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Abstract

Pretrained Transformers exhibit strong in-context learning (ICL) capabilities, en-1

abling them to perform new tasks from a few examples without parameter updates.2

However, their ICL performance often deteriorates under distribution shifts be-3

tween pretraining and test-time data. Recent empirical work suggests that adjusting4

the attention temperature—a scaling factor in the softmax—can improve the per-5

formance of Transformers under such distribution shifts, yet its theoretical role6

remains poorly understood. In this work, we provide the first theoretical analy-7

sis of attention temperature in the context of ICL with pretrained Transformers.8

Focusing on a simplified setting with “linearized softmax” attention, we derive9

closed-form expressions for the generalization error under distribution shifts. Our10

analysis reveals that distributional changes in input covariance or label noise can11

significantly impair ICL, and that an optimal attention temperature exists which12

provably minimizes this error. We validate our theory through simulations on13

linear regression tasks and experiments with LLaMA2-7B on question-answering14

benchmarks. Our results establish attention temperature as a critical lever for robust15

in-context learning, offering both theoretical insight and practical guidance for16

tuning pretrained Transformers under distribution shift.17

1 Introduction18

Transformers [27] have become the cornerstone of modern AI systems, powering state-of-the-art19

models such as ChatGPT, Gemini, and DeepSeek. A key capability underlying their success is20

in-context learning (ICL)—the ability to adapt to new tasks directly from prompts, without modifying21

internal weights [4]. This emergent behavior has sparked significant interest in understanding the22

mechanisms behind ICL [2, 29], as well as how factors such as task diversity and model scale23

influence performance [30, 33].24

Despite its promise, ICL remains sensitive to distribution shifts between pretraining and downstream25

tasks. Empirical and theoretical studies have shown that such shifts can degrade performance [35],26

raising critical questions about the robustness and adaptability of pretrained Transformers.27

At the heart of the Transformer architecture lies the self-attention mechanism, formally expressed as28

Attention(Z) := V Z · softmax
(
(KZ)T (QZ)

τ

)
, (1)

where Z is the input, and Q, K, and V are the query, key, and value weight matrices, respectively.29

The parameter τ > 0, known as the attention temperature, modulates the sharpness of the softmax30

distribution. While the original Transformer set τ =
√
dk [27] where dk is the dimension of the key31

matrix, later works in both NLP and vision have found that tuning or learning attention temperature32

can improve performance [16, 36, 21, 13, 5, 37].33
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Temperature controls how sharply attention weights focus on certain inputs—a property that could34

play a critical role under distribution shift. Surprisingly, despite its operational importance, the35

effect of temperature on the ICL behavior of pretrained Transformers has received little theoretical36

attention. This gap is particularly relevant in practice, where distribution mismatch between training37

and deployment is the norm.38

This work — In this paper, we present a theoretical and empirical investigation of the attention39

temperature in the context of ICL. Our main focus is on how tuning temperature can improve40

the generalization performance of pretrained Transformers under distribution shifts. We study41

this question in the setting of linear regression tasks, which serve as a tractable framework for42

understanding ICL [9, 35]. Departing from prior work that considers linear attention, we analyze a43

Transformer with linearized softmax attention, which retains the essential temperature-dependent44

behavior of standard attention while allowing for mathematical tractability.45

Our analysis identifies a closed-form expression for the optimal temperature—the value of τ that46

minimizes generalization error during inference. We show that this optimal temperature depends47

explicitly on the nature of the distribution shift, and that setting it appropriately can recover or48

even surpass baseline ICL performance. We validate our theoretical predictions through extensive49

experiments on both synthetic (linear regression) and real-world (question answering with LLMs)50

tasks, demonstrating that temperature tuning offers a simple yet powerful mechanism to improve51

robustness.52

Contributions — Our work makes the following contributions:53

1. We theoretically characterize the optimal attention temperature for pretrained Transformers with54

linearized softmax attention in in-context learning tasks.55

2. We analyze the generalization behavior of such models under a broad range of distribution shifts,56

using a relaxed set of assumptions compared to prior work.57

3. We establish a clear theoretical and empirical link between distribution shifts and temperature,58

showing that tuning temperature significantly enhances ICL performance across tasks.59

Taken together, our results offer new insights into the interplay between temperature, distribution60

shift, and generalization in in-context learning, with implications for both theory and practice in the61

deployment of pretrained Transformers.62

2 Related work63

In-context learning — The ICL capability of Transformers was first brought to prominence by [4],64

leading to a surge of empirical and theoretical investigations. Several works have demonstrated that65

ICL performance improves with model scale [30, 19, 25], underscoring its importance in modern AI66

systems.67

To better understand this phenomenon, synthetic tasks such as linear regression have served as68

controlled testbeds for analyzing ICL in Transformers [9, 35, 24]. A prevailing hypothesis in recent69

theoretical work is that Transformers implicitly learn algorithms during pretraining, which they70

subsequently execute during inference [3, 14, 2, 1, 29, 18, 7, 35, 15, 20]. However, there remains71

ongoing debate over the precise nature of these learned procedures.72

In this context, simplified Transformer variants—particularly those using linear attention—have73

proven useful for gaining analytical insights. Notably, [35] showed that linear Transformers approxi-74

mate Bayes-optimal inference in linear regression tasks, even under distribution shift.75

Our work builds on this line of research but focuses specifically on the role of the temperature76

parameter in attention. Unlike [35], we (i) employ linearized softmax attention to isolate the influence77

of temperature, (ii) study how temperature adjustments can mitigate the effects of distribution78

shifts, and (iii) derive and evaluate the optimal temperature for improving ICL performance. These79

contributions extend prior analyses and provide a deeper understanding of how tuning temperature80

can enhance Transformer generalization under distributional variations.81

Linear vs. softmax attention — A parallel thread of research investigates the comparative efficacy82

of linear and softmax attention mechanisms, which is directly relevant to our study since temperature83

is traditionally associated with softmax attention. While linear attention has gained popularity for its84

computational efficiency, it is often outperformed by softmax-based counterparts, prompting efforts85

to close this performance gap [6, 22].86
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A key development in this area is the work of [11], who demonstrated that a linearized variant of87

softmax attention can closely match the performance of standard softmax attention. Motivated by this88

finding, we adopt the “linearized softmax” formulation, allowing for tractable theoretical analysis89

while preserving the critical role of temperature. This approach facilitates a principled investigation90

of how temperature tuning impacts ICL in pretrained Transformers.91

Temperature — Despite its central role in attention mechanisms, the temperature parameter92

remains underexplored in the context of ICL. Recent work by [28] proposes adaptive temperature93

as a means to sharpen softmax outputs, and temperature adjustments are sometimes reported in94

empirical studies of pretrained LLMs [26]. However, a systematic analysis of temperature’s effect on95

ICL—particularly under distribution shift—has been lacking.96

To address this gap, we provide a theoretical and empirical investigation of temperature within97

Transformers using “linearized softmax” attention. Our results clarify how the optimal temperature98

depends on the data distribution and how it can be tuned to reduce generalization error in in-context99

learning scenarios.100

3 Setting101

We describe the setup for analyzing ICL in linear regression using pretrained Transformers, covering102

the data model, linearized attention with reparameterization, evaluation metrics, and the Bayes-103

optimal benchmark.104

Notation — We follow standard notation from [10]. The spectral norm of matrix M is denoted by105

∥M∥, and the trace by Tr(M). Matrix entries and slices are denoted as Mi,j , M:,j , and Mi,:.106

3.1 Problem setup: In-context learning for linear regression107

We study the ICL abilities of pretrained Transformers on linear regression tasks. Given a sequence of108

tokens, i.e., input-label pairs, {x1, y1,x2, y2, . . . ,xl−1, yl−1,xl}, where each input vector xi ∈ Rd109

and corresponding label yi ∈ R are independently sampled from an unknown joint distribution, the110

model must predict yl using only the context {(xi, yi)}l−1
i=1 and the query xl, where l − 1 is referred111

as the “context length”. Each (xi, yi) pair is sampled i.i.d. from a joint distribution defined by:112

xi ∼ N (µx,Σx), yi = wTxi + ϵi, ϵi ∼ N (0, σ2), (2)

where the task vector w ∼ N (µw,Σw) is fixed within a context but varies across tasks.113

Assumption 3.1 (Well-Behaved Data Distributions). There exist constants c1, c2, c3 > 0 such that:114

∥µx∥, ∥µw∥ ≤ c1, λmin(Σx), λmin(Σw) ≥ c2, λmax(Σx), λmax(Σw) ≤ c3.

This assumption ensures well-behaved distributions by bounding the means and covariances of input115

and task vectors, offering greater flexibility than the more restrictive setup in [35].116

Assumption 3.2 (High-Dimensional Regime). The context length l and input dimension d diverge117

jointly: l, d → ∞.118

This assumption reflects realistic settings where both context length and input dimension grow,119

aligning with modern ML trends and enabling analysis of generalization in high-dimensional regimes.120

Under this set of assumptions, we define ICL for linear regression tasks as follows:121

Definition 3.3 (In-Context Learning (ICL)). A model succeeds at ICL for linear regression if its122

generalization error nearly matches that of the Bayes-optimal linear model (defined in Section 3.6).123

3.2 Modeling attention with transformers124

Following the convention established in [35], we embed the input sequence into an embedding matrix:125

Z :=

[
x1 · · · xl−1 xl

y1 · · · yl−1 0

]
∈ R(d+1)×l, (3)

where the last column corresponds to the query input with no label.126
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Using the embedding matrix, the softmax self-attention output is given by:127

S := Z + V Z · softmax
(
(KZ)T (QZ)

τ

)
, (4)

where K, Q, and V are the key, query, and value matrices, respectively, and τ is the temperature.128

Here, we denote the model’s prediction as Sd+1,l — the last element in the final row.129

3.3 Linearized attention approximation130

To analytically study the effect of temperature on ICL, we adopt a linearized approximation of131

softmax attention (see Appendix B for the derivation):132

E := Z +
1

l
V Z

 (KZ)T (QZ)

τ
+ 1− 1

l

l∑
j=1

(KZ:,j)
T (QZ)

τ

 , (5)

where ŷ := Ed+1,l is the predicted label. Unlike traditional linear attention (e.g., [35]):133

Z +
1

l
V Z(KZ)T (QZ), (6)

our linearized version preserves normalization properties, improving interpretability and robustness.134

Remark 3.4 (Linear vs. Linearized Attention). Linearized attention preserves row-wise normalization,135

making it more robust to variations in input means — a key failure mode of linear attention in ICL.136

Appendix C illustrates this distinction.137

3.4 Reparametrization of linearized attention138

To streamline analysis, we reparametrize the matrices V and M := KTQ as:139

V =

[
∗ ∗
vT
21 v22

]
, M =

[
M11 ∗
mT

21 ∗

]
, (7)

where only v21, v22, m21, and M11 influence the prediction ŷ(Z;V ,M). The remaining terms140

are denoted by ∗ as they are not relevant for predicting yl in this context. The prediction from the141

linearized attention model can thus be expressed as a function of M and V , i.e., ŷ(Z;V ,M) :=142

Ed+1,l. This form parallels the approach in [35], allowing for tractable theoretical analysis.143

By analyzing this reparameterization, we gain a deeper understanding of how the model parameters144

interact with the data to address the ICL problem effectively. This foundational insight will provide145

the necessary basis for discussing the pretraining of these parameters in Section 4.1.146

3.5 Evaluating generalization performance147

We focus on evaluating the performance of our attention model by assessing its generalization error.148

For a given set of parameters (V ,M), the model’s generalization (ICL) error is:149

G(V ,M) := E
(Z,yl)∼Dtest

[
(yl − ŷ(Z;V ,M))

2
]
, (8)

where Dtest denotes the distribution of the test set, which includes input-output pairs that the model150

has not encountered during training. In this context, the ICL task assesses the genuine ICL capabilities151

of the linearized attention module. Here, the task vectors in the test set differ from those encountered152

during training, requiring the model to infer these new vectors based solely on the provided context.153

3.6 Bayes-optimal ridge estimator154

The Bayes-optimal ridge estimator provides a robust framework for estimating the task vector w155

given a prior distribution and a set of l − 1 samples. It is defined as:156

ŵBayes =

(
X̄T X̄

σ2
+Σ−1

w

)−1(
X̄T ȳ

σ2
+Σ−1

w µw

)
, (9)
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where X̄ is the centered input matrix and ȳ is the centered label vector. This estimator integrates157

data information while incorporating prior beliefs about the distribution of w, effectively balancing158

bias and variance, hence serves as the gold standard against which we compare model predictions.159

The terms including Σ−1
w introduce a regularization effect, which is especially beneficial in high-160

dimensional settings.161

The derivation of this estimator, detailed in Appendix A, illustrates how Bayesian principles can162

inform regression techniques by combining observed data with prior distributions to yield more163

reliable predictions. In our context, the inputs and labels originate from the prompt matrix Z, and the164

prediction of the Bayes-optimal linear model for any input x is given by ŵT
Bayesx.165

4 Theoretical results166

In this section, we present our main theoretical results on the behavior of the linearized attention model167

in the context of ICL. We begin by showing how to pretrain the model to approximate the Bayes-168

optimal linear predictor, thereby grounding its predictive performance. We then identify specific169

conditions under which the model fails to generalize under distribution shifts at test time, revealing170

key limitations of linearized attention in ICL. Following this, we provide a detailed characterization171

of its generalization error, offering a principled framework for analyzing performance. Finally, we172

investigate the role of the temperature parameter and demonstrate that tuning it appropriately can173

substantially improve generalization—especially in cases where the model initially fails to perform174

effective in-context learning.175

4.1 Model pretraining176

We begin our pretraining analysis by observing that the prediction generated by the linearized attention177

model can be reduced to the following form (see Appendix D for the derivation):178

ŷ(Z;V ,M) := Ed+1,l =
1

τ
ŵAtt(Cxx,Cxy, Cyy;M ,V )Txl + bAtt(sx, sy;V ), (10)

where ŵAtt(Cxx,Cxy, Cyy;M ,V ) ∈ Rd and bAtt(sx, sy;V ) ∈ R. sx and sy denote the sample179

means of the input x and the label y, respectively, and Cxx and Cxy are the sample covariances180

corresponding to Cov(x) and Cov(x, y). These statistics are computed from the prompt matrix Z.181

For pretraining, we optimize the parameters V and M using m samples of (Z, yl) drawn from182

the distribution Dtrain, where each Z contains l − 1 (x, y) pairs intended for ICL. Building upon183

prior work that connects ICL in linear regression to the Bayes-optimal ridge estimator [35, 24],184

we configure M and V to emulate Bayes-optimal ridge regression. Specifically, we aim for185

ŵAtt(Cxx,Cxy;M ,V ) ≈ ŵBayes and bAtt(sx, sy;V ) ≈ 0.186

Lemma 4.1 (Pretrained Parameters). When the temperature parameter is set to τ = 1 during187

pretraining, the following parameter configuration approximates the Bayes-optimal estimator in (9):188

M11 = d

(
X̂T X̂

ml
+

σ2

l
Σ−1

w

)−1

, m21 = 0, (11)

v21 =
σ2

dl

(
X̂T X̂

ml

)−1

Σ−1
w µw, v22 =

1

d
,

where X̂ ∈ Rml×d is the centered input matrix formed from ml samples of x. This configuration189

aligns the linearized attention model with Bayes-optimal ridge regression. The quantities µw and190

Σw can be estimated from the pretraining data. A detailed derivation is provided in Appendix E.191

This lemma establishes a theoretical connection between the pretrained parameters and the Bayes-192

optimal estimator, reinforcing the foundation of our approach.193

Moreover, specific instances of Lemma 4.1 recover settings explored in prior studies. For example,194

under the assumptions Σx = Σw = I , µw = 0, and σ = 0, [29] employ M11 = Cov(x)−1195

and v21 = 0 within a linear attention framework. Our formulation generalizes this by allowing196

v21 ̸= 0, which reflects our assumption that µw ̸= 0—a departure from earlier works. In our197

self-attention-based analysis, v21 encodes task vector bias. Additionally, our choice of M11 explicitly198
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accounts for label noise (σ2), thereby enhancing the model’s adaptability and maintaining a Bayesian199

interpretation.200

We further comment on task diversity and parameter optimality in the following two remarks:201

Remark 4.2. A high degree of task diversity (i.e., the number of distinct tasks) is crucial for enabling202

in-context learning [33]. In our framework, task diversity significantly affects the accuracy of203

estimating µw and Σw during pretraining.204

Remark 4.3. Although the pretrained parameters specified in Lemma 4.1 may not be optimal in all205

scenarios, they are analytically valuable for understanding the effects of distribution shifts and the206

influence of the temperature parameter in ICL. Notably, our characterization of ICL performance and207

temperature optimality does not rely on these specific parameter choices.208

Based on Lemma 4.1, we arrive at the following corollary:209

Corollary 4.4. Suppose there is no distribution shift between training and inference. Then, under the210

parameter configuration of Lemma 4.1, the linearized attention model emulates the Bayes-optimal211

linear model, implying that it is capable of in-context learning according to Definition 3.3.212

Since the pretrained model succeeds in ICL for Dtest = Dtrain, we next investigate how distribution213

shifts affect its ICL performance.214

4.2 Effect of distribution shift215

In this section, we explore scenarios where Dtest ̸= Dtrain, indicating a shift in the input, task, or216

noise distribution after pretraining the linearized attention model. We consider three cases: (1) a shift217

in the input distribution (altered mean or covariance), (2) a shift in the task distribution, and (3) a218

change in the noise levels.219

To evaluate the impact of these distribution shifts on ICL performance, we assess whether adjustments220

to M and/or V are necessary to match the Bayes-optimal linear model under the new distribution. If221

so, the model is considered sensitive to the shift. Otherwise, it is deemed robust.222

Case I: Shift in input distribution — Recall that inputs are drawn as xi ∼ N (µx,Σx), as defined223

in (2). Let µtrain
x ,Σtrain

x and µtest
x ,Σtest

x denote the input means and covariances for pretraining224

and testing, respectively. We consider two subcases:225

(i) Shift in mean (µtrain
x ̸= µtest

x ): The mean shift does not affect the linearized attention model226

since it uses centered inputs. However, this impacts the linear attention model, which operates on227

uncentered inputs, as discussed in Remark 3.4.228

(ii) Shift in covariance (Σtrain
x ̸= Σtest

x ): A covariance shift necessitates retraining, as M11 is229

tailored to the pretraining input covariance. A mismatch leads to a significant deviation from the230

Bayes-optimal estimator, consistent with findings in prior work on linear attention [35].231

Case II: Shift in Task Distribution — The task vectors follow w ∼ N (µw,Σw). Let232

µtrain
w ,Σtrain

w and µtest
w ,Σtest

w be the mean and covariance of the task distribution during pre-233

training and testing, respectively. The linearized attention model can incorporate µtrain
w and Σtrain

w234

via the pretrained parameters M11 and v21 (see Lemma 4.1). However, as the context length l235

increases, the model’s dependence on the task distribution diminishes. Thus, shifts in the task236

distribution primarily affect ICL performance for small l.237

Case III: Shift in noise distribution — Finally, consider a change in the noise distribution: ϵi ∼238

N (0, σ2), with σ2
train and σ2

test denoting pretraining and testing noise variances. If σ2
train ̸= σ2

test,239

the parameters M11 and v21 become suboptimal relative to the Bayes-optimal linear model. However,240

as with the task distribution, the impact of noise shift diminishes as l → ∞.241

Summary — The linearized attention model is robust to shifts in input mean but sensitive to input242

covariance changes. Shifts in task or noise distribution reduce ICL performance at small l, though243

increasing l mitigates these effects. In Section 4.4, we explore optimal temperature selection as a way244

to enhance robustness. First, we analyze the generalization error of the linearized attention model in245

the next section.246
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(a) Without
Distribution Shift
(Dtrain = Dtest)

(b) With Shift in
Input Covariance

(Σtest = 2Σtrain)

(c) With Shift in
Task Distribution
(µtest

w = 1/
√
d,

Σtest
w = 3Σtrain

w )

Figure 1: Experiments with Transformer (Linearized Attention) on ICL under distribution shifts.
Parameters are set using (11). Here, d = 50, m = 5000 (a new task per sample), σ = 0.1,
µtrain

x = µtrain
w = 0, and Σtrain

x = Σtrain
w = I .

4.3 In-context learning performance247

We analyze the in-context learning (ICL) performance of the linearized attention model by evaluating248

the generalization error defined in (8). To establish a general setting for the subsequent results, we249

impose the following assumption on the pretrained parameters:250

Assumption 4.5. There exists a constant c > 0 such that251

∥M11∥ ≤ cd, ∥m21∥ = 0, ∥v21∥ ≤ c

dl
, |v22| ≤

c

d
.

Note that the pretrained parameters obtained in Lemma 4.1 satisfy Assumption 4.5 with high252

probability under Assumptions 3.1–3.2. However, the generalization error result stated below holds253

for any parameters M ,V that satisfy Assumption 4.5.254

Theorem 4.6 (Generalization error for ICL). Suppose Assumptions 3.1–3.2 and 4.5 hold. At test time,255

assume the input, task, and noise distributions are given by N (µx,Σx), N (µw,Σw), and N (0, σ2),256

respectively. Define257

A := Σx + µxµ
T
x , B := Σw + µwµ

T
w.

Then, the generalization error is258

G(V ,M) =
1

τ2
Tr
(
AMT

11F1M11

)
− 1

τ
Tr
(
A
(
F2M11 +MT

11F
T
2

))
+Tr (AB) + σ2, (12)

where259

F1 :=

(
ΣxB̂ +

1

l

(
v222σ

2 +Tr(B̂Σx)
)
I

)
Σx, (13)

F2 := (µwv
T
21 + v22B)Σx, (14)

and260

B̂ := v22µwv
T
21 + v22v21µ

T
w + v222B.

Proof. The generalization error is derived using Isserlis’ theorem [12] to compute higher-order261

moments. See Appendix F for the full derivation.262

Theorem 4.6 illustrates how the parameters M , V , and the test-time data distribution affect the263

generalization error. Notably, the temperature parameter τ plays a critical role.264

Although temperature can be implicitly encoded in M during pretraining, it becomes especially265

important under distribution shifts that the model is not equipped to handle. In such cases, one266

can optimize generalization performance by choosing the temperature τoptimal that minimizes the267

generalization error, as discussed next.268
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(a) Effect of l/d when σtest = 10 (b) Effect of σtest when l/d = 1 (c) Optimal temperature

Figure 2: Effect of noise shift on Transformer (Linearized Attention). The pretraining noise is
σtrain = 0.1, while σtest varies across plots. Panels (b) and (c) show generalization error and optimal
temperature, respectively, as informed by Theorem 4.7. This setting matches Figure 1a, except for
changes in test-time noise σtest.

4.4 Optimal attention temperature improves performance269

To address distribution shifts, we define the optimal attention temperature as follows:270

Theorem 4.7 (Optimal attention temperature). Suppose Assumptions 3.1, 3.2, and 4.5 hold. To271

minimize the generalization error, the optimal attention temperature for inference is given by272

τoptimal =
2Tr
(
AMT

11F1M11

)
Tr
(
A
(
F2M11 +MT

11F
T
2

)) , (15)

provided that Tr
(
A
(
F2M11 +MT

11F
T
2

))
> 0 and Tr

(
AMT

11F1M11

)
> 0.273

Proof. We minimize the generalization error from Theorem 4.6 with respect to τ (Appendix H).274

Consider the optimal temperature τoptimal from Theorem 4.7. When τoptimal ̸= 1, using an unadjusted275

temperature leads to suboptimal generalization error. Thus, incorporating the optimal temperature276

improves generalization in in-context learning under distribution shift.277

A natural question is whether the optimal temperature can completely mitigate the adverse effects278

of distribution shifts. This depends on both the pretraining and test distributions. In some settings,279

the adjustment can entirely compensate for the shift. For example, if the task distribution is fixed as280

w ∼ N (0, I), the noise variance is σ = 0, and the input distribution changes from xtrain ∼ N (0, I)281

to xtest ∼ N (0, cI), then the optimal temperature τoptimal = c fully counteracts the shift. In more282

complex scenarios, it may only partially mitigate the impact, yet still yields improved ICL.283

5 Experimental results284

In this section, we empirically validate our theoretical predictions and demonstrate the impact of285

the optimal attention temperature on generalization. We begin with controlled experiments on linear286

regression tasks and progress to evaluating large-scale pretrained models on real-world datasets.287

We experiment with two model classes on the linear regression tasks: (i) the linearized attention288

model, and (ii) the GPT-2 model [23], which incorporates multi-head softmax attention and MLP289

layers 1. These experiments show that our theoretical insights generalize from simplified models to290

more expressive architectures. Finally, we examine the role of temperature in large language models291

(LLMs), using the Llama2-7B [26] on in-context learning tasks derived from SCIQ dataset [31].292

5.1 Experiments on linear regression tasks293

We consider a Transformer architecture with linearized attention and no MLP layers, as analyzed294

in our theoretical development. Figures 1 and 2 illustrate its behavior on linear regression tasks295

(2). Theoretical predictions closely match empirical performance across a range of conditions,296

confirming the robustness of our analysis. In Figure 1, we compare the ICL performance of the model297

with and without applying the optimal temperature. As context length l increases (Figure 1a), the298

1Due to the space limitation, we provide the results with GPT-2 in the appendix.
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(a) Effect of context length (b) Effect of noisy ratio

Figure 3: LLM Experiments: The effect of the attention temperature on the ICL performance of the
Llama2-7B model [26] using the SCIQ dataset [31]. A distribution shift is introduced by corrupting
in-context demonstrations with noisy labels, selected as “relevant” but not necessarily correct answers
following [8]. In (a), the noisy ratio is fixed at 0.6; in (b), the number of in-context examples is
fixed at 6. Results are averaged over 20 Monte Carlo runs, with error bars indicating 0.33 standard
deviations. Attention temperature in all layers is set to τ

√
dk, where dk is the key dimension, to make

τ values dimension-independent. Full details are provided in Appendix I.

model’s predictions converge to those of the Bayes-optimal linear model, validating its ICL capability.299

Figure 1b shows that under an input covariance shift, model performance degrades—but applying300

the optimal temperature restores alignment with the Bayes-optimal solution. Additionally, Figure 1c301

shows that the influence of task distribution shift decreases as l increases.302

We further evaluate robustness to label noise in Figure 2. In Figure 2a, we observe that noise effects303

diminish as the context length increases, consistent with our theoretical predictions. However, at small304

l, temperature adjustment becomes critical. In Figure 2b (for l = d), the Transformer increasingly305

diverges from the Bayes-optimal model as noise grows, yet optimal temperature correction closes this306

gap. Figure 2c shows that the optimal temperature increases with noise level, indicating a principled307

relationship between noise and temperature under limited context.308

5.2 Experiments with LLMs for in-context question answering tasks309

To assess the practical relevance of our theoretical framework, we investigate how attention tempera-310

ture impacts the ICL behavior of LLMs. Following prior work [8], we use the SCIQ dataset [31] to311

create ICL tasks that incorporate distribution shift via noisy labels in the demonstrations. Examples of312

ICL prompts and the design of noisy labels are provided with full experimental details in Appendix I.313

We employ the Llama2-7B model [26], evaluating its ICL performance using the exact match score.314

Figure 3 presents our results. In Figure 3a, we plot performance as a function of the number of315

in-context examples under a fixed noisy ratio. Due to the label noise, the performance curve exhibits316

non-monotonic behavior—highlighting the trade-off between additional context and accumulated317

noise. Figure 3b shows that as the proportion of noisy demonstrations increases, the optimal318

temperature also increases, aligning precisely with our theoretical expectations (cf. Figure 2c).319

These results affirm that even for highly overparameterized practical models such as Llama2-7B,320

tuning the attention temperature serves as a principled and effective mechanism to mitigate the321

negative effects of distribution shifts on in-context learning.322

6 Conclusion323

This work provides a theoretical and empirical foundation for understanding the role of attention324

temperature in the in-context learning (ICL) capabilities of pretrained Transformers under distribution325

shifts. By introducing a simplified yet expressive framework based on linearized softmax attention,326

we analytically characterized how shifts in input covariance and label noise degrade ICL performance.327

Crucially, we identified and derived an optimal temperature that provably minimizes generalization328

error in these settings. Our theoretical predictions are validated through extensive experiments on329

both synthetic linear regression tasks and real-world benchmarks using GPT-2 and LLaMA2 models.330

Together, our findings offer actionable insights: tuning attention temperature is not merely a heuristic331

but a principled lever to enhance the robustness of ICL in pretrained Transformers. This advances332

our understanding of Transformer behavior under distribution shift and opens new directions for333

improving adaptability in large-scale models.334
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Answer: [NA]733

Justification: The paper does not involve crowdsourcing nor research with human subjects.734

Guidelines:735

• The answer NA means that the paper does not involve crowdsourcing nor research with736

human subjects.737

• Including this information in the supplemental material is fine, but if the main contribu-738

tion of the paper involves human subjects, then as much detail as possible should be739

included in the main paper.740

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,741

or other labor should be paid at least the minimum wage in the country of the data742

collector.743

15. Institutional review board (IRB) approvals or equivalent for research with human744

subjects745

Question: Does the paper describe potential risks incurred by study participants, whether746

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)747

approvals (or an equivalent approval/review based on the requirements of your country or748

institution) were obtained?749

Answer: [NA]750

Justification: The paper does not involve crowdsourcing nor research with human subjects.751

Guidelines:752

• The answer NA means that the paper does not involve crowdsourcing nor research with753

human subjects.754

• Depending on the country in which research is conducted, IRB approval (or equivalent)755

may be required for any human subjects research. If you obtained IRB approval, you756

should clearly state this in the paper.757

• We recognize that the procedures for this may vary significantly between institutions758

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the759

guidelines for their institution.760

• For initial submissions, do not include any information that would break anonymity (if761

applicable), such as the institution conducting the review.762

16. Declaration of LLM usage763
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Question: Does the paper describe the usage of LLMs if it is an important, original, or764

non-standard component of the core methods in this research? Note that if the LLM is used765

only for writing, editing, or formatting purposes and does not impact the core methodology,766

scientific rigorousness, or originality of the research, declaration is not required.767

Answer: [NA]768

Justification: The core method development in this research does not involve LLMs.769

Guidelines:770

• The answer NA means that the core method development in this research does not771

involve LLMs as any important, original, or non-standard components.772

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)773

for what should or should not be described.774
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