
Under review as a conference paper at ICLR 2018

LATENTPOISON – ADVERSARIAL ATTACKS ON THE
LATENT SPACE

Anonymous authors

Paper under double-blind review

ABSTRACT

Robustness and security of machine learning (ML) systems are intertwined,
wherein a non-robust ML system (classifiers, regressors, etc.) can be subject to
attacks using a wide variety of exploits. With the advent of scalable deep learning
methodologies, a lot of emphasis has been put on the robustness of supervised, un-
supervised and reinforcement learning algorithms. Here, we study the robustness
of the latent space of a deep variational autoencoder (dVAE), an unsupervised gen-
erative framework, to show that it is indeed possible to perturb the latent space, flip
the class predictions and keep the classification probability approximately equal
before and after an attack. This means that an agent that looks at the outputs of a
decoder would remain oblivious to an attack.

1 INTRODUCTION

The ability to encode data reliably is essential for many tasks including image compression, data
retrieval and communication. As data is transmitted between communication channels, error detec-
tion and correction is often employed to deduce the presence of erroneous bits (Peterson & Weldon,
1972). The source of such errors can be a result of imperfection in the transmitter, channel or in the
receiver. Often times, such errors can be deliberate where a man-in-middle attack (Desmedt, 2011;
Conti et al., 2016) can result in deleterious erasure of information, yet to the receiver, it may end up
as appearing untampered (Kos et al., 2017).

In deep learning, we are able to learn an encoding process using unsupervised learning such as
in autoencoders (AE) (Kingma & Welling, 2013); however, we are less able to design methods
for checking whether encodings have been tampered with. Therefore, there are two facets of this
problem – the first, is to come up with methodologies of tampering with the models and second,
is to detect the adversarial breach. In what follows, we will concentrate only on the first problem
by presenting a method for tampering autoencoders. An autoencoder has two components: the
encoder maps the input to a latent space, while the decoder maps the latent space to the requisite
output. A vanilla autoencoder can, therefore, be used to compress the input to a lower dimensional
latent (or feature) space. Other forms of autoencoder include the denoising AE (Vincent et al.,
2010) that recovers an undistorted input from a partially corrupted input; the compressive AE (Theis
et al., 2017) designed for image compression and the variational AE (Kingma & Welling, 2013) that
assumes that the data is generated from a directed graphical model with the encoder operationalized
to learn the posterior distribution of the latent space. Autoencoders have wide use in data analytics,
computer vision, natural language processing, etc.

We propose an attack that targets the latent encodings of autoencoders, such that if an attack is suc-
cessful the output of an autoencoder will have a different semantic meaning to the input. Formally,
we consider an autoencoder consisting of an encoder and decoder model designed to reconstruct an
input data sample such that the label information associated with the input data is maintained. For
example, consider a dataset of images, x with the labels, y = {0, 1}, and an encoder, E : x ! z and
a decoder, D : z ! x where z is a latent encoding for x. If the encoder and decoder are operating
normally, the label of the reconstructed data sample, ˆ̂y = class(D(E(x))) should be the same as
the label of the input data sample, where class(·) is the soft output of a binary classifier.

In this paper, we focus on learning an attack transformation, T �z, such that if z is the latent encoding
for a data sample, x, with label 0, T � z is the latent encoding for a data sample with label 1. The

1

Under review as a conference paper at ICLR 2018

attack is designed to flip the label of the original input and change its content. Note that the same T
is applied to each encoding and is not specific to either the input data sample or the encoding, it is
only dependent on the label of the input data sample.

The success of an attack may be measured in three ways:

1. The number of elements in the latent encoding, changed by the attack process should be
small. If the encoding has a particular length, changing multiple elements may make the
attack more detectable.

2. When a decoder is applied to tampered encodings, the decoded data samples should be
indistinguishable from other decoded data samples that have not been tampered with.

3. Decoded tampered-encodings should be classified with opposite label to the original (un-
tampered) data sample.

Our contribution lies in studying transforms with these properties. Experimentally, we find that
optimizing for requirement (1) may implicitly encourage requirement (2). Crucially, in contrast
to previous work (Goodfellow et al., 2014), our approach does not require knowledge of the model
(here a VAE) parameters; we need access only to the encodings and the output of a classifier, making
our approach more practical (Papernot et al., 2017). Finally, we owe the success of this attack
method primarily to the near-linear structure of the VAE latent space (Kingma & Welling, 2013) –
which our attack exploits.

2 COMPARISON TO PREVIOUS WORK

Security in deep learning algorithms is an emerging area of research. Much focus has gone into
the construction of adversarial data examples, inputs that are modified such that they cause deep
learning algorithms to fail. Previous work, designing adversarial images, has focused on perturbing
input data samples such that a classifier miss classifies adversarial examples (Goodfellow et al.,
2014). The perturbation is intended to be so small that a human cannot detect the difference between
the original data samples, and its adversarial version. Goodfellow et al. (Goodfellow et al., 2014)
propose adding a perturbation proportional to sign(r

x

J(✓, x, y)) where J is the cost function used
to train a classifier (that is being attacked), ✓ are the parameters of that classifier, and x and y the
data and label pair, respectively. This type of attack requires the attacker to have high-level access
to the classifiers’ parameters and cost function. An alternative approach that does not require the
adversary to have access to the model parameters, is presented by Papernot et al. (Papernot et al.,
2017) who propose a more practical approach, requiring only the classifier output and knowledge of
the encoding size. Our adversary has similar, practical requirements.

Our approach, is thus tangential to the previous work on adversarial images for classification. We
focus on a man-in-middle form of attack (Diffie & Hellman, 1976): rather than launching an attack
on data samples, we launch an attack on an intermediate encoding such that a message being sent
from a sender is different to the message received by a receiver. Similar to previous work, we do
not want the attack on the encoding to be detectable, but in contrast to previous work (Goodfellow
et al., 2014; Papernot et al., 2017), we wish for the message – in this example the images – to be
detectably changed, while still being consistent with other non-tampered messages.

Our work is more similar to that of Kos et al. (Kos et al., 2017) – in the sense that they propose
attacking variational autoencoders in a similar sender-receiver framework. Their goal is to perform
an attack on inputs to an autoencoder such that output of the autoencoder belongs to a different class
to the input. For example, an image of the digit 8 is encoded, but following an attack, the decoded
image is of the digit 7 (Kos et al., 2017). While the overall goal is very similar, their approach is very
different since they focus on perturbing images – while we perturb latent encodings. This difference
is illustrated in Figure 1.

Finally, most previous work (Goodfellow et al., 2014; Papernot et al., 2017; Kos et al., 2017) requires
the calculation of a different perturbation for each adversarial example. Rather, in our approach, we
learn a single (additive) adversarial perturbation that may be applied to almost any encoding to
launch a successful attack. This makes our approach more practical for larger scale attacks.

2

Under review as a conference paper at ICLR 2018

Figure 1: Comparison of our work to previous work. In both works, the sender sends an image
belonging to one class and the receiver receives an image belonging to a different class, “smile” or
“no smile”. In our work, we design an attack on the latent encoding, in previous work (Kos et al.,
2017), they perform an attack on the input image.

3 METHOD

In this section, we describe how we train a VAE and how we learn the adversarial transform that we
apply to the latent encoding.

3.1 PROBLEM SETUP

Consider a dataset, D consisting of labeled binary examples, {x
i

, y

i

}N
i=1, for y

i

2 {0, 1}. To
perform the mappings between data samples, x, and corresponding latent samples, z, we learn an
encoding process, q

�

(z|x), and a decoding process, p
✓

(x|z), which correspond to an encoding and
decoding function E

�

(·) and D

✓

(·) respectively. � and ✓, parameterize the encoder and decoder,
respectively. Our objective is to learn an adversarial transform, T̂ such that class(x) 6= class(T̂ �
x), where, T̂ , is constrained under an L

p

norm. Here, class(·) is the soft output of a binary classifier.
Rather than applying an adversarial transformation (Moosavi-Dezfooli et al., 2016), T̂ directly to
the data, x, we propose performing the adversarial transform T on the latent representation, T � z.

We learn a transform, T with z = E

�

(x) subject to class(D
�

(T � z)) 6= class(D
�

(z))1.

Figure 2: Notation and Models: E, D and C are the encoder, decoder and classifier networks.

We consider three methods of attack, and compare two approaches for regularizing T . The three
attack methods that we consider are as follows:

1. An Independent attack: We consider an attack on a pre-trained variational autoencoder
(VAE). T is learned for the pre-trained VAE.

2. A Poisoning attack: We consider an attack during VAE training (poisoning). T is learned
at the same time as the VAE.

3. A Poisoning+Class attack: We consider an attack during VAE training, where the VAE
is trained not only to reconstruct samples but to produce reconstructions that have low
classification error. This, in turn, encourages the VAE to have a discriminative internal
representation, possibly making it more vulnerable to attack. We learn T at the same time.

1Note than in the case where class labels are binary, this is equivalent to: learning a T such that
class(D�(T � z)) = 1� class(D�(z)).

3

Under review as a conference paper at ICLR 2018

ADDITIVE PERTURBATION (z +�Z)

Here, we consider T � z = z + �z. There are several options for the form that �z may take. In
the first case, �z may be a constant. We may learn a single transform to flip an image with label 0
to an image with label 1, and another for moving in the opposite direction. On the other hand, we
may learn a single �z and apply ��z to move in one direction and +�z to move in the other. The
advantage of using a constant �z is that at the attack time the adversarial perturbation has already
been pre-computed, making it easier to attack multiple times. There is a further advantage to using
only a single �z because the attacker need only learn a single vector to tamper with (almost) all of
the encodings. Alternatively, �z may be a function of any combination of variables x, y, z, however,
this may require the attacker to learn an attack online – rather than having a precomputed attack that
may be deployed easily. In this paper, we are interested in exploring the case where we learn a
single, constant �z.

We also consider a multiplicative perturbation. However, we reserve explanation of this for the
Appendix (Section 7).

3.2 LOSS FUNCTIONS

Here, we consider the cost functions used to train a VAE and learn T . The VAE is trained to re-
construct an input, x, while also minimizing a Kullback-Leibler (KL)-divergence between a chosen
prior distribution, p(z) and the distribution of encoded data samples. The parameters of the VAE
are learned by minimizing, J

vae

= BCE(x, x̂) + ↵KL[q
�

(z|x)||p(z)], where BCE is the binary
cross-entropy and ↵ is the regularization parameter. A classifier may be learned by minimizing
J

class

= BCE(y, ŷ). An additional cost function for training the VAE may be the classification
loss on reconstructed data samples, BCE(y, ˆ̂y). This is similar to an approach used by Chen et
al. (Chen et al., 2016) to synthesize class specific data samples. Finally, to learn the attack trans-

form, T we minimize, J
z

= BCE((1 � y), y̌) + L
p

(T), for the case above (Section 3.1) we have
L
p

(T) = ||�z||
p

. This allows us to learn a transform on a latent encoding, that results in a label flip
in the decoded image. Minimizing the L

p

-norm for p = {1, 2}, encourages the transform to target
a minimal number of units of z. Specifically, using p = 1 should encourage the perturbation vector
to be sparse (Donoho, 2006). When �z is sparse, this means that only a few elements of z may be
changed. Such minimal perturbations reduce the likelihood that the attack is detected.

3.3 EVALUATION METHOD

The goal for the attacker is to tamper with the encoding such that the label of the decoded sample is
flipped. For example, if the label was 1 initially, following a successful attack, the label should be 0.
Rather than assigning binary labels to samples, our classifier outputs values between [0, 1] where 0
or 1 suggests that the classifier is highly certain that a data sample belongs to either class 0 or class 1,
while a classifier output of 0.5 means that the classifier is unsure which class the sample belongs to.
When an attack is successful, we expect a classifier to predict the class of the reconstructed image
with high certainty. Further, for an attack to be undetectable, we would expect a classifier to predict
the label of a reconstructed, un-tampered data sample with almost the same certainty as a tampered
one. Formally, we may evaluate the quality of an attack by measuring |✏| such that 2:

class(x) = 1� class(T̂ � x) + ✏

class(D
✓

(z)) = 1� class(D
✓

(T � z)) + ✏

Based purely on the classification loss, in the case where ✏ = 0, the encodings that have been
tampered with would be indistinguishable from those that had not. An attack may be considered
undetectable if |✏| is small. Typically, |✏| may be related to the standard deviation in classification
results.

To calculate epsilon we make two practical alterations. The first is that our classifier outputs values
[0, 1], which do not necessarily correspond to probabilities, but may in some respect capture the
confidence of a single classification. Using the output of the classifier, we compute confidence

2 We assume class(x) = class(x̂).

4

Under review as a conference paper at ICLR 2018

scores, where 0 corresponds to low confidence and 1 to high confidence. For a sample whose true
label is 1, the confidence is taken to be the output of the classifier. For a sample whose true label
is 0, the confidence is taken to be (1 � class(·)), where class(·) is the output of the classifier. The
second, is that if the classifier is more confident when classifying one class compared to the other, it
does not make sense to compare class(x) to class(T̂ � x). Rather, we compare:

class(x(y=1))) = class(T̂ � x(y=0)) + ✏

class(D
✓

(z(y=1))) = class(D
✓

(T � z(y=0))) + ✏

where x

y=0 and x

y=1 are a data samples with true labels 0 and 1 respectively. z

y=0 and z

y=1 are
encodings of data samples xy=0 and x

y=1, respectively.

We measure the performance of all attacks using the same classifier, so that we may compare attack
types more easily. As a consequence, we are also able to show that the attack is partially agnostic to
the classifier, provided that the classifier is trained to perform a similar task.

We discuss an additional probabilistic evaluation method in Section 6.4 of the Appendix.

4 EXPERIMENTS AND RESULTS

We compare 3 methods of attack using 2 different types of regularization on �z – totaling 6 exper-
iments. The three methods of attack are listed in Section 3 and the two types of regularization are
the L1-norm and the L2-norm. We show qualitative results for only two examples in the main text
and reserve the rest for the appendix. We provide a quantitative analysis in the form of confidence
score (discussed in Section 3.3) for all 6 attack types.

4.1 DATASET

Experiments are performed on the CelebA dataset consisting of 200k colour images of faces, of
which 100 are reserved for testing. The samples are of size 64⇥ 64, and we do not crop the images.
Each image is assigned a binary label, 1 for smiling and 0 for not smiling.

(a) Original (Smile) (b) Original (No Smile)

Figure 3: The dataset. Snippet of (test)images with two labels – smiling and non-smiling.

4.2 USING (z +�z) WITH L2 REGULARIZATION

In this section, we focus on adversaries that have been trained using L2 regularization. Figure 4
shows the results of an adversarial attack, where the adversary is learned for a pre-trained VAE,
which was trained without label information. We expected this to be a more challenging form of at-
tack since the VAE would not have been trained with any discriminative label information – making
it less likely to learn features specifically for “smile” and “not smile”. Visual examples of decoded
tampered and non-tampered encodings are shown in Figure 4. Figure 4(a) shows reconstructed
images of people smiling, while (b) shows similar faces, but without smiles (attacked). Similarly,
Figure 4(c) shows reconstructed images of people that are not smiling, while (d) shows similar faces
smiling (attacked). In most cases, the success of the attack is obvious.

5

Under review as a conference paper at ICLR 2018

Quantitative results in Table 1 show several important results. In all cases, the decoded tampered-
encodings are classified with high confidence. This is higher than the classifier on either the original
image or the reconstructed ones. This suggests that the adversarial attack is successful as tampering
with the encoding. By only evaluating the attacks by the confidence, it appears that all adversaries
perform similarly well for all attack types. However, it is important to consider the difference
between the confidence of reconstructed samples and the samples whose encoding was tampered
with. Since the attacker aims to directly optimize the classification score, it is no surprise that
affected samples have higher confidence score. It does, however, make the attack potentially more
detectable. From this perspective, the more successful attacks would be those whose difference
between confidence scores is small (see Section 3.3).

For this particular set of attacks, the most stealthy would be switching from “no smile” to “smile”
attacking a VAE trained using label information. We may expect a VAE trained with label informa-
tion to be a particularly good target as it is already trained to learn discriminative features. We also
notice that it is easier for the attacker to move in the direction from “no smile” to “smile” than the
reverse. The reason for this may be related to the slight bias in the classification results. However,
this may also stem from the subjective labelling problem. Some of the faces in Figure (a) that belong
to the “smile” class are not clearly smiling.

Both the qualitative results in Figure 4 and the quantitative results in Table 1 indicate successful
attack strategies. Further, visual results are shown in the Appendix for the other attack methods, and
images showing the pixel-wise difference between reconstructions and attacked samples are also
shown (Figure 11) to highlight the effects of T .

Table 1: Confidence scores (p = 2) for additive perturbation attacks of types: Independent, Poison-
ing, Poisoning+Class.

Independent Poisoning Poisoning+Class
Data Samples

Original smile 0.80 0.80 0.80
Smile reconstruction 0.79 0.88 0.86
No smile ! Smile 0.98 0.98 0.97
Original no smile 0.93 0.93 0.93

No smile reconstruction 0.85 0.87 0.96
Smile ! No smile 0.95 0.96 0.96

4.3 USING (z +�z) WITH L1 REGULARIZATION

In this section, we look at results for attacks using L1 regularization on the encoding. L1 regulariza-
tion is intended to encourage sparsity in �z, targeting only a few units of the encoding. In Figure 10
in the appendix, we show that L1 regularization does indeed lead to a more sparse �z being learned.

In Figure 5, we show visual results of an adversarial attack, with the original reconstructions on the
left and the reconstructions for tampered encodings on the right. We show examples of all 3 types
of attack, with L1 regularization in the appendix. The attack appears to be successful in all cases.
We visualize the pixel-wise change between reconstructions of encodings and tampered encodings
in Figure 11 of the appendix. Note that our results are not “cherry picked”, but simply chosen
randomly.

Table 2 shows confidence values for each type of attack when using L1 regularization on �z. In all
cases, the confidence values for the samples which were attacked is higher than both reconstructed
samples and original data samples. This is likely to be because the adversary is picking a perturba-
tion that directly optimises the classification score. It is, however, important to remember that the
classifier used to evaluate the attack is the same for all attacks and not the same one used for training
the adversary.

As before, if there is a clear difference in confidence score between the reconstructed data samples
and the decoded tampered-encodings, it will be obvious that an attack has taken place. If we consider
the difference between these scores, then the most stealthy attacks are those learning the �z at the

6

Under review as a conference paper at ICLR 2018

(a) Smile Reconstructions (b) Latent Space Attack (smile ! no smile)

(c) No Smile Reconstructions (d) Latent Space Attack (no smile ! smile)

Figure 4: Under L2 regularization Random examples of decoded latents with and without additive
perturbation in an Independent attack. Smile (a) and (d), no smile (b) and (c).

Table 2: Confidence scores (p=1) for additive perturbation attacks of types: Independent, Poisoning,
Poisoning+Class

Independent Poisoning Poisoning+Class
Data Samples

Original smile 0.80 0.80 0.80
Smile reconstruction 0.87 0.78 0.80
No smile ! smile 0.94 0.98 0.98
Original no smile 0.93 0.93 0.93

No smile reconstruction 0.87 0.91 0.89
Smile ! No smile 0.96 0.91 0.96

same time as learning the VAE to switch between “no smile” and “smile”. Similarly, with the results
obtained with L2 regularization on �z, the more successful attack – in terms of stealth – is to go
from “no smile” to “smile” for all attack types.

7

Under review as a conference paper at ICLR 2018

(a) Smile Reconstructions (b) Latent Space Attack (smile ! no smile)

(c) No Smile Reconstructions (d) Latent Space Attack (no smile ! smile)

Figure 5: Under L1 regularization. Random examples of decoded latents with and without additive
perturbation in a Poison+Class attack. Smile (a) and (d), no smile (b) and (c).

5 DISCUSSION AND CONCLUSION

In this paper, we propose the idea of latent poisoning – an efficient methodology for an adversarial
attack i.e., by structured modification of the latent space of a variational autoencoder. Both additive
and multiplicative perturbation, with sparse and dense structure, show that it is indeed possible to
flip the predictive class with minimum changes to the latent code.

Our experiments show that additive perturbations are easier to operationalize than the multiplicative
transformation of the latent space. It is likely that additive perturbations have reasonable perfor-
mance because of the near-linear structure of the latent space. It has been shown that given two
images and their corresponding points in latent space, it is possible to linearly interpolate between
samples in latent space to synthesize intermediate images that transit smoothly between the two ini-
tial images (Kingma & Welling, 2013; Radford et al., 2015). If the two images were drawn from
each of the binary classes, and a smooth interpolation existed between them, this would mean that
additive perturbation in the latent space, along this vector, would allow movement of samples from
one class to the other.

How can we counter such a poisoning of the latent space? It might be helpful to look into the
predictive probability and its uncertainty on outputs from an autoencoder. If the uncertainty is above
a threshold value, an attack may be detected. Detection via predictive probability and its uncertainty,
as well as alternative methods, such as inspection of the latent encoding, become even more difficult
when the attacker has altered the latent distribution minimally (under a norm).

Given the prevalence of machine learning algorithms, the robustness of such algorithms is increas-
ingly becoming important (McDaniel et al., 2016; Abadi et al., 2017), possibly at par with reporting
test error of such systems.

8

Under review as a conference paper at ICLR 2018

REFERENCES

Martı́n Abadi, Úlfar Erlingsson, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Nicolas Pa-
pernot, Kunal Talwar, and Li Zhang. On the protection of private information in machine learning
systems: Two recent approches. In Computer Security Foundations Symposium (CSF), 2017 IEEE

30th, pp. 1–6. IEEE, 2017.

Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter Abbeel. Infogan:
Interpretable representation learning by information maximizing generative adversarial nets. In
Advances in Neural Information Processing Systems, pp. 2172–2180, 2016.

Mauro Conti, Nicola Dragoni, and Viktor Lesyk. A survey of man in the middle attacks. IEEE

Communications Surveys & Tutorials, 18(3):2027–2051, 2016.

Yvo Desmedt. Man-in-the-middle attack. In Encyclopedia of cryptography and security, pp. 759–
759. Springer, 2011.

Whitfield Diffie and Martin Hellman. New directions in cryptography. IEEE transactions on Infor-

mation Theory, 22(6):644–654, 1976.

D. L. Donoho. Compressed sensing. IEEE Trans. Inf. Theor., 52(4):1289–1306, April 2006. ISSN
0018-9448.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572, 2014.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. In Proceedings of the 2nd

International Conference on Learning Representations (ICLR), 2013.

Jernej Kos, Ian Fischer, and Dawn Song. Adversarial examples for generative models. arXiv preprint

arXiv:1702.06832, 2017.

Patrick McDaniel, Nicolas Papernot, and Z Berkay Celik. Machine learning in adversarial settings.
IEEE Security & Privacy, 14(3):68–72, 2016.

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar Fawzi, and Pascal Frossard. Universal
adversarial perturbations. CoRR, abs/1610.08401, 2016.

Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z Berkay Celik, and Ananthram
Swami. Practical black-box attacks against machine learning. In Proceedings of the 2017 ACM

on Asia Conference on Computer and Communications Security, pp. 506–519. ACM, 2017.

William Wesley Peterson and Edward J Weldon. Error-correcting codes. MIT press, 1972.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep
convolutional generative adversarial networks. In International Conference on Learning Rep-

resentations (ICLR) 2016, arXiv preprint arXiv:1511.06434, 2015. URL https://arxiv.

org/pdf/1511.06434.pdf.

Lucas Theis, Wenzhe Shi, Andrew Cunningham, and Ferenc Huszár. Lossy image compression with
compressive autoencoders. arXiv preprint arXiv:1703.00395, 2017.

Florian Tramèr, Alexey Kurakin, Nicolas Papernot, Dan Boneh, and Patrick McDaniel. Ensemble
adversarial training: Attacks and defenses. arXiv preprint arXiv:1705.07204, 2017.

Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, and Pierre-Antoine Manzagol.
Stacked denoising autoencoders: Learning useful representations in a deep network with a local
denoising criterion. Journal of Machine Learning Research, 11(Dec):3371–3408, 2010.

6 APPENDIX

6.1 SAMPLES WITH AND WITH OUT LABEL SWITCH

In the main body of the text, we showed received images for the case where an attack has taken
place for two types of attack. In this section, we show the remaining examples.

9

https://arxiv.org/pdf/1511.06434.pdf
https://arxiv.org/pdf/1511.06434.pdf

Under review as a conference paper at ICLR 2018

(a) Smile Reconstructions (b) Latent Space Attack (smile ! no smile)

(c) No Smile Reconstructions (d) Latent Space Attack (no smile ! smile)

Figure 6: Under L1 regularization. Random examples of decoded latents with and without additive
perturbation in an Independent attack. Smile (a) and (d), no smile (b) and (c).

6.2 COMPARE USING |�z|1 WITH |�z|2

In this section, we compose Tables of values and figures to compare the 3 different attacks for the 2
different regularization methods.

6.3 ENTROPY OF PERTURBATION

We expect that using L1 regularization will give more sparse perturbations, �z than using L2 reg-
ularization. In Figure 10, we show the effect of the regularization term for each attack type: (1)
learning a �z for a pre-trained VAE, (2) learning a �z while training a VAE and (3) learning a �z

while training a VAE and using class information to train the VAE. It is clear from Figure 10 that
using L1 regularization does indeed result in a more sparse �z.

6.4 CAN WE USE KNOWLEDGE OF THE PRIOR TO DETECT AN ADVERSARIAL ATTACK?

Figure 10 provides information about the magnitude of the adversarial perturbations. Here, we
consider how knowledge of the magnitude of the perturbations, may allow us to understand the
probability of an attack being detected. We consider an approach to individually test each element
of a latent encoding to see if we can determine whether an attack has taken place. We refer to a
single element of the perturbation �z, as �z and consider whether we can detect perturbation to a
single element in isolation from the other elements in the encoding.

In a variational autoencoder, the distribution of encoded data samples is trained to belong to a chosen
prior distribution – in this case a Gaussian. Assuming that the autoencoder is trained well, we
may say that the distribution of encoded data samples is Gaussian. Further, we assume that each
element in the encoding is drawn independently from the Gaussian distribution. From this, we know
that c.99.5% each individual encoding value lies between �2.807� and 2.807� where sigma is the

10

Under review as a conference paper at ICLR 2018

(a) Smile Reconstructions (b) Latent Space Attack (smile ! no smile)

(c) No Smile Reconstructions (d) Latent Space Attack (no smile ! smile)

Figure 7: Under L2 regularization. Random examples of decoded latents with and without additive
perturbation in a poisoning attack. Smile (a) and (d), no smile (b) and (c).

standard deviation of the Gaussian distribution. This means that approximately 1/200 3 elements lie
outside this interval. In our case � = 1.

Any addition to samples from Gaussian distribution results in a shift of the distribution. For an
adversarial attack involving the additive perturbation of �z on a single unit of �z, we may calculate
the probability that a single element in a tampered encoding lies outside the range [�2.807, 2.807].
The formula for this is given by:

P99.5%(�z) = 1� 1

2

1 + erf

✓
2.807� �zp

2

◆�
+

1

2

1 + erf

✓
�2.807� �zp

2

◆�

where erf(·) is the error function. Note that P99.5%(1) = 0.04, P99.5%(2) = 0.2 and P99.5%(5) =
0.98.

We may use this to evaluate our attack processes and may also be used to further regularize our
models to ensure that the probability of being detected is less than a chosen threshold. Looking at
Figure 10 we can see that only attacks in (a) and (b) using L2 regularization are likely to be unde-
tectable according to the criteria above, assuming that the encoded data samples follow a Gaussian
distribution.

6.5 THE EPSILON GAP

Here, we compare the ✏-gap (described in Section 3.3) for each type of attack, using each type of
regularization. We expected that using L1 regularization would encourage minimal change to the
encoding needed to make a switch between labels. Therefore we might expect this to influence
the epsilon value. However, for a sparse �z to have the desired properties we also require the
structure of the latent space to be sparse. Since we did not enforce any sparsity constraint on the
latent encoding when training the VAE, sparsity on the latent samples is not guaranteed. Therefore,

3our latent encoding is of size 200, however the choice of a 99.5% is fairly arbitrary and may be chosen
more precisely depending on application.

11

Under review as a conference paper at ICLR 2018

(a) Smile Reconstructions (b) Latent Space Attack (smile ! no smile)

(c) No Smile Reconstructions (d) Latent Space Attack (no smile ! smile)

Figure 8: Under L1 regularization. Random examples of decoded latents with and without additive
perturbation in an poisoning attack. Smile (a) and (d), no smile (b) and (c).

although it is useful to learn sparse encodings to facilitate the speed of the attack (minimal number
of changes to the encoding), it does not clearly affect the overall quality of the attack.

Table 3: Epsilon gap values

Samples ��z +�z

p=1 p=2 p=1 p=2

Learn �z & Independent 0.07 0.19 0.09 0.10
Learn �z & Poisoning jointly 0.20 0.10 0.00 0.09
Learn �z & Poisoning+Class 0.18 0.11 0.07 0.00

6.6 THE EFFECT OF �z ON �x

In Figure 11 we show the difference between the reconstructed data samples and decoded tampered-
encodings. These images highlight the effect of the adversarial perturbation – applied to the latent
space – in the data space.

12

Under review as a conference paper at ICLR 2018

(a) Smile Reconstructions (b) Latent Space Attack (smile ! no smile)

(c) No Smile Reconstructions (d) Latent Space Attack (no smile ! smile)

Figure 9: Under L2 regularization. Random examples of decoded latents with and without additive
perturbation in an poisoning+Class attack. Smile (a) and (d), no smile (b) and (c).

(a) p=2: Independent (b) p=2: poisoning (c) p=2: poisoning+Class

(d) p=1: Independent (e) p=1: poisoning (f) p=1: poisoning+Class

Figure 10: Visualization of the values of each element in the learned �z in an additive perturbation
attack. The x-axis corresponds to units in �z and the y-axis to the values that each unit takes. This
figure demonstrates the effect of L1 and L2 regularization on the sparsity of the �z learned.

13

Under review as a conference paper at ICLR 2018

(a) p=1: Independent (b) p=2: Independent

(c) p=1: poisoning (d) p=2: poisoning

(e) p=1: poisoning+Class (f) p=2: poisoning+Class

Figure 11: Difference image between decoded encodings (reconstructions) and decoded tampered-
encodings for additive perturbation attacks. Here we show only results in the direction of +�z.

14

Under review as a conference paper at ICLR 2018

7 IMPLEMENTATION DETAILS

For both the encoder, decoder and classifier we use an architecture similar to that used by Radford
et al. Radford et al. (2015). We weight the KL-divergence in the VAE loss by ↵ = 0.1 and we
train the model using Adam with a learning rate of 2e� 4 however training was not sensitive to this
parameter – training with a learning rate of 1e� 3 also worked. Our code both for training (with all
parameter values) and evaluation will be made available after the review process via Github.

MULTIPLICATIVE PERTURBATION z · (1 +�z)

To formulate a multiplicative perturbation, we require that the element(s) that encode smile or no
smile have different signs for each class. We may then learn a multiplicative mask, where most
of the values are ones, and one or a few values are negative. The values may not be positive. If
the values are positive then signs in the encoding cannot be switched and no label swap may take
place. In this formulation, we cannot guarantee that the encoding will take the desired form. From
preliminary experiments, we see that faces classified as “smiling” often appear to be smiling more
intensely after the transform. This is likely to be because the autoencoder considered the image to
be a person not smiling in the first place.

In our formulation, we use a single �z to which we apply L

p

regularization to. The transform
is then z(1 + �z). Note that it does not make sense to have a formulation for each direction i.e.
z(1��z) for the other direction; if the encoding for opposite samples has opposite signs a negative
�z is sufficient to provide a transform in both directions.

For multiplicative transforms, the perturbations do not appear to perform as well as for the additive
approach. This might be a reflection of the near-linear structure of the latent space learned by the
autoencoder. An adversary applying an additive perturbation is able to target the near-linear struc-
ture, while an adversary applying a multiplicative perturbation implies much stronger assumptions
on the structure of the latent space – which apparently do not hold for all variational autoencoders.

15

	Introduction
	Comparison to Previous Work
	Method
	Problem Setup
	Loss functions
	Evaluation Method

	Experiments and Results
	Dataset
	Using (z + z) with L2 regularization
	Using (z + z) with L1 regularization

	Discussion and Conclusion
	Appendix
	Samples with and with out label switch
	Compare using |z|1 with |z|2
	Entropy of perturbation
	Can we use knowledge of the prior to detect an adversarial attack?
	The epsilon gap
	The effect of z on x

	Implementation Details

