1)22B.

Proof. The generalization error is derived using Isserlis’ theorem [12] to compute higher-order
moments. See Appendix [F|for the full derivation. O

Theorem @ illustrates how the parameters M, V', and the test-time data distribution affect the
generalization error. Notably, the temperature parameter 7 plays a critical role.

Although temperature can be implicitly encoded in M during pretraining, it becomes especially
important under distribution shifts that the model is not equipped to handle. In such cases, one
can optimize generalization performance by choosing the temperature Topimal that minimizes the
generalization error, as discussed next.
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Figure 2: Effect of noise shift on Transformer (Linearized Attention). The pretraining noise is
Otrain = 0.1, while oy varies across plots. Panels (b) and (c) show generalization error and optimal
temperature, respectively, as informed by Theorem[4.7} This setting matches Figure [Th, except for
changes in test-time noise oeg-

4.4 Optimal attention temperature improves performance

To address distribution shifts, we define the optimal attention temperature as follows:
Theorem 4.7 (Optimal attention temperature). Suppose Assumptions and @3] hold. To
minimize the generalization error, the optimal attention temperature for inference is given by
2Tr (AMﬂFlMll)
Toptimal = ,
optimal Tr (A (F2M11 + MﬂFQT))

(15)
provided that Tr (A (FaMyy + M{, F5')) > 0 and Tr (AM{, Fi My;) > 0.

Proof. We minimize the generalization error from Theorem [4.6| with respect to 7 (Appendix[H). [

Consider the optimal temperature Topgimar from Theorem When Topimal 7 1, using an unadjusted
temperature leads to suboptimal generalization error. Thus, incorporating the optimal temperature
improves generalization in in-context learning under distribution shift.

A natural question is whether the optimal temperature can completely mitigate the adverse effects
of distribution shifts. This depends on both the pretraining and test distributions. In some settings,
the adjustment can entirely compensate for the shift. For example, if the task distribution is fixed as
w ~ N(0, I), the noise variance is ¢ = 0, and the input distribution changes from @i, ~ N (0, I)
t0 @ese ~ N (0, cI), then the optimal temperature Toptimal = ¢ fully counteracts the shift. In more
complex scenarios, it may only partially mitigate the impact, yet still yields improved ICL.

5 Experimental results

In this section, we empirically validate our theoretical predictions and demonstrate the impact of
the optimal attention temperature on generalization. We begin with controlled experiments on linear
regression tasks and progress to evaluating large-scale pretrained models on real-world datasets.

We experiment with two model classes on the linear regression tasks: (i) the linearized attention
model, and (ii) the GPT-2 model [23]], which incorporates multi-head softmax attention and MLP
layers|'| These experiments show that our theoretical insights generalize from simplified models to
more expressive architectures. Finally, we examine the role of temperature in large language models
(LLMs), using the Llama2-7B [26] on in-context learning tasks derived from SCIQ dataset [31].

5.1 Experiments on linear regression tasks

We consider a Transformer architecture with linearized attention and no MLP layers, as analyzed
in our theoretical development. Figures [I] and 2] illustrate its behavior on linear regression tasks
(2). Theoretical predictions closely match empirical performance across a range of conditions,
confirming the robustness of our analysis. In Figure[T} we compare the ICL performance of the model
with and without applying the optimal temperature. As context length [ increases (Figure [Th), the

"Due to the space limitation, we provide the results with GPT-2 in the appendix.
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Figure 3: LLM Experiments: The effect of the attention temperature on the ICL performance of the
Llama2-7B model [26]] using the SCIQ dataset [31]. A distribution shift is introduced by corrupting
in-context demonstrations with noisy labels, selected as “relevant” but not necessarily correct answers
following [8]]. In (a), the noisy ratio is fixed at 0.6; in (b), the number of in-context examples is
fixed at 6. Results are averaged over 20 Monte Carlo runs, with error bars indicating 0.33 standard
deviations. Attention temperature in all layers is set to 7+/dj, where d}, is the key dimension, to make
7 values dimension-independent. Full details are provided in Appendix E}

model’s predictions converge to those of the Bayes-optimal linear model, validating its ICL capability.
Figure[lb shows that under an input covariance shift, model performance degrades—but applying
the optimal temperature restores alignment with the Bayes-optimal solution. Additionally, Figure [Tk
shows that the influence of task distribution shift decreases as [ increases.

We further evaluate robustness to label noise in Figure 2] In Figure 2h, we observe that noise effects
diminish as the context length increases, consistent with our theoretical predictions. However, at small
1, temperature adjustment becomes critical. In Figure 2p (for I = d), the Transformer increasingly
diverges from the Bayes-optimal model as noise grows, yet optimal temperature correction closes this
gap. Figure[2k shows that the optimal temperature increases with noise level, indicating a principled
relationship between noise and temperature under limited context.

5.2 Experiments with LL.Ms for in-context question answering tasks

To assess the practical relevance of our theoretical framework, we investigate how attention tempera-
ture impacts the ICL behavior of LLMs. Following prior work [8], we use the SCIQ dataset [31] to
create ICL tasks that incorporate distribution shift via noisy labels in the demonstrations. Examples of
ICL prompts and the design of noisy labels are provided with full experimental details in Appendix
We employ the Llama2-7B model [26]], evaluating its ICL performance using the exact match score.

Figure [3] presents our results. In Figure [3p, we plot performance as a function of the number of
in-context examples under a fixed noisy ratio. Due to the label noise, the performance curve exhibits
non-monotonic behavior—highlighting the trade-off between additional context and accumulated
noise. Figure Bp shows that as the proportion of noisy demonstrations increases, the optimal
temperature also increases, aligning precisely with our theoretical expectations (cf. Figure 2f).

These results affirm that even for highly overparameterized practical models such as Llama2-7B,
tuning the attention temperature serves as a principled and effective mechanism to mitigate the
negative effects of distribution shifts on in-context learning.

6 Conclusion

This work provides a theoretical and empirical foundation for understanding the role of attention
temperature in the in-context learning (ICL) capabilities of pretrained Transformers under distribution
shifts. By introducing a simplified yet expressive framework based on linearized softmax attention,
we analytically characterized how shifts in input covariance and label noise degrade ICL performance.
Crucially, we identified and derived an optimal temperature that provably minimizes generalization
error in these settings. Our theoretical predictions are validated through extensive experiments on
both synthetic linear regression tasks and real-world benchmarks using GPT-2 and LLaMA?2 models.
Together, our findings offer actionable insights: tuning attention temperature is not merely a heuristic
but a principled lever to enhance the robustness of ICL in pretrained Transformers. This advances
our understanding of Transformer behavior under distribution shift and opens new directions for
improving adaptability in large-scale models.
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Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
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Answer: [Yes]
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» The answer NA means that the paper does not include experiments.
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It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: While most of our experiments can be conducted on any modern computer, the
LLM experiments (Figure 3) should be run on a GPU, and the relevant computer resources
are mentioned in the appendix when providing the details for the experiment.

Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: Our research conducted in the paper conforms with the Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: As a theory paper, it is not expected to have any direct societal impact.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: We do not provide new data or new model.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: The creators/owners of the used assets are properly credited.
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: The core method development in this research does not involve LLMs.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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