
Under review as a conference paper at ICLR 2018

PIXEL DECONVOLUTIONAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Deconvolutional layers have been widely used in a variety of deep models for
up-sampling, including encoder-decoder networks for semantic segmentation and
deep generative models for unsupervised learning. One of the key limitations of
deconvolutional operations is that they result in the so-called checkerboard prob-
lem. This is caused by the fact that no direct relationship exists among adjacent
pixels on the output feature map. To address this problem, we propose the pixel
deconvolutional layer (PixelDCL) to establish direct relationships among adjacent
pixels on the up-sampled feature map. Our method is based on a fresh interpreta-
tion of the regular deconvolution operation. The resulting PixelDCL can be used
to replace any deconvolutional layer in a plug-and-play manner without compro-
mising the fully trainable capabilities of original models. The proposed PixelDCL
may result in slight decrease in efficiency, but this can be overcome by an imple-
mentation trick. Experimental results on semantic segmentation demonstrate that
PixelDCL can consider spatial features such as edges and shapes and yields more
accurate segmentation outputs than deconvolutional layers. When used in image
generation tasks, our PixelDCL can largely overcome the checkerboard problem
suffered by regular deconvolution operations.

1 INTRODUCTION

Deep learning methods have shown great promise in a variety of artificial intelligence tasks such
as image classification (Krizhevsky et al., 2012; Simonyan & Zisserman, 2014), semantic segmen-
tation (Noh et al., 2015; Shelhamer et al., 2016; Ronneberger et al., 2015), and natural image gen-
eration (Goodfellow et al., 2014; Kingma & Welling, 2014; Oord et al., 2016). Some key network
layers, such as convolutional layers (LeCun et al., 1998), pooling layers, fully connected layers and
deconvolutional layers, have been frequently used to create deep models for different tasks. De-
convolutional layers, also known as transposed convolutional layers (Vedaldi & Lenc, 2015), are
initially proposed in (Zeiler et al., 2010; 2011). They have been primarily used in deep models that
require up-sampling of feature maps, such as generative models (Radford et al., 2015; Makhzani
& Frey, 2015; Rezende et al., 2014) and encoder-decoder architectures (Ronneberger et al., 2015;
Noh et al., 2015). Although deconvolutional layers are capable of producing larger feature maps
from smaller ones, they suffer from the problem of checkerboard artifacts (Odena et al., 2016). This
greatly limits deep model’s capabilities in generating photo-realistic images and producing smooth
outputs on semantic segmentation. To date, very little efforts have been devoted to improving the
deconvolution operation.

In this work, we propose a simple, efficient, yet effective method, known as the pixel deconvolutional
layer (PixelDCL), to address the checkerboard problem suffered by deconvolution operations. Our
method is motivated from a fresh interpretation of deconvolution operations, which clearly pinpoints
the root of checkerboard artifacts. That is, the up-sampled feature map generated by deconvolution
can be considered as the result of periodical shuffling of multiple intermediate feature maps com-
puted from the input feature map by independent convolutions. As a result, adjacent pixels on the
output feature map are not directly related, leading to the checkerboard artifacts. To overcome this
problem, we propose the pixel deconvolutional operation to be used in PixelDCL. In this new layer,
the intermediate feature maps are generated sequentially so that feature maps generated in a later
stage are required to depend on previously generated ones. In this way, direct relationships among
adjacent pixels on the output feature map have been established. Sequential generation of intermedi-
ate feature maps in PixelDCL may result in slight decrease in computational efficiency, but we show

1



Under review as a conference paper at ICLR 2018

Figure 1: Comparison of semantic segmentation results. The first and second rows are images
and ground true labels, respectively. The third and fourth rows are the results of using regular
deconvolution and our proposed pixel deconvolution PixelDCL, respectively.

that this can be largely overcome by an implementation trick. Experimental results on semantic
segmentation (samples in Figure 1) and image generation tasks demonstrate that the proposed Pix-
elDCL can effectively overcome the checkerboard problem and improve predictive and generative
performance.

Our work is related to the pixel recurrent neural networks (PixelRNNs) (Oord et al., 2016) and
PixelCNNs (van den Oord et al., 2016; Reed et al., 2017), which are generative models that con-
sider the relationship among units on the same feature map. They belong to a more general class
of autoregressive methods for probability density estimation (Germain et al., 2015; Gregor et al.,
2015; Larochelle & Murray, 2011). By using masked convolutions in training, the training time
of PixelRNNs and PixelCNNs is comparable to that of other generative models such as generative
adversarial networks (GANs) (Goodfellow et al., 2014; Reed et al., 2016) and variational auto-
encoders (VAEs) (Kingma & Welling, 2014; Johnson et al., 2016). However, the prediction time of
PixelRNNs or PixelCNNs is very slow since it has to generate images pixel by pixel. In contrast,
our PixelDCL can be used to replace any deconvolutional layer in a plug-and-play manner, and the
slight decrease in efficiency can be largely overcome by an implementation trick.

2 PIXEL DECONVOLUTIONAL LAYERS AND NETWORKS

We introduce deconvolutional layers and analyze the cause of checkerboard artifacts in this section.
We then propose the pixel deconvolutional layers and the implementation trick to improve efficiency.

2.1 DECONVOLUTIONAL LAYERS

Deconvolutional networks and deconvolutional layers are proposed in (Zeiler et al., 2010; 2011).
They have been widely used in deep models for applications such as semantic segmentation (Noh
et al., 2015) and generative models (Kingma & Welling, 2014; Goodfellow et al., 2014; Oord et al.,
2016). Many encoder-decoder architectures use deconvolutional layers in decoders for up-sampling.
One way of understanding deconvolutional operations is that the up-sampled output feature map is
obtained by periodical shuffling of multiple intermediate feature maps obtained by applying multiple
convolutional operations on the input feature maps (Shi et al., 2016).

This interpretation of deconvolution in 1D and 2D is illustrated in Figures 2 and 3, respectively.
It is clear from these illustrations that standard deconvolutional operation can be decomposed into
several convolutional operations depending on the up-sampling factor. In the following, we assume
the up-sampling factor is two, though deconvolution operations can be applied to more generic
settings. Formally, given an input feature map Fin, a deconvolutional layer can be used to generate

2



Under review as a conference paper at ICLR 2018

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 3

1 3

1 3

1 3

1 3

2 4

2 4

2 4

2 4

2 4

In

Output feature map

In In

+

Intermediate feature maps Intermediate feature maps

Output feature map

kernel kernel1 kernel2
1 2 3 4 1 3 2 4

Figure 2: Illustration of 1D deconvolutional operation. In this deconvolutional layer, a 4×1 feature
map is up-sampled to an 8×1 feature map. The left figure shows that each input unit passes through
an 1×4 kernel. The output feature map is obtained as the sum of values in each column. It can be
seen from this figure that the purple outputs are only related to (1, 3) entries in the kernel, while
the orange outputs are only related to (2, 4) entries in the kernel. Therefore, 1D deconvolution can
be decomposed as two convolutional operations shown in the right figure. The two intermediate
feature maps generated by convolutional operations are dilated and combined to obtain the final
output. This indicates that the standard deconvolutional operation can be decomposed into multiple
convolutional operations.

Input feature map

Intermediate feature maps Output feature map

Figure 3: Illustration of 2D deconvolutional operation. In this deconvolutional layer, a 4×4 feature
map is up-sampled to an 8×8 feature map. Four intermediate feature maps (purple, orange, blue,
and red) are generated using four different convolutional kernels. Then these four intermediate
feature maps are shuffled and combined to produce the final 8×8 feature map. Note that the four
intermediate feature maps rely on the input feature map but with no direct relationship among them.

an up-sampled output Fout as follows:

F1 = Fin ~ k1, F2 = Fin ~ k2, F3 = Fin ~ k3, F4 = Fin ~ k4,

Fout = F1 ⊕ F2 ⊕ F3 ⊕ F4,
(1)

where ~ denotes the convolutional operation and ⊕ denotes the periodical shuffling and combina-
tion operation as in Figure 3, Fi is the intermediate feature map generated by the corresponding
convolutional kernel ki for i = 1, · · · , 4.

It is clear from the above interpretation of deconvolution that there is no direct relationship among
these intermediate feature maps since they are generated by independent convolutional kernels. Al-
though pixels of the same position on intermediate feature maps depend on the same receptive field
of the input feature map, they are not directly related to each other. Due to the periodical shuffling
operation, adjacent pixels on the output feature map are from different intermediate feature maps.
This implies that the values of adjacent pixels can be significantly different from each other, result-
ing in the problem of checkerboard artifacts (Odena et al., 2016) as illustrated in Figure 4. One way
to alleviate checkerboard artifacts is to apply post-processing such as smoothing (Li et al., 2001),
but this adds additional complexity to the network and makes the entire network not fully trainable.
In this work, we propose the pixel deconvolutional operation to add direct dependencies among

3



Under review as a conference paper at ICLR 2018

Figure 4: Illustration of the checkerboard problem in semantic segmentation using deconvolutional
layers. The first and second rows are the original images and semantic segmentation results, respec-
tively.

intermediate feature maps, thereby making the values of adjacent pixels close to each other and
effectively solving the checkerboard artifact problem. In addition, our pixel deconvolutional layers
can be easily used to replace any deconvolutional layers without compromising the fully trainable
capability.

2.2 PIXEL DECONVOLUTIONAL LAYERS

To solve the checkerboard problem in deconvolutional layers, we propose the pixel deconvolutional
layers (PixelDCL) that can add dependencies among intermediate feature maps. As adjacent pixels
are from different intermediate feature maps, PixelDCL can build direct relationships among them,
thus solving the checkerboard problem. In this method, intermediate feature maps are generated
sequentially instead of simultaneously. The intermediate feature maps generated in a later stage are
required to depend on previously generated ones. The primary purpose of sequential generation is to
add dependencies among intermediate feature maps and thus adjacent pixels in final output feature
maps. Finally, these intermediate feature maps are shuffled and combined to produce final output
feature maps. Compared to Eqn. 1, Fout is obtained as follows:

F1 = Fin ~ k1, F2 = [Fin, F1]~ k2,

F3 = [Fin, F1, F2]~ k3, F4 = [Fin, F1, F2, F3]~ k4,

Fout = F1 ⊕ F2 ⊕ F3 ⊕ F4,

(2)

where [·, ·] denotes the juxtaposition of feature maps. Note that in Eqn. 2, ki denotes a set of kernels
as it involves convolution with the juxtaposition of multiple feature maps. Since the intermediate
feature maps in Eqn. 2 depend on both the input feature map and the previously generated ones,
we term it input pixel deconvolutional layer (iPixelDCL). Through this process, pixels on output
feature maps will be conditioned not only on input feature maps but also on adjacent pixels. Since
there are direct relationships among intermediate feature maps and adjacent pixels, iPixelDCL is
expected to solve the checkerboard problem to some extent. Note that the relationships among
intermediate feature maps can be very flexible. The intermediate feature maps generated later on
can rely on part or all of previously generated intermediate feature maps. This depends on the design
of pixel dependencies in final output feature maps. Figure 5 illustrates a specific design of sequential
dependencies among intermediate feature maps.

In iPixelDCL, we add dependencies among generated intermediate feature maps, thereby making
adjacent pixels on final output feature maps directly related to each other. In this process, the in-
formation of the input feature map is repeatedly used when generating intermediate feature maps.
When generating the intermediate feature maps, information from both the input feature map and
previous intermediate feature maps is used. Since previous intermediate feature maps already con-
tain information of the input feature map, the dependencies on the input feature map can be removed.
Removing such dependencies for some intermediate feature maps can not only improve the compu-
tational efficiency but also reduce the number of trainable parameters in deep models.

In this simplified pixel deconvolutional layer, only the first intermediate feature map will depend
on the input feature map. The intermediate feature maps generated afterwards will only depend on
previously generated intermediate feature maps. This will simplify the dependencies among pixels

4



Under review as a conference paper at ICLR 2018

Input feature map

Intermediate feature maps Output feature map

Figure 5: Illustration of iPixelDCL and PixelDCL described in section 2.2. In iPixelDCL, there
are additional dependencies among intermediate feature maps. Specifically, the four intermediate
feature maps are generated sequentially. The purple feature map is generated from the input feature
map (blue). The orange feature map is conditioned on both the input feature map and the purple
feature map that has been generated previously. In this way, the green feature map relies on the input
feature map, purple and orange intermediate feature maps. The red feature map is generated based
on the input feature map, purple, orange, and green intermediate feature maps. We also propose
to move one step further and allow only the first intermediate feature map to depend on the input
feature map. This gives rise to PixelDCL. That is, the connections indicated by dashed lines are
removed to avoid repeated influence of the input feature map. In this way, only the first feature map
is generated from the input and other feature maps do not directly rely on the input. In PixelDCL,
the orange feature map only depends on the purple feature map. The green feature map relies on
the purple and orange feature maps. The red feature map is conditioned on the purple, orange, and
green feature maps. The information of the input feature map is delivered to other intermediate
feature maps through the first intermediate feature map (purple).

on final output feature map. In this work, we use PixelDCL to denote this simplified design. Our
experimental results show that PixelDCL yields better performance than iPixelDCL and regular
deconvolution. Compared to Eqn. 2, Fout in PixelDCL is obtained as follows:

F1 = Fin ~ k1, F2 = F1 ~ k2,

F3 = [F1, F2]~ k3, F4 = [F1, F2, F3]~ k4,

Fout = F1 ⊕ F2 ⊕ F3 ⊕ F4.

(3)

PixelDCL is illustrated in Figure 5 by removing the connections denoted with dash lines. When
analyzing the relationships of pixels on output feature maps, it is clear that each pixel will still rely on
adjacent pixels. Therefore, the checkerboard problem can be solved with even better computational
efficiency. Meanwhile, our experimental results demonstrate that the performance of models with
these simplified dependencies is even better than that with complete connections. This demonstrates
that repeated dependencies on the input may not be necessary.

2.3 PIXEL DECONVOLUTIONAL NETWORKS

Pixel deconvolutional layers can be applied to replace any deconvolutional layers in various mod-
els involving up-sampling operations such as U-Net (Ronneberger et al., 2015), VAEs (Kingma &
Welling, 2014) and GANs (Goodfellow et al., 2014). By replacing deconvolutional layers with
pixel deconvolutional layers, deconvolutional networks become pixel deconvolutional networks
(PixelDCN). In U-Net for semantic segmentation, pixel deconvolutional layers can be used to up-
sample from low-resolution feature maps to high-resolution ones. In VAEs, they can be applied in
decoders for image reconstruction. The generator networks in GANs typically use deep model (Rad-
ford et al., 2015) and thus can employ pixel deconvolutional layers to generate large images. In our
experiments, we evaluate pixel deconvolutional layers in U-Net and VAEs. The results show that the
performance of pixel deconvolutional layers outperforms deconvolutional layers in these networks.

In practice, the most frequently used up-sampling operation is to increase the height and width of
input feature maps by a factor of two, e.g., from 2×2 to 4×4. In this case, the pixels on output
feature maps can be divided into four groups as in Eqn. 1. The dependencies can be defined as
in Figure 5. When implementing pixel deconvolutional layers, we design a simplified version to

5



Under review as a conference paper at ICLR 2018

1

2
3

3

4

5

5

Figure 6: An efficient implementation of the pixel deconvolutional layer. In this layer, a 4×4
feature map is up-sampled to a 8×8 feature map. The purple feature map is generated through a 3×3
convolutional operation from the input feature map (step 1). After that, another 3×3 convolutional
operation is applied on the purple feature map to produce the orange feature map (step 2). The
purple and orange feature maps are dilated and added together to form a larger feature map (step
3). Since there is no relationship between the last two intermediate feature maps, we can apply a
masked 3×3 convolutional operation, instead of two separate 3×3 convolutional operations (step 4).
Finally, the two large feature maps are combined to generate the final output feature map (step 5).

reduce sequential dependencies for better parallel computation and training efficiency as illustrated
in Figure 6.

In this design, there are four intermediate feature maps. The first intermediate feature map depends
on the input feature map. The second intermediate feature map relies on the first intermediate
feature map. The third and fourth intermediate feature maps are based on both the first and the
second feature maps. Such simplified relationships enable the parallel computation for the third
and fourth intermediate feature maps, since there is no dependency between them. In addition, the
masked convolutional operation can be used to generate the last two intermediate feature maps. As
has been mentioned already, a variety of different dependencies relations can be imposed on the
intermediate feature maps. Our simplified design achieves reasonable balance between efficiency
and performance.

3 EXPERIMENTAL STUDIES

In this section, we evaluate the proposed pixel deconvolutional methods on semantic segmentation
and image generation tasks in comparison to the regular deconvolution method. Results show that
the use of the new pixel deconvolutional layers improves performance consistently in both super-
vised and unsupervised learning settings.

3.1 SEMANTIC SEGMENTATION

Experimental Setup: We use the PASCAL 2012 segmentation dataset (Everingham et al., 2010)
and MSCOCO 2015 detection dataset (Lin et al., 2014) to evaluate the proposed pixel deconvo-
lutional methods in semantic segmentation tasks. For both datasets, the images are resized to
256×256×3 for batch training. Our models directly predict the label for each pixel without any
post-processing. Here we examine our models in two ways: training from scratch and fine-tuning
from state-of-art model such as DeepLab-ResNet.

For the training from scratch experiments, we use the U-Net architecture (Ronneberger et al., 2015)
as our base model as it has been successfully applied in various image segmentation tasks. The
network consists of four blocks in the encoder path and four corresponding blocks in the decoder
path. Within each decoder block, there is a deconvolutional layer followed by two convolutional
layers. The final output layer is adjusted based on the number of classes in the dataset. The PASCAL
2012 segmentation dataset has 21 classes while the MSCOCO 2015 detection dataset has 81 classes.
As the MSCOCO 2015 detection dataset has more classes than the PASCAL 2012 segmentation
dataset, the number of feature maps in each layer for this dataset is doubled to accommodate more
output channels. The baseline U-Net model employs deconvolutional layers within the decoder
path to up-sample the feature maps. We replace the deconvolutional layers with our proposed pixel

6



Under review as a conference paper at ICLR 2018

Figure 7: Sample segmentation results on the PASCAL 2012 segmentation dataset using training
from scratch models. The first and second rows are the original images and the corresponding
ground truth, respectively. The third, fourth, and fifth rows are the segmentation results of models
using deconvolutional layers, iPixelDCL, and PixelDCL, respectively.

deconvolutional layers (iPixelDCL) and their simplified version (PixelDCL) while keeping all other
variables unchanged. The kernel size in DCL is 6×6, which has the same number of parameters as
iPixelDCL with 4 sets of 3×3 kernels, and more parameters than PixelDCL with 2 sets of 3×3 and
1 set of 2×2 kernels. This will enable us to evaluate the new pixel deconvolutional layers against
the regular deconvolutional layers while controlling all other factors.

For the fine-tuning experiments, we fine-tune our models based on the architecture of DeepLab-
ResNet (Chen et al., 2016). The DeepLab-ResNet model is fine-tuned from ResNet101 (He et al.,
2016) and also use external data for training. The strategy of using external training data and fine-
tuning from classic ResNet101 greatly boosts the performance of the model on both accuracy and
mean IOU. The output of DeepLab-ResNet is eight times smaller than the input image on the height
and width dimensions. In order to recover the original dimensions, we add three up-sampling blocks,
each of which up-samples the feature maps by a factor of 2. For each up-sampling block, there is
a deconvolutional layer followed by a convolutional layer. By employing the same strategy, we
replace the deconvolutional layer by PixelDCL and iPixelDCL using kernels of the same size as in
the training from scratch experiments.

Analysis of Results: Some sample segmentation results of U-Net using deconvolutional layers
(DCL), iPixelDCL, and PixelDCL on the PASCAL 2012 segmentation dataset and the MSCOCO
2015 detection dataset are given in Figures 7 and 8, respectively. We can see that U-Net models using
iPixelDCL and PixelDCL can better capture the local information of images than the same base
model using regular deconvolutional layers. By using pixel deconvolutional layers, more spacial
features such as edges and shapes are considered when predicting the labels of adjacent pixels.

Moreover, the semantic segmentation results demonstrate that the proposed models tend to produce
smoother outputs than the model using deconvolution. We also observe that, when the training epoch
is small (e.g., 50 epochs), the model that employs PixelDCL has better segmentation outputs than
the model using iPixelDCL. When the training epoch is large enough (e.g., 100 epochs), they have
similar performance, though PixelDCL still outperforms iPixelDCL in most cases. This indicates
that PixelDCL is more efficient and effective, since it has much fewer parameters to learn.

Table 1 shows the evaluation results in terms of pixel accuracy and mean IOU on the two datasets.
The U-Net models using iPixelDCL and PixelDCL yield better performance than the same base
model using regular deconvolution. The model using PixelDCL slightly outperforms the model us-
ing iPixelDCL. For the models fine-tuned from Deeplab-ResNet, the models using iPixelDCL and
PixelDCL have better performance than the model using DCL, with iPixelDCL performs the best. In
semantic segmentation, mean IOU is a more accuracy evaluation measure than pixel accuracy (Ev-
eringham et al., 2010). The models using pixel deconvolution have better evaluation results on mean
IOU than the base model using deconvolution.

7



Under review as a conference paper at ICLR 2018

Figure 8: Sample segmentation results on the MSCOCO 2015 detection dataset using training from
scratch models. The first and second rows are the original images and the corresponding ground
truth, respectively. The third, fourth, and fifth rows are the segmentation results of models using
deconvolutional layers, iPixelDCL, and PixelDCL, respectively.

Table 1: Semantic segmentation results on the PASCAL 2012 segmentation dataset and MSCOCO
2015 detection dataset. We compare the same base U-Net model and fine-tuned DeepLab-ResNet
using three different up-sampling methods in decoders; namely regular deconvolution layer (DCL),
the proposed input pixel deconvolutional layer (iPixelDCL) and pixel deconvolutional layer (Pix-
elDCL). The pixel accuracy and mean IOU are used as performance measures.

Dataset Model Pixel Accuracy Mean IOU

PASCAL 2012
U-Net + DCL 0.816161 0.415178
U-Net + iPixelDCL 0.817129 0.448817
U-Net + PixelDCL 0.822591 0.455972

MSCOCO 2015
U-Net + DCL 0.809327 0.349769
U-Net + iPixelDCL 0.809239 0.360216
U-Net + PixelDCL 0.811575 0.371805

PASCAL 2012
DeepLab-ResNet + DCL 0.929562 0.727036
DeepLab-ResNet + iPixelDCL 0.934493 0.738552
DeepLab-ResNet + PixelDCL 0.931287 0.735585

3.2 IMAGE GENERATION

Experimental Setup: The dataset used for image generation is the celebFaces attributes (CelebA)
dataset (Liu et al., 2015). To avoid the influence of background, the images have been preprocessed
so that only facial information is retained. The image generation task is to reconstruct the faces
excluding backgrounds in training images. The size of images is 64× 64× 3. We use the standard
variational auto-encoder (VAE) (Kingma & Welling, 2014) as our base model for image generation.
The decoder part in standard VAE employs deconvolutional layers for up-sampling. We apply our
proposed PixelDCL to replace deconvolutional layers in decoder while keeping all other components
the same. The kernel size in DCL is 6×6, which has more parameters than PixelDCL with 2 sets of
3×3 and 1 set of 2×2 kernels.

Analysis of Results: Figure 9 shows the generated faces using VAEs with regular deconvolution
(baseline) and PixelDCL in decoders. Some images generated by the baseline model suffer from
apparent checkerboard artifacts, while none is found on the images generated by the model with
PixelDCL. This demonstrates that the proposed pixel deconvolutional layers are able to establish
direct relationships among adjacent pixels on generated feature maps and images, thereby effectively
overcoming the checkerboard problem. Our results demonstrate that PixelDCL is very useful for
generative models since it can consider local spatial information and produce photo-realistic images
without the checkerboard problem.

8



Under review as a conference paper at ICLR 2018

Figure 9: Sample face images generated by VAEs when trained on the CelebA dataset. The first
two rows are images generated by a standard VAE with deconvolutional layers for up-sampling. The
last two rows generated by the same VAE model, but using PixelDCL for up-sampling.

Table 2: Training and prediction time on semantic segmentation using the PASCAL 2012 segmen-
tation dataset on a Tesla K40 GPU. We compare the training time of 10 epochs and prediction time
of 2109 images for the same base U-Net model using three different methods for up-sampling in the
decoders; namely DCL, iPixelDCL, and PixelDCL.

Model Training time Prediction time
U-Net + DCL 365m26s 2m42s
U-Net + iPixelDCL 511m19s 4m13s
U-Net + PixelDCL 464m31s 3m27s

3.3 TIMING COMPARISON

Table 2 shows the comparison of the training and prediction time of the U-Net models using DCL,
iPixelDCL, and PixelDCL for up-sampling. We can see that the U-Net models using iPixelDCL
and PixelDCL take slightly more time during training and prediction than the model using DCL,
since the intermediate feature maps are generated sequentially. The model using PixelDCL is more
efficient due to reduced dependencies and efficient implementation discussed in Section 2.3. Overall,
the increase in training and prediction time is not dramatic, and thus we do not expect this to be a
major bottleneck of the proposed methods.

4 CONCLUSION

In this work, we propose pixel deconvolutional layers that can solve the checkerboard problem in
deconvolutional layers. The checkerboard problem is caused by the fact that there is no direct rela-
tionship among intermediate feature maps generated in deconvolutional layers. PixelDCL proposed
here try to add direct dependencies among these generated intermediate feature maps. PixelDCL
generates intermediate feature maps sequentially so that the intermediate feature maps generated in
a later stage are required to depend on previously generated ones. The establishment of dependencies
in PixelDCL can ensure adjacent pixels on output feature maps are directly related. Experimental
results on semantic segmentation and image generation tasks show that PixelDCL is effective in
overcoming the checkerboard artifacts. Results on semantic segmentation also show that PixelDCL
is able to consider local spatial features such as edges and shapes, leading to better segmentation
results. In the future, we plan to employ our PixelDCL in a broader class of models, such as the
generative adversarial networks (GANs).

9



Under review as a conference paper at ICLR 2018

REFERENCES

Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L Yuille.
Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and
fully connected crfs. arXiv:1606.00915, 2016.

Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew Zisserman.
The pascal visual object classes (voc) challenge. International journal of computer vision, 88(2):
303–338, 2010.

Mathieu Germain, Karol Gregor, Iain Murray, and Hugo Larochelle. Made: Masked autoencoder
for distribution estimation. In Proceedings of The 32nd International Conference on Machine
Learning, pp. 881–889, 2015.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in neural infor-
mation processing systems, pp. 2672–2680, 2014.

Karol Gregor, Ivo Danihelka, Alex Graves, Danilo Rezende, and Daan Wierstra. Draw: A recurrent
neural network for image generation. In Proceedings of the 32nd International Conference on
Machine Learning (ICML-15), pp. 1462–1471, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Matthew Johnson, David K Duvenaud, Alex Wiltschko, Ryan P Adams, and Sandeep R Datta. Com-
posing graphical models with neural networks for structured representations and fast inference.
In Advances in Neural Information Processing Systems, pp. 2946–2954, 2016.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Diederik P Kingma and Max Welling. Stochastic gradient vb and the variational auto-encoder. In
Second International Conference on Learning Representations, ICLR, 2014.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. In Advances in neural information processing systems, pp. 1097–1105,
2012.

Hugo Larochelle and Iain Murray. The neural autoregressive distribution estimator. In International
Conference on Artificial Intelligence and Statistics, pp. 29–37, 2011.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Q Li, GP Steven, and YM Xie. A simple checkerboard suppression algorithm for evolutionary
structural optimization. Structural and Multidisciplinary Optimization, 22(3):230–239, 2001.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In European
Conference on Computer Vision, pp. 740–755. Springer, 2014.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild.
In Proceedings of International Conference on Computer Vision (ICCV), 2015.

Alireza Makhzani and Brendan J Frey. Winner-take-all autoencoders. In Advances in Neural Infor-
mation Processing Systems, pp. 2791–2799, 2015.

Hyeonwoo Noh, Seunghoon Hong, and Bohyung Han. Learning deconvolution network for seman-
tic segmentation. In IEEE International Conference on Computer Vision, 2015.

Augustus Odena, Vincent Dumoulin, and Chris Olah. Deconvolution and checkerboard arti-
facts. Distill, 2016. doi: 10.23915/distill.00003. URL http://distill.pub/2016/
deconv-checkerboard.

10

http://distill.pub/2016/deconv-checkerboard
http://distill.pub/2016/deconv-checkerboard


Under review as a conference paper at ICLR 2018

Aaron Van den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel recurrent neural networks.
In Proceedings of The 33rd International Conference on Machine Learning, pp. 1747–1756, 2016.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep
convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434, 2015.

Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran, Bernt Schiele, and Honglak Lee.
Generative adversarial text to image synthesis. In Proceedings of The 33rd International Confer-
ence on Machine Learning, volume 3, 2016.

Scott Reed, Aäron van den Oord, Nal Kalchbrenner, Sergio Gómez Colmenarejo, Ziyu Wang, Dan
Belov, and Nando de Freitas. Parallel multiscale autoregressive density estimation. arXiv preprint
arXiv:1703.03664, 2017.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and
approximate inference in deep generative models. In Proceedings of The 31st International Con-
ference on Machine Learning, pp. 1278–1286, 2014.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomed-
ical image segmentation. In International Conference on Medical Image Computing and
Computer-Assisted Intervention, pp. 234–241. Springer, 2015.

Evan Shelhamer, Jonathon Long, and Trevor Darrell. Fully convolutional networks for semantic
segmentation. IEEE transactions on pattern analysis and machine intelligence, 2016.

Wenzhe Shi, Jose Caballero, Ferenc Huszár, Johannes Totz, Andrew P Aitken, Rob Bishop, Daniel
Rueckert, and Zehan Wang. Real-time single image and video super-resolution using an efficient
sub-pixel convolutional neural network. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 1874–1883, 2016.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Aaron van den Oord, Nal Kalchbrenner, Lasse Espeholt, Oriol Vinyals, Alex Graves, et al. Condi-
tional image generation with pixelcnn decoders. In Advances in Neural Information Processing
Systems, pp. 4790–4798, 2016.

Andrea Vedaldi and Karel Lenc. Matconvnet: Convolutional neural networks for matlab. In Pro-
ceedings of the 23rd ACM international conference on Multimedia, pp. 689–692. ACM, 2015.

Matthew D Zeiler, Dilip Krishnan, Graham W Taylor, and Rob Fergus. Deconvolutional networks.
In Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on, pp. 2528–2535.
IEEE, 2010.

Matthew D Zeiler, Graham W Taylor, and Rob Fergus. Adaptive deconvolutional networks for mid
and high level feature learning. In Computer Vision (ICCV), 2011 IEEE International Conference
on, pp. 2018–2025. IEEE, 2011.

11


	Introduction
	Pixel Deconvolutional Layers and Networks
	Deconvolutional Layers
	Pixel Deconvolutional Layers
	Pixel Deconvolutional Networks

	Experimental Studies
	Semantic Segmentation
	Image Generation
	Timing Comparison

	Conclusion

