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ABSTRACT

Many generative models attempt to replicate the density of their input data. How-
ever, this approach is often undesirable, since data density is highly affected by
sampling biases, noise, and artifacts. We propose a method called SUGAR (Syn-
thesis Using Geometrically Aligned Random-walks) that uses a diffusion process
to learn a manifold geometry from the data. Then, it generates new points evenly
along the manifold by pulling randomly generated points into its intrinsic struc-
ture using a diffusion kernel. SUGAR equalizes the density along the manifold by
selectively generating points in sparse areas of the manifold. We demonstrate how
the approach corrects sampling biases and artifacts, while also revealing intrinsic
patterns (e.g. progression) and relations in the data.

1 INTRODUCTION

Many types of data analysis suffer from what is known as “imbalanced data” or biased sampling
of data from a system. Statistical methods such as mutual information are highly weighted by den-
sity and thus can mis-quantify the strength of dependencies with data whose density is concentrated
in a particular region of the relationship. For example, in immunology, if the activity of a t-cell
stimulatory molecule and its respondent inflammatory cytokines is mostly observed in an off state,
statistical measures will be biased towards negligible dependency, despite the true positive relation-
ship between t-cell stimulation and inflammation.

In principle component analysis, major components (eigenvectors of the covariance matrix) can
span data points of a particular type if they are oversampled. For instance, if healthy individuals
form 99 percent of a sample then PC components may span variation in healthy individuals rather
than the gradient between healthy and sick patients. In supervised learning, some classifiers tend to
bias towards the classes with highest density He & Garcia (2009); López et al. (2013); Hensman &
Masko (2015). Most other generative models attempt to learn and replicate the density of the data,
which is not only intractable in high dimensions but also exacerbates this problem. Examples for
such methods include Gaussian Mixture Models (GMM) Rasmussen (2000), variational Bayesian
methods Bernardo et al. (2003), kernel density estimates Scott (2008).

We assume that the sampled data lie on low-dimensional manifolds. Based on this, we propose a
new type of generation method termed SUGAR (Synthesis Using Geometrically Aligned Random-
walks) that learns the underlying manifold geometry of the data. Under-sampled regions within
the manifold geometry can be regenerated using this structure. We learn the manifold by using a
diffusion operator or a kernel that requires only the computation of pairwise affinities between data
points. Then, we generate new points randomly around existing points. Finally, we apply a weighted
transition kernel to pull the new points towards the structure of the manifold, especially in sparse
areas.

2 PROBLEM FORMULATION

Let M be a d dimensional manifold that lies in a higher dimensional space RD, with d < D,
and let X ⊆ M be a dataset of N = |X| data points, denoted x1, . . . ,xN , sampled from the
manifold. In this paper, we propose an approach that uses the samples in X in order to capture
the manifold geometry and generate new data points from the manifold. In particular, we focus on
the case where the points in X are unevenly sampled from M, and aim to generate a set of M
new data points Y = {y1, ...,yM} ⊆ RD such that 1. the new points Y approximately lie on the
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manifold M, and 2. the distribution of points in the combined dataset Z , X ∪ Y is uniform.
Our proposed approach is based on using intrinsic diffusion process over the manifold to define a
diffusion geometry that robustly captures the manifold geometry even from X . Then, we use this
diffusion process to generate new data points that follow the manifold geometry while adjusting
their intrinsic distribution, as explained in Section 3.

3 METHOD

In this section, we detail the proposed method named SUGAR: Synthesis Using Geometrically
Aligned Random-walks. SUGAR initializes by synthesizing new points around sparse areas of the
manifold to create a new set of points Y 0. SUGAR is summarized in the following steps:

• Construct a kernel that captures local neighborhoods in the data
K(xi,xj) , Ki,j = exp

(
− ||xi−xj ||2

2σ2

)
, i, j = 1, ..., N where σ is a user-configurable

parameter that controls the neighborhood sizes. This kernel captures the diffusion geome-
try, and was utilized in DM Coifman & Lafon (2006) for dimensionality reduction.

• Compute the degree of the kernel, defined as d̂(i) =
∑
j exp

(
− ||xi−xj ||2

2σ2

)
, i = 1, ..., N.

The degree value d̂(i) at each point indicates the amount of connectivity the point has to its
neighbors.

• Use the degree d̂(i) to define sparsity of each point as ŝ(i) , 1
d̂(i)

, i = 1, ..., N. Clearly

ŝ(i) ≥ 0, i = 1, ..., N , as the degree d̂(i) at each point is non-negative.

• Define the generation level ˆ̀(i) at each point i = 1, ..., N , by
ˆ̀(i) = bdet(Σ−1i + I

2σ2 )
0.5 det(Σi)

0.5[max(d̂(·))− d̂(i)]c, where d̂(i) is the degree value
at point xi, σ2 is the bandwidth of the kernel K and Σi is the covariance of the Gaus-
sian designed for generating new points (explained in the following step). By generat-
ing ˆ̀(i), i = 1, ..., N new points, the expectation value of the degree d̂(i) at each point
xi ∈M\∂M is constant.

• Draw ˆ̀(i) new points for each i = 1, ..., N from a Gaussian distribution designed to main-
tain the local structure. Each Gaussian N (xi,Σi) is centered around an existing point xi
and has a local covariance structure Σi. The local covariance Σi is the sample covariance
based on k nearest neighbors surrounding xi. Thus, we elaborate the local structure of the
manifold to generate points in the meaningful directions. The set of new points is denoted
by yi ∈ Y 0, i = 1, ...,M .
• Compute the sparsity based MGC kernel is defined as
K̂(yi,yj) =

∑
`K(yi,x`)K(x`,yj)ŝ(`), i, j = 1, ...,M. Normalize P̂ = D̂

−1
K̂. using

a diagonal matrix D̂, such that D̂i,i =
∑
j K̂i,j .

• Apply the operator P̂ at time instant t to the new generated points. The diffused points are
defined as Y = P̂

t
· Y 0. The operator locally averages the points based on the neighbors

in X ⊂ M and the sparsity measure. The number of steps t required can be set manually
or using the Von Neumann Entropy as was suggested in Moon et al. (2017).

4 ARTIFICIAL MANIFOLD

Here we evaluate how SUGAR captures a manifold structure and generates points for density equal-
ization. We sample a hundred points from a circle such that the highest density is at the origin
(θ = 0) and the density decreases away from it. Figure 1(a) shows each point xi colored by its
degree d̂(i) (as defined in Eq. 3). Figure 1(e) shows new points generated based on ˆ̀(i) around each
original point.

We apply SUGAR and estimate the CDF of one coordinate from X and Z. The resulting CDF
shown in blue is approximately a standard uniform CDF as shown in red in Fig. 1(f). The variance
of the degree d̂(·) drops from 0.45 to 0.03, yet another indication of the improved density of points.
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(a) (b) (c) (d) (e) (f)

Figure 1: Density equalization demonstrated on a circle shaped manifold. (a) Non-uniform samples
of X . (b) The degree value d̂(i). (c) The number of generated points ˆ̀(i). (d) X (black asterisks)
and generated points Y 0 (blue circles). (e) Z, original points X (black asterisks) and set of new
points Y (blue circles). (f) An estimation of the CDF before (black asterisks) and after (blue circles)
applying the SUGAR.

5 BIOLOGICAL MANIFOLDS

In this section, we apply SUGAR to a biological dataset. In this data, Velten et al. (2017) present
a model of cellular development in which a central reservoir of stem cells gives rise to unique,
continuous trajectories, each leading to functionally distinct mature cells. This branching geometry
thus lends itself to exploration using manifold learning. However, the size of this data is a key
obstacle: only 1029 cells are measured in one individual. The data is thus generally sparse, leading
to rare populations and branch discontinuities in cellular development due to undersampling. We
sought to repair this sparsity using SUGAR.

We first visualized this data using the unsupervised dimensionality reduction technique PHATE
(figure 2(a), colored by density). This embedding captured cellular development trajectories (figure
2(b)) similar to the supervised approach employed in Velten et al. (2017). SUGAR was then applied
to the original data and this embedding to generate 1919 new points (for a total of 2948 cells).

Despite nearly tripling the size of the data, the SUGAR-generated points were faithful to canonical
biology and data geometry. Transition populations spanning biological time between mature cells
and the stem cell reservoir are enriched by SUGAR, augmenting phase transitions that were once
sparse. Two examples of this restoration are present in this data. First, the granulocyte (neutrophils
(N) and Eosinophil/Basophil/Mast Cells (EBM); Murphy & Weaver 2016)) transition (top right
branch of figure 2(a) labeled in 2(b)) is discontinuous between the dense neutrophil/stem-cell body
and the dense EBM island. SUGAR repaired this discontinuity, illustrated by the EBM gene profile
(Velten et al. (2017)) shown by the color in figure 2(c). Second, the original dataset contains a
large gap between a dense plane of B-primed cells and a sparse island of more mature B cells
(rightmost branch in figure 2(a), labeled in 2(b)). SUGAR recovered this trajectory, evidenced by
transitional up-regulation of the B cell maturation marker CD19 (figure 2(d)). Furthermore, SUGAR
recovered an inverse relationship between CD19 and the cell immaturity marker HOXA3 (figures
2(e), 2(f))These examples illustrate the ability of SUGAR to recover rare or difficult to capture
populations while maintaining data geometry.

(a) (b) (c) (d) (e) (f)

Figure 2: SUGAR recovers branching trajectories in hematopoeisis. (a) PHATE plot of the original
Velten et al. (2017) data colored by the degree d̂(i). (b) PHATE plot of Velten et al. (2017) (black
asterisks) data with SUGAR generated points Y (circles) colored by genetic module profile. EBM:
Eosinophil/Basophil/Mast Cells; N: Neutrophils; MD: Monocytes/Dendritic Cells; E: Erythroid;
MK: Megakaryocyte; B: B cell. (c) EBM Module Expression. (d) CD19 count after SUGAR. CD19
is found in maturing B cells Murphy & Weaver (2016) (e) Relationship between HOXA3 and CD19
before SUGAR. The HOXA3/HOXB6 module marks non-committed stem cells Velten et al. (2017)
(f) Relationship between HOXA3 and CD19 after SUGAR.

.
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