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Abstract

Testing conditional independence (CI) has many important applications, such as1

Bayesian network learning and causal discovery. Although several approaches have2

been developed for learning CI structures for observed variables, those existing3

methods generally fail to work when the variables of interest can not be directly4

observed and only discretized values of those variables are available. For example,5

if X1, X̃2 and X3 are the observed variables, where X̃2 is a discretization of the6

latent variable X2, applying the existing methods to the observations of X1, X̃27

and X3 would lead to a false conclusion about the underlying CI of variables8

X1, X2 and X3. Motivated by this, we propose a CI test specifically designed to9

accommodate the presence of discretization. To achieve this, a bridge equation10

and nodewise regression are used to recover the precision coefficients reflecting11

the conditional dependence of the latent continuous variables under the nonpara-12

normal model. An appropriate test statistic has been proposed, and its asymptotic13

distribution under the null hypothesis of CI has been derived. Theoretical analysis,14

along with empirical validation on various datasets, rigorously demonstrates the15

effectiveness of our testing methods.16

1 Introduction17

Independence and conditional independence (CI) are fundamental concepts in statistics. They are18

leveraged for exploring queries in statistical inference, such as sufficiency, parameter identification,19

adequacy, and ancillarity [9]. They also play a central role in emerging areas such as causal discovery20

[18], graphical model learning, and feature selection [36]. Tests for CI have attracted increasing21

attention from both theoretical and application sides.22

Formally, the problem is to test the CI of two variables Xj1 and Xj2 given a random vector (a set23

of other variables) Z. In statistical notation, the null hypothesis is written as H0 : Xj1 ⊥ Xj2 | Z,24

where ⊥ denotes “independent from.” The alternative hypothesis is written as H1 : Xj1 ̸⊥ Xj2 | Z,25

where ̸⊥ denotes “dependent with.” The null hypothesis implies that once Z is known, the values of26

Xj1 provide no additional information about Xj2 , and vice versa. Different tests have been designed27

to handle different scenarios, including Gaussian variables with linear dependence [37, 25, 22, 26]28

and non-linear dependence [16, 38, 31, 27, 1] (For detailed related work, please refer to App. D).29

Given observations of Xj1 , Xj2 , and Z, the CI can be effectively tested with existing methods.30

However, in many scenarios, accurately measuring continuous variables of interest is challenging31

due to limitations in data collection. Sometimes the data obtained are approximations represented as32

discretized values. For example, in finance, variables such as asset values cannot be measured and are33

binned into ranges for assessing investment risks (e.g., sell, hold, and strong buy) [7, 8]. Similarly,34

in mental health, anxiety levels are often assessed using scales like the GAD-7, which categorizes35
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responses into levels such as mild, moderate, or severe [23, 17]. In the entertainment industry, the36

quality of movies is typically summarized through viewer ratings [29, 10].37

(a) (b) (c)

Figure 1: We illustrate different data generative
processes with causal graphical models. The dis-
cretization process introduces new discrete vari-
ables which are denoted with a tilde (∼).

When discretization is present, existing CI tests38

can fail to determine the CI of underlying con-39

tinuous variables. This issue arises because ex-40

isting CI tests treat discretized observations as41

observations of continuous variables, leading42

to incorrect conclusions about their CI relation-43

ships. More precisely, the problem lies in the44

discretization process, which introduces new dis-45

crete variables. Consequently, although the in-46

tent is to test the CI of the underlying continuous47

variables, what is actually being tested is the CI48

involving a mix of both continuous and newly introduced discrete variables. In general, this CI49

relationship is inconsistent with the one among the underlying continuous variables.50

As illustrated in Fig. 1, we show different data-generative processes using causal graphical models51

[24] in the presence of discretization. A gray node indicates an observable variable, while a white52

node indicates a latent variable. Variables denoted by Xj (without a tilde ∼) represent continuous53

variables, which may not be observed; while variables denoted by X̃j represent observed discretized54

variables derived from Xj due to discretization. In Fig. 1(a), X2 is latent, and only its discrete55

counterpart X̃2 is observed. In this case, rather than observing X1, X2, and X3, we only observe56

X1, X̃2, and X3. Existing CI methods use these observations to test whether X1 ⊥ X3 | {X2}, but57

what is actually being tested is whether X1 ⊥ X3 | {X̃2}. In fact, according to the causal Markov58

condition [30], , it can be inferred from Fig. 1(a) that X1 ⊥ X3 | {X2} and X1 ̸⊥ X3 | {X̃2}.59

This mismatch leads to existing CI methods, that employ observations to check the CI relationships60

between X1 and X3 given X2, to reach incorrect conclusions. Due to the same reason, checking the61

CI also fails in Fig 1(b) and Fig 1(c).62

In this paper, we design a CI test specifically for handling the presence of discretization. An appropri-63

ate test statistic for the CI of latent continuous variables, based solely on discretized observations, is64

derived. The key is to build connections between the discretized observations and the parameters65

needed for testing the CI of the latent continuous variables. To achieve this, we first develop bridge66

equations that allow us to estimate the covariance of the underlying continuous variables with dis-67

cretized observations. Then, we leverage a node-wise regression [5] to derive appropriate test statistics68

for CI relationships from the estimated covariance. By assuming that the continuous variables follow69

a Gaussian distribution, we can derive the asymptotic distributions of the test statistics under the null70

hypothesis of CI. The major contributions of our paper include that71

• We develop a CI test for ensuring accurate analysis in scenarios where data has been discretized,72

which are common due to limitations in data collection or measurement techniques, such as in73

financial analysis and healthcare.74

• Our CI test can handle various scenarios including 1). Both variables Xj1 and Xj2 are discretized75

2). Both variables Xj1 and Xj2 are continuous. 3). One of the variables Xj1 or Xj2 is discretized.76

• We compare our test with the existing methods on both synthetic and real-world datasets, confirm-77

ing that our method can effectively estimate the CI of the underlying continuous variables and78

outperform the existing tests applied on the discretized observations.79

2 DCT: A CI Test in the Presence of Discretization80

Problem Setting Consider a set of independent and identically distributed (i.i.d.) p-dimensional81

random vectors, denoted as X̃ = (X1, X2, . . . , X̃j , . . . , X̃p)
T . In this set, some variables, indicated82

by a tilde (∼), such as X̃j , follow a discrete distribution. For each such variable, there exists a83

corresponding latent Gaussian random variable Xj . The transformation from Xj to X̃j is governed84

by an unknown monotone nonlinear function gj . This function, gj : X → X̃ , maps the continuous85

domain of Xj onto the discrete domain of X̃j , such that X̃j = gj(Xj) for each observation. Given n86

observations {x̃1, x̃2, . . . , x̃n} randomly sampled from X̃ , specifically, for each variable Xj , there87
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exists a constant vector d = (d1, . . . , dM ) characterized by strictly increasing elements such that88

x̃ij =


1 0 < gj(x

i
j) < d1

m dm−1 < gj(x
i
j) < dm

M gj(x
i
j) > dm

(1)

This model is also known as the nonparanormal model [20]. The cardinality of the domain after89

discretization is at least 2 and smaller than infinity. Our goal is to assess both conditional and90

unconditional independence among the variables of the vector X = (X1, X2, . . . , Xj , . . . , Xp)
T .91

In our model, we assume X ∼ N(0,Σ), Σ only contain 1 among its diagonal, i.e., σjj = 1 for all92

j ∈ [1, . . . , p]. One should note this assumption is without loss of generality. We provide a detailed93

discussion of our assumption in App. A.8.94

Preliminary Framework of DCT To develop an independence test, one needs to design a test95

statistic that can reflect the dependence relation and be calculated from observations. Next, it is96

essential to derive the underlying distribution of this statistic under the null hypothesis that the tested97

variables are conditionally (or unconditionally) independent. By calculating the value of the test98

statistic from observations and determining if this statistic is likely to be sampled from the derived99

distribution (i.e., calculating the p-value and comparing it with the significance level α), we can100

decide if the null hypothesis should be rejected.101

Our objective is to deduce the independence and CI relationships within the original multivariate102

Gaussian model, based on its discretized observations. In the context of a multivariate Gaussian103

model, this challenge is directly equivalent to constructing statistical inferences for its covariance104

matrix Σ = (σj1,j2) and its precision matrix Ω = (ωj,k) = Σ−1 [3]. The covariance matrix Σ105

captures the pairwise covariances between variables, while the precision matrix Ω (also known as the106

concentration matrix) provides information about the CI between variables. Specifically, the entry107

ωj,k in the precision matrix is related to the partial correlation coefficient between variables Xj and108

Xk, which can be used to test whether these variables are conditionally independent given some other109

variables. Technically, we are interested in two things: (1) the calculation of the covariance σ̂j1,j2110

and the precision coefficient (or the partial correlation coefficient) ω̂j,k, serving as the estimation111

of σj1,j2 and ωj,k respectively (in this paper, a variable with a hat indicates its estimation); and112

(2) the derivation of the distribution of σ̂j1,j2 − σj1,j2 and ω̂j,k − ωj,k under the null hypothesis of113

independence and CI.114

In the subsequent section, 1). we first introduce bridge equations to address the estimation challenge115

of the covariance σj1,j2 ; 2). we proceed to derive the distribution of σ̂j1,j2 − σj1,j2 , demonstrating it116

is asymptotically normal; 3). utilizing nodewise regression, we establish the relationship between117

the covariance matrix Σ and the precision matrix Ω, where the regression parameter βj,k acts as an118

effective surrogate for ωj,k. Leveraging the distribution of σ̂j1,j2 − σj1,j2 , we further illustrate that119

β̂j,k − βj,k is also asymptotically normal.120

2.1 Design Bridge Equation for Test Statistics121

Estimating Covariance with Bridge Equations The bridge equation establishes a connection122

between the underlying covariance σj1,j2 of two continuous variables Xj1 and Xj2 with the ob-123

servations. When in the presence of discretization, the discrete transformations make the sample124

covariance matrix based on X̃ inconsistent with the covariance matrix of X . To obtain the estimation125

σ̂j1,j2 of σj1,j2 , the bridge equation is leveraged. In general, its form is as follows.126

τ̂j1,j2 = T (σj1,j2 ; Λ̂), (2)

where σj1,j2 is the covariance needed to be estimated, τ̂j1,j2 is a statistic that can also be estimated127

from observations, and Λ̂ is a set of additional parameters required by the function T (·). The specific128

form of the function T (·) will be derived later. Both τ̂j1,j2 and Λ̂ should be able to be calculated129

purely relying on observations. Then, given the calculated τ̂j1,j2 and Λ̂, σ̂j1,j2 can be obtained by130

solving the bridge equation τ̂j1,j2 = T (σj1,j2 ; Λ̂). As a result, the covariance matrix Σ of X can be131

estimated, which contains information about both unconditional independence and CI (which can be132

derived from its inverse).133

To estimate the covariance of a latent multivariate Gaussian distribution, we need to design appropriate134

τ̂j1,j2 , Λ̂, and T (·). Notably, bridge equations have to be designed to handle all three possible cases:135

3



C1. both observed variables are discretized; C2. one variable is continuous while the other is136

discretized; and C3. both variables remain continuous. We will show that cases C1 and C2 can be137

merged into a single form of bridge equation with different parameters and a binarization operation138

applied to the observations. Our bridge equations are presented in Def. 2.2, Def. 2.3, and Def. 2.4.139

Bridge Equations for Discretized and Mixed Pairs Let us first address the challenging cases140

where both observed variables are discretized or where one variable is continuous while the other141

is discretized. In general, different bridge equations would need to be designed to handle each case142

individually. However, in our analysis, we provide a unified bridge equation that is applicable to both143

cases. This is achieved by binarizing the observed variables, thereby unifying both cases into a binary144

case. As some information may be lost in the binarization process, this unification may require more145

examples compared to using tailored bridge functions for each specific case. Developing specific146

bridge equations for each case to improve sample efficiency is left in future work.147

Intuitionally, for the original continuous variable Xj , binarization separates it into two parts based on148

a boundary hj : the part for Xj larger than hj and the part for Xj smaller than hj . In this case, we can149

estimate the boundary by calculating the proportion of Xj that exceeds the boundary. In the scenario150

of two variables where the threshold hj1 and hj2 divide the space into four regions, the proportions of151

these areas are influenced by the covariance σj1,j2 , which connects the relation between the binarized152

variables with the latent covariance. This approach allows us to initially estimate the threshold hj1 ,153

hj2 of a pair of variables, followed by estimating the covariance σj1,j2 .154

Let PnZ denote the average of a random variable Z given n i.i.d. observation of Z and E[Z] as the155

true mean of Z, P as the probability and P̂ as the empirical probability. We then define the boundary156

hj as follows: for any single discretized variable X̃j , there exists a constant cj such that:157

1{x̃ij > E[X̃j ]} = 1{gj(xij) > cj} = 1{xij > hj},

where hj = g−1
j (cj). Specifically, hj is the boundary in the original continuous domain to determine158

if the discretized observation X̃k is larger than its mean. When the continuous variable Xj follows159

a normal distribution, there is a relation P(X̃j > E[X̃j ]) = 1− Φ(hj), where Φ is the cumulative160

distribution function (cdf) of a standard normal distribution. We then provide the following definition:161

Definition 2.1. The estimated boundary can be expressed as ĥj = Φ−1(1 − τ̂j), where τ̂j =162 ∑n
i=1 1{x̃i

j>PnX̃j}/n, serving as the estimation of P(X̃j > E[X̃j ]).163

Let Φ̄(z1, z2; ρ) = P(Z1 > z1, Z2 > z2), where (Z1, Z2)
T follows a bivariate normal distribution164

with mean zero, variance one and covariance ρ. We define165

τj1,j2 = P(x̃ij1 > E[X̃j1 ], x̃
i
j2 > E[X̃j2 ]) = Φ̄(hj1 , hj2 ;σj1,j2). (3)

That is, the proportion of discretized variables larger than their mean can be expressed as a function166

of underlying covariance. This equation serves as the key of estimating latent covariance based on the167

discretized observations. Specifically, we can substitute those true parameters with their estimation168

and construct the bridge equation to get the estimated covariance:169

Definition 2.2 (Bridge Equation for A Discretized-Variable Pair). For discretized variables X̃j1 and170

X̃j2 , the bridge equation is defined as:171

τ̂j1,j2 = P̂ (X̃j1 > PnX̃j1 , X̃j2 > PnX̃j2) =
1

n

n∑
i=1

1{x̃i
j1

>PnX̃j1 ,x̃
i
j2

>PnX̃j2}
= T (σj1,j2 ; {ĥj1 , ĥj2}),

and the function T (σj1,j2 ; {ĥj1 , ĥj2}) := Φ̄(ĥj1 , ĥj2 ;σ) =

∫
x1>ĥj1

∫
x2>ĥj2

ϕ(xj1 , xj2 ;σ)dxj1dxj2 ,

where ϕ is the probability density function of a bivariate normal distribution, ĥj1 , ĥj2 can be simply172

calculated using Def. 2.1.173

Following the same intuition, we can directly apply the same bridge equation to estimate the co-174

variance of mixed pairs. The only difference is there is no need to estimate the boundary ĥj for the175

continuous variable. Instead, we can incorporate its true mean of zero into the equation.176
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Definition 2.3 (Bridge Equation for A Continuous-Discretized-Variable Pair). For one continuous177

variable Xj1 and one discretized variable X̃j2 , the bridge function is defined as follows:178

τ̂j1,j2 = P̂ (Xj1 > 0, X̃j2 > PnX̃j2) =
1

n

n∑
i=1

1{xi
j1

>0,x̃i
j2

>PnX̃j2}
= T (σj1,j2 ; {0, ĥj2}),

and the function T (·) has the same form of Def. 2.2.179

A Bridge Equation for A Continuous-Variable Pair When there is no discretized transformation,180

the sample covariance of Xj1 and Xj2 provides a consistent estimation. In this context, the function181

T acts merely as an identity mapping.182

Definition 2.4 (A Bridge Equation for A Continuous-Variable Pair). For two continuous variables183

Xj1 and Xj2 , the bridge equation is defined as:184

τ̂j1,j2 := σ̂j1,j2 =
1

n

n∑
i=1

xij1x
i
j2 −

1

n

n∑
i=1

xij1
1

n

n∑
i=1

xij2 = T (σj1,j2 ; ∅).

For two continuous variables Xj1 and Xj2 , the analytic solution of the estimated covariance can be185

simply obtained using Def. 2.4.186

Calculation of Estimated Covariance For the continuous case, the analytic solution of σ̂j1,j2187

can be simply obtained using Def. 2.4. For the cases involving the discretized variable as proposed188

in Def. 2.2 and Def. 2.3, we can rely on the property that variance Σ only contains 1 among the189

diagonal, which implies the covariance σj1,j2 should vary from −1 to 1. Thus, we can calculate the190

estimated covariance by solving the objective191

min
σj1,j2

||τ̂j1,j2 − T (σj1,j2 ; {ĥj1 , ĥj2})||2 s.t.− 1 < σj1,j2 < 1. (4)

The τ̂j1,j2 is a one-to-one mapping with calculated σ̂j1,j2 , ĥj1 and ĥj2 , which is proved in App. A.2192

2.2 Unconditional Independence Test193

The estimation of covariance σ̂j1,j2 can be effectively solved using the designed bridge equation.194

Now, we focus on deriving the distribution of σ̂j1,j2 −σj1,j2 . These results is used as an unconditional195

independence test in the presence of the discretization. Moreover, Thm. 2.5, Lem. 2.6, Lem. 2.7196

and Lem. 2.8 will be leveraged in the derivation process of the CI test in Section 2.3. The detailed197

derivation steps for both unconditional test and CI test are relatively intricate, therefore, we will198

provide a general intuition. For a complete derivation, please refer to the App. A.3.199

Assume we are interested in the true parameter θ0. We denote θ̂ as its estimation which is close to θ0,200

and f(θ) is a continuous function. By leveraging Taylor expansion, we have201

f(θ̂) = f(θ0) + f ′(θ0)(θ̂ − θ0), (5)

which directly constructs the relationship between the estimated parameter with the true one. Re-202

arrange the term, we get θ̂ − θ0 = (f(θ̂)− f(θ0))/f
′(θ0). If the denominator is a constant and the203

numerator can be expressed as a sum of i.i.d samples, we can see θ̂ − θ0 will be asymptotically204

normal according to the central limit theorem [35].205

Let ψθ̂ = [f1
θ̂
(·), f2

θ̂
(·), f3

θ̂
(·)]T contains a group of functions parameterized by θ̂ (For discretized206

pairs, θ̂ = (σ̂j1,j2 , ĥj1 , ĥj2)). Define Pnψθ̂ as sample mean of these functions evaluated at n sample207

points. Similarly, Pnψθ̂ψθ̂
T is defined as sample mean of the outer product ψθ̂ψθ̂

T . The notation208

Pψθ̂ := EPnψθ̂ denotes the expectations of the functions in ψθ̂. Furthermore, let ψθ̂
′ denote the209

derivative of the functions contained in ψθ̂. We now provide the main result of derived distribution210

σ̂j1,j2 − σj1,j2 under the hull hypothesis that test pairs are independent.211

Theorem 2.5 (Independence Test). In our settings, under the null hypothesis that two observed212

variables indexed with j1 and j2 are statistically independent under our framework, i.e., σj1,j2 = 0,213

the independence can be tested using the statistic214

σ̂j1,j2 = T−1(τ̂j1,j2 ; θ̂).
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This statistic is approximated to follow a normal distribution, as detailed below:215

σ̂j1,j2
approx∼ N

(
0,

1

n
((Pnψ

′
θ̂
)−1Pnψθ̂ψ

T
θ̂
(Pnψ

′T
θ̂
)−1)1,1

)
, (6)

where the specific form of ψθ̂ are presented in Lem. 2.6,Lem. 2.7 and Lem. 2.8.216

We now provide the specific forms of ψθ̂. Since the variables being tested for independence can be217

both discretized, only one being discretized, or neither being discretized. This results in different218

forms of ψθ̂ consequently differs across these scenarios. Let Zj1 and Zj2 be any two random219

variables indexed by j1 and j2. Let σ̂i
j1,j2

= zij1 · z
i
j2
− PnZj1 · PnZj2 denote the sample covariance220

based on a i-th pairwise observation of the variables Zj1 and Zj2 . Let τ̂ ij1 = 1{zi
j1

>PnZj1
} and221

τ̂ ij2 = 1{Zi
j2

>PnZj2
}, each calculated based on i-th observations of the variables Zj1 and Zj2 ,222

respectively. Let τ̂ ij1,j2 be τ̂ ij1 · τ̂
i
j2

. We further denote Φ̄(·) = 1− Φ(·). The different forms of ψθ̂223

that arise in different cases are defined as follows:224

Lemma 2.6. (ψθ̂ for A Continuous-Variable Pair). For two continuous variables Xj1 and Xj2 ,225

ψθ̂ := σ̂i
j1,j2 − σ̂j1,j2 . (7)

Lemma 2.7 (ψθ̂ for A Discretized-Variable Pair). For discretized variables X̃j1 and X̃j2 ,226

ψθ̂ :=

τ̂ ij1,j2 − T (σ̂j1,j2 ; {ĥj1 , ĥj2})
τ̂ ij1 − Φ̄(ĥj1)

τ̂ ij2 − Φ̄(ĥj2)

 . (8)

Lemma 2.8 (ψθ̂ for A Continuous-Discretized-Variable Pair). For one discretized variable X̃j2 and227

one continuous variable Xj1 ,228

ψθ̂ :=

(
τ̂ ij1,j2 − T (σ̂j1,j2 ; {0, ĥj2)}

τ̂ ij1 − Φ̄(ĥj2)

)
. (9)

Derivation of forms of ψθ̂ for different cases and their corresponding distribution defined in Eq (6)229

can be found in App. A.4, App. A.5, App. A.6. Up to this point, our discussion has been confined to230

the case of covariance σj1,j2 , the indicator of unconditional independence. In the next section, we231

will present the results of our CI test.232

2.3 Conditional Independence (CI) Test233

To construct a CI test of our model, we are interested at two things: calculation of the estimated234

precision coefficient ω̂j,k and the derivation of the corresponding distribution ω̂j,k − ωj,k. In the235

following, we first build βj,k, which is obtained using nodewise regression and show it serves as a236

surrogate of testing for ωj,k = 0, we then construct the formulation of β̂j,k − βj,k as the combination237

of formulation of σ̂j1,j2 − σj1,j2 and show it will also be asymptotically normal.238

Nodewise Regression for CI To utilize covariance for testing CI, it is necessary to establish a239

relationship between the estimated covariance and a metric capable of reflecting CI. To achieve this,240

we employ the nodewise regression which effectively builds the connection between covariance241

and precision matrix. Suppose we can access observations {x1,x2, . . . ,xn} from latent continuous242

variables X = (X1, . . . , Xp) ∼ N(0,Σ), nodewise regression will do regression on every dimension243

with all other dimensions as predictors.244

xij1 =
∑
j1 ̸=j2

xij2βj + ϵij1 . (10)

It can be shown that there are deterministic relationships between the regression coefficients and the245

covariance and precision matrices of X , as illustrated below and proved in App. A.7.1.246

βj = Σ−1
−j−jΣ−jj ∈ Rp−1, βj,k = −ωj,k

ωj,j
, j ̸= k, (11)

where Σ−j−j is the submatrix of Σ without jth column and jth row, and the Σ−jj is the vector of jth247

column without jth row. βj,k ∈ R is the surrogate of ωj,k to capture the independence relationship of248

Xj with Xk conditioning on other variables. We can use Def. 2.2, Def. 2.3 and Def. 2.4 to get the249

estimation Σ̂−j−j and Σ̂−jj and thus get the estimation β̂j .250
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Statistical Inference for βj,k Nodewise regression offers a robust solution for the estimation251

problem. A pertinent inquiry pertains to the construction of the distribution of β̂j − βj . It is crucial252

to recognize that the distribution of σ̂j1,j2 − σj1,j2 is already established. Therefore, if we can253

conceptualize β̂j − βj as a linear combination of σ̂j1,j2 − σj1,j2 , the problem is directly solved, i.e.,254

the β̂j − βj is linear combination of dependent Gaussian variables. The underlying relationship255

between these variables is as follows:256

β̂j − βj = −Σ̂−1
−j−j

(
(Σ̂−j−j −Σ−j−j)βj − (Σ̂−jj −Σ−jj)

)
.

The derivation is provided in App. A.7.2. For ease of notation, we further express the distribution of257

the difference between the estimated covariance and the true covariance as258

σ̂j1,j2 − σj1,j2 =
1

n

n∑
i=1

ξij1,j2 . (12)

The specific form of ξij1,j2 is given in App. A.4, A.5, A.6 respectively for different cases. For259

notational convenience, we express Σ̂−j−j − Σ−j−j = 1
n

∑n
i=1 Ξ

i
−j,−j and Σ̂−jj − Σ−jj =260

1
n

∑n
i=1 Ξ

i
−j,j , where ξj1,j2 is the element of the matrix Ξ at the position indexed by (j1, j2). We261

now propose the statistic and its asymptotic distribution for the CI test in the following theorem.262

Theorem 2.9 (Conditional Independence test). In our settings, under the null hypothesis that Xj and263

Xk are conditional statistically independent given a set of variables Z, i.e., βj,k = 0, the statistic264

β̂j,k = (Σ̂−1
−j−jΣ̂−jj)[k], (13)

where [k] denotes the element corresponding to the variable Xk in Σ̂−1
−j−jΣ̂−jj . The statistic β̂j,k265

has the asymptotic distribution:266

β̂j,k ∼ N(0, a[k]
T 1

n2

n∑
i=1

vec(Bi
−j)vec(B

i
−j)

T )a[k]),

267

where Bi =

[
Ξi
−j,−j

Ξi
−j,j

]
, a

[k]
l =


(
Σ̂−1

−j−j

)
[k],l

, for l ∈ {1, . . . , p− 1}∑n
q=1

(
Σ̂−1

−j−j

)
[k],l

(
β̃j

)
q
, for l ∈ {p, . . . , p2 − p}

and β̃j is βj whose βj,k = 0.268

In practice, we can plug in the estimation of regression parameter β̂j and set β̂j,k = 0 as the269

substitution of β̃j to calculate the variance and do the CI test. Specifically, we can obtain the β̂j,k270

using Eq. (13) where the estimated covariance terms can be calculated by solving the bridge equation271

Eq. 2. Under the null hypothesis that βj,k = 0 (conditional independence), we can take the calculated272

β̂j,k into the distribution defined in Thm. 2.9 and obtain the p-value. If the p-value is smaller than the273

predefined significance level α (normally set at 0.05), we will infer the tested pairs are conditionally274

dependent; otherwise, we do not. The detailed derivation of the Thm. 2.9 can be found in App. A.7.2.275

3 Experiments276

We applied the proposed method DCT to synthetic data to evaluate its practical performance and277

compare it with Fisher-Z test [14] (for all three data types) and Chi-Square test [15] (for discrete data278

only) as baselines. Specifically, we investigated its Type I and Type II error and its application in279

causal discovery. The experiments investigating its robustness, performance in denser graphs and280

effectiveness in a real-world dataset can be found in App. C.281

3.1 On the Effect of the Cardinality of Conditioning Set and the Sample Size282

Our experiment investigates the variations in Type I and Type II error (1 minus power) probabilities283

under two conditions. In the first scenario, we focus on the effects of modifying the sample size,284

denoted as n = (100, 500, 1000, 2000), while conditioning on a single variable. In the second, the285

sample size is held constant at 2000, and we vary the cardinality of the conditioning set, represented286
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Continuous

Mixed

Discrete

(a) Type I and Type II error for D=1, n=(100,500,1000,2000) (b) Type I and Type II error for D=(1,2,3,4,5)  n=2000

𝛼 = 0.05

Figure 2: Comparison of results of Type I and Type II error (1− power) for all three types of tested
data (continuous, mixed, discrete) and different number of samples and cardinality of conditioning set.
The suffix attached to a test’s name denotes the cardinality of discretization; for example, "Fsherz_4"
signifies the application of the Fsher-z test to data discretized into four levels. Chi-square test is only
applicable for the discrete case.

as D = (1, 2, . . . , 5). It is assumed that every variable within this conditioning set is effective, i.e.,287

they influence the CI of the tested pairs. We repeat each test 1500 times.288

We use Y,W to denote the variables being tested and use Z to denote the variables being conditioned289

on. The discretized versions of the variables are denoted with a tilde symbol (e.g., Z̃). For both con-290

ditions, we evaluate three distinct types of observations of tested variables: continuous observations291

for both variables (Y,W ), discrete observations for both variables (Ỹ , W̃ ) and a mixed type (Ỹ ,W ).292

The variables in the conditioning set will always be discretized observations (Z̃).293

To see how well the derived asymptotic null distribution approximates the true one, we verify if294

the probability of Type I error aligns with the significance level α preset in advance. We generate295

true continuous multivariate Gaussian data Y,W from Zi (single i = 1 for the first scenario, and296

summed over n for the second), structured as aiZi + E and
∑n

i=1 aiZi + E, where ai is sampled297

from U(0.5, 1.5) and E follows a standard normal distribution, independent of all other variables.298

This ensures Y ⊥⊥W |Z. The data are then discretized into K = (2, 4, 8, 12) levels, with boundaries299

randomly set based on the variable range. The first column in Fig. 2 (a) (b) shows the resulting300

probability of Type I errors at the significance level α = 0.05 compared with other methods.301

A good test should have as small a probability of Type II error as possible, i.e., a larger power. To302

test the power of our DCT, we generate the continuous multivariate Gaussian data Zi from Y,W ;303

constructed as Zi = aiY + biW + E, where ai, bi are sampled from U(0.5, 1.5) and E follows a304

standard normal distribution independent with all others, i.e., Y ̸⊥⊥W |Z. The same discretization305

approach is applied here. The second column in Fig. 2 (a) (b) shows the Type II error with the306

changing number of samples and cardinality of the conditioning set compared with other methods.307

From Fig. 2 (a), we note that the Type I error rates with our derived null distribution are well-308

approximated at 0.05 across all three data types in both scenarios. In contrast, other testing methods309

show significantly higher Type I error rates, increasing with the number of samples and the size of310

the conditioning set. This indicates that such methods are more prone to erroneously concluding311

that tested variables are conditionally dependent. Additionally, while alternative tests demonstrate312

considerable power with smaller sample sizes, our approach requires a sample size of 2000 to achieve313

satisfactory power, particularly in mixed and continuous cases. A possible explanation for this314

phenomenon is that our method binarizes discretized data, which may not effectively utilize all315

observations. This aspect warrants further investigation in future research. Moreover, our test shows316

remarkable stability in response to changes in the number of conditioning sets.317
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(a) fixed nodes p = 8, changing sample size n = (500, 1000, 5000, 1000)

(b) fixed sample size n = 5000, changing node p = (4, 6, 8, 10)

Figure 3: Experiment result of skeleton discovery on synthetic data for changing sample size (a) and
changing number of nodes (b). Fisherz_nodis is the Fisher-z test applied to original continuous data.
We evaluate F1 (↑), Precision (↑), Recall (↑) and SHD (↓).

3.2 Application in Causal Discovery318

Causal discovery aims to recover the true causal structure from the data. Constraint-based causal319

discovery methods like the PC algorithm [30] rely on testing CI from observations to discover causal320

graphs. However, in the presence of discretization, failures in testing CI leads to false conclusions321

about causal graphs. To evaluate the efficacy of the DCT, we construct causal graphs utilizing the322

Bipartite Pairing (BP) model as detailed in [2], with the number of edges being one fewer than323

the number of nodes. The detailed generation process is provided in App. B due to limited space.324

Our experiment is divided into two scenarios: (a) fixed data samples n = 5000, with changing325

number of nodes p = (4, 6, 8, 10); (b) fixed number of nodes p = 8 and changing sample sizes326

n = (500, 1000, 5000, 10000).327

Comparative analysis is conducted using the PC algorithm integrated with different testing methods.328

Specifically, we compare DCT against the Fisher-Z test applied to discretized data, the chi-square329

test, and the Fisher-Z test on original continuous data, the latter serving as a theoretical upper bound330

for comparison. Since the PC algorithm can only return a completed partially directed acyclic graph331

(CPDAG), we use the same orientation rules [11] implemented by Causal-DAG [6] to convert a332

CPDAG into a DAG. We evaluate both the undirected skeleton and the directed graph using criteria333

such as structural Hamming distance (SHD), F1 score, precision, and recall. For each setting, we334

run 10 graph instances with different seeds and report the mean and standard deviation of skeleton335

discovery in Fig. 3, and DAG in Fig. 4 in App B.336

According to the result, DCT exhibits performance nearly on par with the theoretical upper bound337

across metrics such as F1 score, precision, and Structural Hamming Distance (SHD) when the number338

of variables (p) is small and the sample size (n) is large. Despite a decline in performance as the339

number of variables increases with a smaller sample size, DCT significantly outperforms both the340

Fisher-Z test and the Chi-square test. Notably, in almost all settings, the recall of DCT is lower than341

that of the baseline tests, which is a reasonable outcome since these tests tend to infer conditional342

dependencies, thereby retaining all edges given the discretized observations. For instance, a fully343

connected graph, would achieve a recall of 1.344

4 Conclusion345

In this paper, we present a new testing method tailored for scenarios commonly encountered in346

real-world applications, where variables, though inherently continuous, are only observable in their347

discretized forms. Our method distinguishes itself from existing CI tests by effectively mitigating the348

misjudgment introduced by discretization and accurately recovering the CI relationships of latent349

continuous variables. We substantiate our approach with theoretical results and empirical validation,350

underscoring the effectiveness of our testing methods.351
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467

A Proof of Things468

A.1 Proof of θ̂ p→ θ0469

Lemma A.1. For the estimation θ̂ which is calculated using bridge equation 2.4 2.2 2.3,470

as a zero of Ψn defined in Eq. (26),(33), (36) , will converge in probability to θ0 =471

(σj1,j2 , hj1 , hj2), (σj1,j2 , hj2), (σj1,j2) respectively.472

Proof We first focus on the most challenging one where both variables are discrete. According to473

the law of large numbers, for the estimated boundary ĥj1 and ĥj2 whose calculations are defined as474
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ĥj = Φ−1(1− τ̂j), we should have475

n→ ∞, τ̂j =
1

n

n∑
i=1

1{x̃i
j>PnX̃j}

p→ P(X̃j > E[X̃j ]). (14)

Recall the definition P(X̃j > E[X̃j ]) = 1− Φ(hj), according to continuous mapping theorem [34],476

as long as the function Φ−1(1 − ·) is continuous, we should have ĥj
p→ hj . And thus ĥj1

p→ hj1 ,477

ĥj2
p→ hj2 .478

We have τ̂j1,j2 = Φ̄(ĥj1 , ĥj2 , σ̂j1,j2) and the estimation σ̂j1,j2 can be obtained through solving the479

function. Similarly, we also have480

n→ ∞, τ̂j1,j2 =
1

n

n∑
i=1

1{x̃i
j1

>PnX̃j1
}1{x̃i

j2
>PnX̃j2

}
p→ P(x̃ij1 > E[X̃j1 ], x̃

i
j2 > E[X̃j2 ]) = τj1,j2 .

(15)
Similarly, according to the continuous mapping theorem, we have σ̂j1,j2

p→ σj1,j2 . Thus, the481

parameter (σ̂j1,j2 , ĥj1 , ĥj2)
p→ (σj1,j2 , hj1 , hj2).482

Apparently, the result above could easily extend to the mixed case where we fix ĥ1 = h1 = 0. Using483

the same procedure, we should have (σ̂j1,j2 , ĥj2)
p→ (σj1,j2 , hj2).484

For the continuous case whose estimated variance is calculated as σ̂j1,j2 = 1
n

∑n
i=1 x

i
j1
xij2 −485

1
n

∑n
i=1 x

i
j1

1
n

∑n
i=1 x

i
j2
., according to law of large numbers, we should have486

n→ ∞, σ̂j1,j2 =
1

n

n∑
i=1

xij1x
i
j2−

1

n

n∑
i=1

xij1
1

n

n∑
i=1

xij2
p→ E(Xj1Xj2)−E(Xj1)E(Xj2) = σj1,j2 .

(16)

A.2 Proof of one-to-one mapping between τ̂j1,j2 with σ̂j1,j2487

Lemma A.2. For any fixed ĥj1 and ĥj2 , T (σj1,j2 ; {ĥj1 , ĥj2}) =488 ∫
x1>ĥj1

∫
x2>ĥj2

ϕ(xj1 , xj2 ;σ)dxj1dxj2 , is a strictly monotonically increasing function on489

σ ∈ (−1, 1).490

Proof To prove the lemma, we just need to show the gradient ∂T (σj1,j2
;{ĥj1

,ĥj2
}

∂σ > 0 for σ ∈ (−1, 1).491

∂T (σj1,j2 ; {ĥj1 , ĥj2}
∂σ

==
1

2π
√
(1− σ2)

exp

(
−
(ĥ2j1 − 2σĥj1 ĥj2 + ĥ2j2)

2(1− σ2)

)
, (17)

which is obviously positive for σ ∈ (−1, 1). Thus, we have one-to-one mapping between τ̂j1j2 with492

the calculated σ̂j1,j2 for fixed ĥj1 and ĥj2 .493

A.3 Proof of Thm. 2.5494

In this section, we provide the proof of Thm. 2.5, which utilizes a regular statistical tool: Z-estimator495

[33]. Specifically, we are interested in the parameter θ and we have it estimation θ̂. Let x1, . . . ,xn496

are sampled from some true distribution P , we can construct the function characterized by the497

parameter θ related the x as ψθ(x). As long as we have n observations, we can construct the function498

as follows499

Ψn(θ) =
1

n

n∑
i=1

ψθ(xi) = Pnψθ. (18)

We further specify the form500

Ψ(θ) =

∫
ψθ(x)dx = Pψθ. (19)

Assume the estimator θ̂ is a zero of Ψn, i.e., Ψn(θ̂) = 0 and will converge in probability to θ0, which501

is a zero of Ψ, i.e., Ψ(θ0) = 0. Expand Ψn(θ̂) in a Taylor series around θ0, we should have502

0 = Ψn(θ̂) = Ψn(θ0) + (θ̂ − θ0)Ψ
′
n(θ0) +

1

2
(θ̂ − θ0)Ψ

′′
n(θ0). (20)
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Rearrange the equation above, we have503

θ̂ − θ0 = − Ψn(θ0)

Ψ′
n(θ0) +

1
2 (θ̂ − θ0)Ψ′′

n(θ0)

= −
1
n

∑n
i=1 ψθ(xi)

Ψ′
n(θ0) +

1
2 (θ̂ − θ0)Ψ′′

n(θ0)
.

(21)

According to the central limit theorem, the numerator will be asymptotic normal with variance504

Pψ2
θ0
/n as the mean Ψ(θ0) = 0 is zero. The first term of denominator Ψ′

n(θ0) will converge in505

probability to Ψ′(θ0) according to the law of large numbers. The second term θ̂ − θ0 = oP (1). 1506

As long as the denominator converges in probability and the numerator converges in distribution,507

according to Slusky’s lemma, we have508

√
n(θ̂ − θ0)⇝ N

(
0,

Pψ2
θ0

(Pψ′
θ0
)2

)
. (22)

Extend into the high-dimensional case we should have509

θ̂ − θ0 = −(Ψ′
n(θ0))

−1Ψn(θ0), (23)
where the second order term is omitted, further assume the matrix Pψ′

θ0
is invertible, we have510

√
n(θ̂ − θ0)⇝ N

(
0, (Pψ′

θ0)
−1Pψθ0ψ

T
θ0(Pψ

′T
θ0 )

−1
)
, (24)

Specifically, in our case θ0 = (σj1,j2 ,Λ), where Λ is another parameter set influencing the estimation511

of σj1,j2 (will discuss case in case in later proof). In the practical scenario, we only have access to512

the estimated parameter θ̂ and the empirical distribution Pn, thus we have513

σ̂j1,j2 − σj1,j2
approx∼ N

(
0, ((Pnψ

′
θ̂
)−1Pnψθ̂ψ

T
θ̂
(Pnψ

′T
θ̂
)−1)1,1

)
. (25)

Under the null hypothesis of independent, σj1,j2=0. We provide the proof that θ̂
p→ θ0 of our case514

in App. A.1. Thus, Pnψθ̂, the function parameterized by θ̂, should also converge in Pnψθ̂0
when515

n → ∞. Besides, by the law of large numbers, Pnψθ̂0
will converge to Pψθ̂0

. Thus, the equation516

above will converge to Eq. (24) when n→ ∞.517

A.4 Derivation of Lem. 2.7518

Let’s first focus on the most challenging case where both variables are discretized observations519

and our interested parameter will include θ̂ = (σ̂j1,j2 , ĥj1 , ĥj2) (Although we only care about the520

distribution of σ̂j1,j2 − σj1,j2 , the estimation of boundary ĥj1and ĥj2 will influence the estimation of521

σ̂j1,j2 , thus we need to consider all of them).522

The next step will be to construct an appropriate criterion function ψ such that Ψn(θ̂) = 0. Given n523

observations {x̃1, x̃2, . . . , x̃n}, which are discretized version of {x1,x2, . . . ,xn} we should have524

Ψn(θ̂) =

Ψn(σ̂j1,j2)

Ψn(ĥj1)

Ψn(ĥj2)

 =
1

n

n∑
i=1

ψθ̂(x̃
i) =

1

n

n∑
i=1

τ̂ ij1,j2 − T (σ̂j1,j2 ; {ĥj1 , ĥj2})
τ̂ ij1 − Φ̄(ĥj1)

τ̂ ij2 − Φ̄(ĥj2)

 = 0. (26)

525

Ψn(θ0) =

(
Ψn(σj1,j2)
Ψn(hj1)
Ψn(hj2)

)
=

1

n

n∑
i=1

ψθ0(x̃
i) =

1

n

n∑
i=1

τ̂ ij1,j2 − T (σj1,j2 ; {hj1 , hj2})
τ̂ ij1 − Φ̄(hj1)
τ̂ ij2 − Φ̄(hj2)

 . (27)

The difference between the estimated parameter with the true parameter can be expressed as526

θ̂ − θ0 =

σ̂j1,j2 − σj1,j2
ĥj1 − hj1
ĥj2 − hj2

 = − 1

n

n∑
i=1


∂Ψn(σj1,j2 )

∂σj1,j2

∂Ψn(σj1,j2 )

∂hj1

∂Ψn(σj1,j2 )

∂hj2
∂Ψn(hj1

)

∂σj1,j2

∂Ψn(hj1
)

∂hj1

∂Ψn(hj1
)

∂hj2
∂Ψn(hj2

)

∂σj1,j2

∂Ψn(hj2
)

∂hj1

∂Ψn(hj2
)

∂hj2


−1

·

τ̂ ij1,j2 − T (σj1,j2 ; {hj1 , hj2})
τ̂ ij1 − Φ̄(hj1)
τ̂ ij2 − Φ̄(hj2)

 , (28)

1We will not provide proof of this in this paper; however, interested readers may refer to [33]
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where the specific form of each entry of the gradient matrix is expressed as527

∂Ψn(σj1,j2)

∂σj1,j2
= − 1

2π
√

(1− σ2
j1,j2

)
exp

(
−
(h2j1 − 2σj1,j2hj1hj2 + h2j2)

2(1− σ2
j1,j2

)

)
;

∂Ψn(σj1,j2)

∂hj1
=

∫ ∞

hj2

1

2π
√

1− σ2
j1,j2

exp

(
−
h2j1 − 2σj1,j2hj1x2 + x22

2(1− σ2
j1,j2

)

)
dx2;

∂Ψn(σj1,j2)

∂hj2
=

∫ ∞

hj1

1

2π
√

1− σ2
j1,j2

exp

(
−h

2
2 − 2σj1,j2hj2x1 + x21

2(1− σ2
j1,j2

)

)
dx1;

∂Ψn(hj1)

∂σj1,j2
= 0;

∂Ψn(hj1)

∂hj1
=

1√
2π

exp

(
−
h2j1
2

)
;

∂Ψn(hj1)

∂hj2
= 0;

∂Ψn(hj2)

∂σj1,j2
= 0;

∂Ψn(hj2)

∂hj1
= 0;

∂Ψn(hj2)

∂hj2
=

1√
2π

exp

(
−
h2j2
2

)
.

(29)

For simplicity of notation, we define528

σ̂j1,j2 − σj1,j2 =
1

n

n∑
i=1

ξij1,j2 , (30)

where the specific form is of {ξij1,j2} is defined in Eq. (28). We should note that {ξij1,j2} are i.i.d529

random variables with mean zero (this property will be the key to the derivation of inference of CI).530

As long as our estimation θ̂ converge in probability to θ0 as proved in A.1, we have531

√
n(θ̂ − θ0)⇝ N

(
0, ((Pψ′

θ0)
−1Pψθ0ψ

T
θ0(Pψ

′T
θ0 )

−1)1,1
)
, (31)

where ψθ0 is defined in Eq. (27). However, in practice, we don’t have access to either P or θ0. In this532

scenario, we can plug in the empirical distribution of Pnψθ̂ to get the estimated variance, i.e., the533

actual variance used in the calculation of σ̂j1,j2 − σj1,j2 is534

1

n

(
(Pnψ

′
θ̂
)−1Pnψθ̂ψ

T
θ̂
(Pnψ

′T
θ̂
)−1
)
1,1
. (32)

A.5 Derivation of Lem. 2.8535

Use the same line of procedure as in the derivation of Lem. 2.7, for mixed pair of observations where536

Xj1 is continuous and X̃j2 is discrete, we can construct the criterion function537

Ψn(θ̂) =

(
Ψn(σ̂j1,j2)

Ψn(ĥj2)

)
=

1

n

n∑
i=1

ψθ̂(x̃
i) =

1

n

n∑
i=1

(
τ̂ ij1,j2 − T (σ̂j1,j2 ; {0, ĥj2})

τ̂ ij2 − Φ̄(ĥj2)

)
= 0. (33)

538

Ψn(θ0) =

(
Ψn(σj1,j2)
Ψn(hj2)

)
=

1

n

n∑
i=1

ψθ0(x̃
i) =

1

n

n∑
i=1

(
τ̂ ij1,j2 − T (σj1,j2 ; {0, hj2})

τ̂ ij2 − Φ̄(hj2)

)
. (34)
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The difference between the estimated parameter with the true parameter can be expressed as539

θ̂−θ0 =

(
σ̂j1,j2 − σj1,j2
ĥj2 − hj2

)
= − 1

n

n∑
i=1

∂Ψn(σj1,j2
)

∂σj1,j2

∂Ψn(σj1,j2
)

∂hj2
∂Ψn(hj2 )

∂σj1,j2

∂Ψn(hj2 )

∂hj2

−1(
τ̂ ij1,j2 − T (σj1,j2 ; {0, hj2})

τ̂ ij2 − Φ̄(hj2).

)
,

(35)
where the specific form of each entry of the gradient matrix can be found in Eq. (29). Using exactly540

the same procedure, we should have the same formation of the variance calculated as Eq. (32) with a541

different definition of ψθ0 and ψθ̂ defined in Eq. (34) (33).542

A.6 Derivation of Lem. 2.6543

Use the same line of procedure as in derivation of Lem. 2.7, for a continuous pair of variables, we544

can construct the criterion function545

Ψn(θ̂) = Ψn(σ̂j1,j2) =
1

n

n∑
i=1

xij1x
i
j2 −

1

n

n∑
i=1

xij1
1

n

n∑
i=1

xij2 − σ̂j1,j2 = 0. (36)

546

Ψn(θ0) = Ψn(σj1,j2) =
1

n

n∑
i=1

xij1x
i
j2 −

1

n

n∑
i=1

xij1
1

n

n∑
i=1

xij2 − σj1,j2 . (37)

Denote 1
n

∑n
i=1 x

i
j1

as x̄j1 and 1
n

∑n
i=1 x

i
j2

as x̄j2 . We should have547

σ̂j1,j2 − σj1,j2 =
1

n

n∑
i=1

xij1x
i
j2 − x̄j1 x̄j2 − σj1,j2 . (38)

According to Eq. (22), we have548

√
n(σ̂j1,j2 − σj1,j2)⇝ N

(
0,

Pψ2
θ0

(Pψ′
θ0
)2

)
. (39)

where (Pψ′
θ0
)2 = 1. In practical calculation, we have the variance549

1

n
Pnψ

2
θ̂
/(Pnψ

′
θ̂
)2 =

1

n2

n∑
i=1

(xij1x
i
j2 − x̄j1 x̄j2 − σ̂j1,j2)

2. (40)

A.7 Proof of Thm. 2.9550

A.7.1 Proof of Relation between Σ, Ω with β551

Consider our latent continuous variables X = (X1, . . . , Xp) ∼ N(0,Σ) and do nodewise regression552

Xj = X−jβj + ϵj . (41)

We can divide its covariance Σ and its precision matrix Ω = Σ−1 intoX and Y part in our regression:553

Σ =

(
Σjj Σj−j

Σ−jj Σ−j−j

)
Ω =

(
Ωjj Ωj−j

Ω−jj Ω−j−j

)
. (42)

Just like regular linear regression, we can get554

n→ ∞, βj = Σ−1
−j−jΣ−jj . (43)

From the invertibility of a block matrix555 [
A B
C D

]−1

=

[
(A−BD−1C)−1 −(A−BD−1C)−1BD−1

−D−1C(A−BD−1C)−1 D−1 +D−1C(A−BD−1C)−1BD−1

]
. (44)

If A and D is invertible, we will have556 [
A B
C D

]−1

=

[
A−BD−1C 0

0 (D − CA−1B)−1

] [
I −BD−1

−CA−1 I

]
. (45)
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Thus, we can get:557

Ωjj = Σjj − (Σj−jΣ
−1
−j−jΣ−jj)

−1;

Ωj−j = −
(
Σjj − (Σj−jΣ

−1
−j−jΣ−jj)

−1
)
Σj−j(Σ−j−j)

−1.
(46)

Move one step forward:558

−Ω−1
jj Ωj−j = Σj−j(Σ−j−j)

−1. (47)

Take transpose for both sides, as long as Ω is a symmetric matrix and Ω−jj = ΩT
j−j , we will have559

−Ω−1
jj Ω−jj = Σ−1

−j−jΣ−jj = βj . (48)

We should note testing Ω−jj = 0 is equivalent to testing βj = 0 as the Ωjj will always be nonzero.560

The variable Ω−jj captures the CI of Xj with other variables. As long as the variable Ωjj is just one561

scalar, we can get562

βj,k = −ωj,k

ωj,j
(49)

capturing the independence relationship between variable Xj with Xk conditioning on all other563

variables.564

A.7.2 Detailed derivation of inference for βj565

Nodewise regression allows us to use the regression parameter βj as the surrogate of Ω−jj . The566

problem now transfers to constructing the inference for βj , specifically, the derivation of distribution567

of β̂j − βj . The overarching concept is that we are already aware of the distribution of σ̂j1,j2 − σj1,j2568

and we know that there exists a deterministic relationship between βj with Σ. Consequently, we can569

express β̂j −βj as a composite of σ̂j1,j2 −σj1,j2 to establish such an inference. Specifically, we have570

β̂j − βj = Σ̂−1
−j−jΣ̂−jj −Σ−1

−j−jΣ−jj

= Σ̂−1
−j−j

(
Σ̂−jj − Σ̂−j−jΣ

−1
−j−jΣ−jj

)
= −Σ̂−1

−j−j

(
Σ̂−j−jβj −Σ−j−jβj +Σ−j−jβj − Σ̂−jj

)
= −Σ̂−1

−j−j

(
(Σ̂−j−j −Σ−j−j)βj − (Σ̂−jj −Σ−jj)

)
,

(50)

where each entry in matrix (Σ̂−j−j −Σ−j−j) and (Σ̂−jj −Σ−jj) denotes the difference between571

estimated covariance with true covariance. Suppose that we want to test the CI of the variable X1572

with other variables, j = 1, then573

Σ̂−j−j −Σ−j−j =


σ̂1,1 . . . σ̂1,j−1, σ̂1,j+1 . . . σ̂1,p

. . .
σ̂j−1,1 . . . σ̂j−1,j−1, σ̂j−1,j+1 . . . σ̂j−1,p

. . .
σ̂p,1 . . . σ̂p,j−1, σ̂p,j+1 . . . σ̂p,p

 (51)

−


σ1,1 . . . σ1,j−1, σ1,j+1 . . . σ1,p

. . .
σj−1,1 . . . σj−1,j−1, σj−1,j+1 . . . σj−1,p

. . .
σp,1 . . . σp,j−1, σp,j+1 . . . σp,p.

 . (52)

Suppose that we want to test the CI of the variable X1 with other variables, j = 1. then574

Σ̂−1−1 −Σ−1−1 =

[
σ̂2,2 . . . σ̂2,p

. . .
σ̂p,2 . . . σ̂p,p

]
−

[
σ2,2 . . . σ2,p

. . .
σp,2 . . . σp,p

]
(53)

:=
1

n

n∑
i=1

ξi2,2 . . . ξi2,p. . .
ξip,2 . . . ξ

i
p,p

 , (54)
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where {ξij1,j2} are i.i.d random variables with specific form defined in Eq. (28) for discrete case,575

Eq. (35) for mixed case and Eq. (38) in continuous case. Put them together:576 
β̂1,2 − β1,2
β̂1,3 − β1,3

. . .

β̂1,p − β1,p

 = −Σ̂−1
−1−1

1

n

n∑
i=1



ξi2,2 ξi2,3 . . . ξi2,p
ξi3,2 ξi3,3 . . . ξi3,p
. . . . . . . . . . . .
ξip,2 ξip,3 . . . ξip,p


β1,2β1,3
. . .
β1,p

−


ξi2,1
ξi3,1
. . .
ξip,1


 . (55)

As 1
n

∑n
i=1 ξ

i
j1,j2

is asymptotically normal, the who vector of β̂1 − β1 is a linear combination of577

Gaussian distribution. However, We cannot merely engage in a linear combination of its variance as578

they are dependent with each other. For example, if Y1, Y2 are dependent and we are trying to find579

out V ar(aY1 + bY2), we should have580

V ar(aY1 + bY2) = [a b]

[
V ar(Y1) Cov(Y1, Y2)

Cov(Y1, Y2) V ar(Y2)

] [
a
b

]
. (56)

Now, suppose we are interested in the distribution of β̂1,2 − β1,2, we should have581

β̂1,2 − β1,2 =
1

n

n∑
i=1

(Σ̂−1
−1−1)[2],:



ξi2,2 ξi2,3 . . . ξi2,p
ξi3,2 ξi3,3 . . . ξi3,p
. . . . . . . . . . . .
ξip,2 ξip,3 . . . ξip,p


β1,2β1,3
. . .
β1,p

−


ξi2,1
ξi3,1
. . .
ξip,1


 , (57)

where (Σ̂−1
−1−1)[2],: is the row of index of X2 of Σ̂−1

−1−1 ([2] denotes the index of the variable). For582

ease of notation, let583

Ξi
−1,−1 =


ξi2,2 ξi2,3 . . . ξi2,p
ξi3,2 ξi3,3 . . . ξi3,p
. . . . . . . . . . . .
ξip,2 ξip,3 . . . ξip,p

 , Ξi
−1,1 =


ξi2,1
ξi3,1
. . .
ξip,1

 , (58)

and let584

Bi
−1 =


ξi2,1 ξi3,1 . . . ξip,1
ξi2,2 ξi2,3 . . . ξi2,p
ξi3,2 ξi3,3 . . . ξi3,p
. . . . . . . . . . . .
ξip,2 ξip,3 . . . ξip,p

 (59)

as the concatenation of those two matrices. The variance is calculated as585

V ar
(√

n(β̂1,2 − β1,2)
)
= a[2]

T 1

n

n∑
i=1

vec(Bi
−1)vec(B

i
−1)

Ta[2], (60)

where586

a
[2]
l =


(
Σ̂−1

−1−1

)
[2],l

, for l ∈ {1, . . . , p− 1}∑n
q=1

(
Σ̂−1

−1−1

)
[2],l

(β1)q , for l ∈ {p, . . . , p2 − p}
(61)

vec(Bi
−1) is the squeezed vector form of matrix vec(Bi

−1) ∈ Rp×p−1, i.e.,587

vec(Bi
−1) =


ξi2,1
ξi3,1

...
ξip,p

 . (62)

Thus, the distribution of β̂j,k − βj,k is588

β̂j,k − βj,k ∼ N(0, a[k]
T 1

n2

n∑
i=1

vec(Bi
−j)vec(B

i
−j)

T )a[k]). (63)

In practice, we can plug in the estimates of βj to estimate the interested distribution and do the CI589

test by hypothesizing βj,k = 0.590
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A.8 Discussion of assumption of zero mean and identity variance591

In this section, we engage in a more thorough discussion regarding our assumptions about X .592

Specifically, we demonstrate that this assumption of mean and variance does not compromise the593

generality. In other words, the true model may possess different mean and variance values, but we594

proceed by treating it as having a mean of zero and identity variance.595

The key ingredient allowing us to assume such a model is, the discretization function gj is an unknown
nonlinear monotonic function. Suppose the g′j maps the continuous domain to a binary variable, and
we have the "groundtruth" variable, denoted X ′

j , with mean a and variance b. Assume the cardinality
of the discretized domain is only 2, i.e., our observation X̃j can only be 0 or 1. We further have the
constant d′j as the discretization boundary such that we have the observation

X̃j = 1(g′j(X
′
j) > d′j) = 1(X ′

j > g′−1
j (dj))

We can always produce our assumed variable Xj with mean 0 and variance 1, such that Xj =596
1√
b
X ′

j − a√
b

and the same observation with a different nonlinear transformation gj and decision597

boundary dj , such that598

X̃j = 1(gj(Xj) > dj) = 1(Xj > g−1
j (dj)) = 1(X ′

j >
√
bg−1

j (dj) + a)

As long as the observation X̃j is the same, we should have
√
bg−1

j (dj)+a = g′−1
j (dj). Our assumed599

model Xj clearly mimics the "groundtruth" X ′
j . Besides, according to Lem. A.2, we have one-to-600

one mapping between τ̂j1j2 with the estimated covariance for fixed ĥj1 , ĥj2 . Thus, as long as the601

observation is the same, the estimation of covariance σ̂j1,j2 remains unaffected by our assumptions602

regarding the mean and variance of X , so do the following inference.603

We further conduct casual discovery experiments to empirically validate our statement, which is604

shown in App. C.3.605
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B Data Generation and Figure of main experiments: causal discovery606

Data Generation and Code We construct the true DAG G using the Bipartite Pairing (BP) model607

[2], with the number of edges being one fewer than the number of nodes. The subsequent generation of608

true multivariate Gaussian data involves assigning causal weights drawn from a uniform distribution609

U ∼ (0.5, 2) and incorporating noise via samples from a standard normal distribution for each610

variable. Following this, we binarize the data, setting the threshold randomly based on each variable’s611

range. The code implementation is based on [40] .612

(a) fixed nodes p = 8, changing sample size n = (500, 1000, 5000, 1000)
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(b) fixed sample size n = 5000, changing node p = (4, 6, 8, 10)

Figure 4: Experiment result of DAG discovery on synthetic data for changing sample size (a) and
changing number of nodes (b). Fisherz_nodis is the Fisher-z test applied to original continuous data.
We evaluate F1 (↑), Precision (↑), Recall (↑) and SHD (↓).
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C Additional experiments613

C.1 Linear non-Gaussian and nonlinear614

Our model requires that the original data must adhere to the hypothesis of following a multivariate615

normal distribution, which appears to potentially limit the generalizability. Therefore, it is worthwhile616

to explore its robustness when such assumptions are violated. In this regard, we conducted several617

experiments, including scenarios involving linear non-Gaussian and nonlinear Gaussian.618

For both cases, we follow the setting of our experiment where there are p = 8 nodes and p − 1619

edges. We explore the effect of changing sample size n = (100, 500, 2000, 5000). Specifically for620

linear non-Gaussian case, we adhere to some of the settings outlined by [28], conducting experiments621

where the original continuous data followed: (1) a Student’s t-distribution with 3 degrees of freedom,622

(2) a uniform distribution, and (3) an exponential distribution. Each variable is generated as Xi =623

f(PAi) + noise, where noise follows the distribution in (1), (2), (3) correspondingly and f is a624

linear function. The first three rows of Fig. 5 and Fig. 6 show the result of the linear non-Gaussian625

case.626

For the nonlinear cases, we follow setting in [19], where every variable Xi is generated as Xi =627

f(WPAi + noise), noise ∼ N(0, 1) and f is a function randomly chosen from (a) f(x) = sin(x),628

(b) f(x) = x3, (c) f(x) = tanh(x), and (d) f(x) = ReLU(x). W is a linear function. Similarly,629

we set the number of nodes at p = 8 and change the number of samples n = (500, 2000, 5000).630

For both cases, we run 10 graph instances with different seeds and report the result of skeleton631

discovery in Fig. 5 and DAG in Fig. 6 (The same orientation rules [11] used in the main experiment632

are employed to convert a CPDAG [6] into a DAG). The last row of Fig. 5 and Fig. 6 shows the result633

of the nonlinear case.634

Based on the experimental outcomes, DCT demonstrates marginally superior or comparable efficacy635

in terms of the F1-score, precision, and SHD relative to both the Fisher-Z test and the Chi-square test636

when dealing with small sample sizes. Nevertheless, as the sample size increases, DCT’s performance637

clearly surpasses that of the aforementioned tests across all three evaluated metrics, especially in the638

linear case. Consistent with observations from the main experiment, DCT exhibits a lower recall in639

comparison to the baseline tests. This discrepancy can be attributed to the baseline tests being prone640

to incorrectly infer conditional dependence and connect a large proportion of nodes. According to641

the results, our test shows notable robustness under the case assumptions are violated, confirming its642

practical effectiveness.643

C.2 Denser graph644

DCT primarily works on cases where CI is mistakenly judged as conditional dependence due645

to discretization. Consequently, its efficacy is more pronounced in scenarios characterized by a646

relatively sparse graph, as numerous instances are truly conditionally independent. Nevertheless, the647

investigation of causal discovery with a dense latent graph is essential for evaluating the power of a648

test, i.e., its ability to successfully reject the null hypothesis when the tested pairs are conditionally649

dependent. Thus, we conduct the experiment where p = 8, n = 10000 and changing edges (p +650

2, p + 4, p + 6). Similarly, the latent continuous data follows a multivariate Gaussian model and651

the true DAG G is constructed using BP model. We run 10 graph instances with different seeds and652

report the result of the skeleton discovery and DAG in Fig. 7.653

According to the experiment results, DCT exhibits better performance in terms of the F1-score,654

precision, and SHD relative to both the Fisher-Z test and the Chi-square test. As the graph becomes655

progressively denser, the superiority of the Discrete Causality Test (DCT) correspondingly diminishes656

as there are few conditional independent cases in the true DAG. Due to the same reason, The recall657

remains lower than that of other baseline methods.658

C.3 multivariate Gaussian with nonzero mean and non-unit variance659

We employed a setting nearly identical to the main experiment, with the only difference being the660

alteration in data generation: instead of using a standard normal distribution, we used a Gaussian661

distribution with mean sampled from U(−2, 2) and variance sampled from U(0, 3). We fix the662

number of variables as p = 8 and change the number of samples n = (100, 500, 2000, 5000). The663

Fig. 8 shows the result and demonstrates the effectiveness of our method.664
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(a) Linear Exponential.

(b) Linear Student.

(c) Linear Uniform.

(d) Nonlinear Gaussian.

Figure 5: Experiment result of causal discovery on synthetic data with p = 8, n =
(100, 500, 2000, 5000) where the data generation process violates our assumptions. The data are
generated with either nongaussian distributed (a), (b), (c) or the relations are not linear (d). The figure
reports F1 (↑), Precision (↑), Recall (↑) and SHD (↓) on skeleton.

C.4 Real-world dataset665

To further validate DCT, we employ it on a real-world dataset: Big Five Personality666

https://openpsychometrics.org/, which includes 50 personality indicators and over 19000 data sam-667

ples. Each variable contains 5 possible discrete values to represent the scale of the corresponding668

questions, where 1=Disagree, 2=Weakly disagree, 3=Neutral, 4=Weakly agree and 5=Agree, e.g.,669

"N3=1" means "I agree that I worry about things". This scenario clearly suits DCT, where the degree670

of agreement with a certain question must be a continuous variable while we can only observe the671

result after categorization. We choose three variables respectively: [N3: I worry about things], [N10:672

I often feel blue ], [N4: I seldom feel blue]. We then do the casual discovery using PC algorithm with673

DCT and compare it with the Chi-square test and Fisher-Z test. The result can be found in Fig. 9.674

Based on the experimental outcomes, despite the absence of a groundtruth for reference, we observe675

that the results obtained via DCT appear more plausible than those derived from Fisher-Z and Chi-676

square tests. Specifically, DCT suggests the relationship N3 ⊥⊥ N4|N10, which is reasonable as677

intuitively, the answer of ’I often feel blue’ already captures the information of ’I seldom feel blue’.678
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(a) Linear Exponential.

(b) Linear Student.

(c) Linear Uniform.

(d) Nonlinear Gaussian.

Figure 6: Experiment result of causal discovery on synthetic data with p = 8, n =
(100, 500, 2000, 5000) where the data generation process violates our assumptions. The data are
generated with either nongaussian distributed (a), (b), (c) or the relations are not linear (d). The figure
reports F1 (↑), Precision (↑), Recall (↑) and SHD (↓) on DAG.

As a comparison, both Fisher-Z and Chi-square return a fully connected graph. The results directly679

correspond to our illustrative example shown in Fig. 1, substantiating the necessity of our proposed680

test.681
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Figure 7: Experimental comparison of causal discovery on synthetic datasets for denser graphs with
p = 8, n = 10000 and edges varying p+ 2, p+ 4, p+ 6. We evaluate F1 (↑), Precision (↑), Recall
(↑) and SHD (↓) on both skeleton and DAG.

Figure 8: Experimental comparison of causal discovery on synthetic datasets for multivariate Gaussian
model with p = 8, n = (100, 500, 2000, 5000) and where mean is not zero. We evaluate F1 (↑),
Precision (↑), Recall (↑) and SHD (↓) on both skeleton and DAG.

D Related Work682

Testing for CI is pivotal in the field of causal discovery [30], and a variety of methods exist for683

performing CI tests (CI tests). An important group of CI test methods involves the assumption of684

Gaussian variables with linear dependencies. For example, under this assumption, Gaussian graphical685

models are extensively studied [37, 25, 22, 26]. To address CI test under Gaussian assumption, partial686

correlation serves as a viable method for CI testing [4]. To evaluate the independence of variables687

X1 and X2 conditional on Z, The technique proposed by [32] determines CI by comparing the688

estimations of p(X1|X2,Z) and p(X1|X2).689
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[N3] I worry about things

[N10]

I often feel blue

[N4]

I seldom feel blue

(a) Fisher-Z test

[N3] I worry about things

[N10]

I often feel blue

[N4]

I seldom feel blue

(b) Chi-square test

[N3]

I seldom feel blue

[N10]

I often feel blueI worry about things

[N4]

(c) DCT

Figure 9: Experimental comparison of causal discovery on the real-world dataset.

Another approach involves discretizing Z and performing independent tests within each resulting bin690

[21]. Our work, however, diverges from these existing methods in two significant ways. Firstly, we691

are equipped to handle data, where partial variables are discretized. Additionally, we postulate that692

discrete variables are derived from the transformation of continuous variables in a latent Gaussian693

model. With the same assumption, the most closely related study is by [13], where the authors694

developed a novel rank-based estimator for the precision matrix of mixed data. However, their work695

stops short of providing a CI test for this method. Our research fills this gap, offering the ability to696

estimate the precision matrix for both discrete and mixed data and providing a rigorous CI test for697

our methodology.698

Recent advancements in CI testing have utilized kernel methods for continuous variables influenced699

by nonlinear relationships. [16] describes non-parametric CI relationships using covariance operators700

in reproducing kernel Hilbert spaces (RKHS). KCI test [38] assesses the partial associations of701

regression functions linking x, y, and z, while RCI test [31] aims to enhance the KCI test’s efficiency.702

In KCIP test [12] employs permutations of samples to emulate CI scenarios. CCI test [27] further703

reformulates testing into a process that leverages the capabilities of supervised learning models. For704

discrete variable analysis, the G2 test [1] and conditional mutual information [39] are commonly705

employed. However, their method cannot deal with our setting where only discretized version of706

latent variables can be observed.707

E Resource Usage708

All the experiments are run using Intel(R) Xeon(R) CPU E5-2680 v4 with 55 processors. It costs 4709

hours to run experiments in Section 3.1.710

F Limiation and Broader Impacts711

Limitation So far, the largest limitation of our method is to treat discretized variables as binary,712

which wastes the available information. Besides that, the parametric assumption limits its generaliz-713

ability. However, we need to point out this is pretty normal in CI test fields.714

Broader Impacts The goal of our proposed method is to test the conditional independence relation-715

ship given discretized observation. This task is essential and has broad applications. We are confident716

that our method will be beneficial and will not result in negative societal impacts.717
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