Under review as a conference paper at ICLR 2018

PARAMETRIC MANIFOLD LEARNING VIA SPARSE
MULTIDIMENSIONAL SCALING

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose a metric-learning framework for computing distance-preserving maps
that generate low-dimensional embeddings for a certain class of manifolds. We
employ Siamese networks to solve the problem of least squares multidimensional
scaling for generating mappings that preserve geodesic distances on the manifold.
In contrast to previous parametric manifold learning methods we show a substan-
tial reduction in training effort enabled by the computation of geodesic distances
in a farthest point sampling strategy. Additionally, the use of a network to model
the distance-preserving map reduces the complexity of the multidimensional scal-
ing problem and leads to an improved non-local generalization of the manifold
compared to analogous non-parametric counterparts. We demonstrate our claims
on point-cloud data and on image manifolds and show a numerical analysis of
our technique to facilitate a greater understanding of the representational power of
neural networks in modeling manifold data.

1 INTRODUCTION

The characterization of distance preserving maps is of fundamental interest to the problem of non-
linear dimensionality reduction and manifold learning. For the purpose of achieving a coherent
global representation, it is often desirable to embed the high-dimensional data into a space of low
dimensionality while preserving the metric structure of the data manifold. The intrinsic nature of
the geodesic distance makes such a representation depend only on the geometry of the manifold and
not on how it is embedded in ambient space. In the context of dimensionality reduction this property
makes the resultant embedding meaningful.

The success of deep learning has shown that neural networks can be trained as powerful function ap-
proximators of complex attributes governing various visual and auditory phenomena. The availabil-
ity of large amounts of data and computational power, coupled with parallel streaming architectures
and improved optimization techniques, have all led to computational frameworks that efficiently ex-
ploit their representational power. However, a study of their behavior under geometric constraints is
an interesting question which has been relatively unexplored.

In this paper, we use the computational infrastructure of neural networks to model maps that preserve
geodesic distances on data manifolds. We revisit the classical geometric framework of multidimen-
sional scaling to find a configuration of points that satisfy pairwise distance constraints. We show
that instead of optimizing over the individual coordinates of the points, we can optimize over the
function that generates these points by modeling this map as a neural network. This makes the com-
plexity of the problem depend on the number of parameters of the network rather than the number of
data points, and thus significantly reduces the memory and computational complexities, a property
that comes into practical play when the number of data points is large. Additionally, the choice
of modeling the isometric map with a parametric model provides a straightforward out-of-sample
extension, which is a simple forward pass of the network.

We exploit efficient sampling techniques that progressively select landmark points on the manifold
by maximizing the spread of their pairwise geodesic distances. We demonstrate that a small amount
of these landmark points are sufficient to train a network to generate faithful low-dimensional em-
beddings of manifolds. Figure[I|provides a visualization of the proposed approach. In the interest of
gauging their effectiveness in representing manifolds, we perform a numerical analysis to measure
the quality of embedding generated by neural networks and associate an order of accuracy to a given
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Figure 1: Learning to unfurl a ribbon: A three dimensional Helical Ribbon and its two dimen-
sional embedding learned using a two-layer MLP. The network was trained using estimated pairwise
geodesic distances between only 100 points (marked in black) out of the total 8192 samples.

architecture. Finally, we demonstrate that parametric models provide better non-local generalization
as compared to extrapolation formulas of their non-parametric counter parts.

We advocate strengthening the link between axiomatic computation and parametric learning
methodologies. Existing MDS frameworks use a geometrically meaningful objective in a cumber-
some non-parametric framework. At the other end, learning based methods such as DrLim Hadsell
et al.| (20006) use a computationally desirable infrastructure yet a geometrically suboptimal objec-
tive requiring too many examples for satisfactory manifold learning. The proposed approach can be
interpreted as taking the middle path by using a computationally desirable method of a parametric
neural network optimized by the geometrically meaningful cost of multidimensional scaling.

2 BACKGROUND AND PRIOR WORK

2.1 MANIFOLD LEARNING

The literature on manifold learning is dominated by spectral methods that have a characteristic com-
putational template. The first step involves the computation of the k-nearest neighbors of all [V data
points. Then, an N x N square matrix is populated using some geometric principle which charac-
terizes the nature of the desired low dimensional embedding. The eigenvalue decomposition of this
matrix is used to obtain the low-dimensional representation of the manifold. Laplacian Eigenmaps
Belkin & Niyogi| (2003), LLE Roweis & Saul| (2000), HLLE Donoho & Grimes| (2003)), Diffusion
Maps|Coifman et al.| (2005)) etc. are considered to be local methods, since they are designed to mini-
mize some form of local distortion and hence result in embeddings which preserve locality. Methods
like Schwartz et al.| (1989); Wolfson & Schwartz (1989) and Isomap [Tenenbaum et al.| (2000) are
considered global because they enforce preserving all geodesic distances in the low dimensional em-
bedding. Local methods lead to sparse matrix eigenvalue problems and hence are computationally
advantageous. However, global methods are more robust to noise and achieve globally coherent em-
beddings, in contrast to the local methods which can sometimes lead to excessively clustered results.
All spectral techniques are non-parametric in nature and hence do not characterize the map that gen-
erates them. Therefore, the computational burden of large spectral decompositions becomes a major
drawback when the number of data-points is large. Bengio et al.|(2004) and |De Silva & Tenenbaum
(2004) address this issue by providing formulas for out-of-sample extensions to the spectral algo-
rithms. However, these interpolating formulations are computationally inefficient and exhibit poor
non-local generalization of the manifold [Bengio et al.[(2013).

2.2 MULTIDIMENSIONAL SCALING

Multidimensional scaling (henceforth MDS) is a classical problem in geometry processing and
data science and a powerful tool for obtaining a global picture of data when only pairwise dis-
tances or dissimilarity information is available. The core idea of MDS is to find an embedding
X = [xl, X2, X3...xN] such that the pairwise distances measured in the embedding space are faith-

ful to the desired distances Dg = [dfj]:jjl\l as much as possible. There are two prominent versions
of MDS: Classical Scaling and Least Squares Scaling. Classical Scaling is based on the observation
that the double centering of a pairwise squared distance matrix gives an inner-product matrix which

can be factored to obtain the desired embedding. Therefore, if H = I — %]l]lT is the centering
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matrix, classical scaling minimizes the Strain of the embedding configuration X given by
1
Strain(X) = || XX 4 §HDSH|\2F, (1)

and is computed conveniently using the eigen-decomposition of the N x N matrix — %HDSH. At
the other end, least squares scaling is based on minimizing the misfits between the pairwise distances

of X = [x1, X2, X3...xn| and desired distances [du]:jjl\I measured by the Stress function
Stress(X) =Y > (|lxi — x| — dyy)*. 2)
i

In the context of manifold learning and dimensionality reduction, the MDS framework is enabled
by estimating all pairwise geodesic distances with a shortest path algorithm like Dijkstra Dijkstra
(1959) and using the minimizers of Equations[I]and [2]to generate global embeddings by preserving
metric properties of the manifold.

Schwartz et al.| (1989); [Wolfson & Schwartz| (1989) along with [Tenenbaum et al.| (2000) were the
first to suggest populating the inter-geodesic matrix Dy using Dijkstra’s algorithm for preserving
metric properties of manifolds. The SMACOF algorithm of De Leeuw & Mair| (2011) and their
variants |Bronstein et al.[(2006)) are iterative least squares scaling algorithms for minimizing Stress
in Equation (2). The computational bottleneck of dealing with a dense distance matrix requiring
all pairwise distances led to faster algorithms like |/Aflalo & Kimmel| (2013)); Shamai et al.| (2015)
and |Boyarski et al.| (2017)), that used spectral representations of the Laplace-Beltrami Operator of
the manifold. Rosman et al|(2010) shows a least squares scaling technique which can overcome
holes and non-convex boundaries of the manifold. All these algorithms are non-parametric and few
out-of-sample extensions have been suggested De Silva & Tenenbaum| (2004) to generalize them to
new samples.

2.3 NEURAL NETWORKS FOR MANIFOLD LEARNING

Examining the ability of neural networks to represent data manifolds has received considerable inter-
est and has been studied from multiple perspectives. From the viewpoint of unsupervised parametric
manifold learning, one notable approach is based on the metric-learning arrangement of the Siamese
configuration Hadsell et al.|(2006); [Bromley et al.|(1994);|Chopra et al.|(2005). Similarly, the para-
metric version of the Stochastic Neighborhood Embedding |van der Maaten| (2009) is another exam-
ple of using a neural network to generate a parametric map that is trained to preserve local structure
Maaten & Hinton| (2008]). However, these techniques demand an extensive training effort requiring
large number of training examples in order to generate satisfactory embeddings. |Weston et al.|(2012)
use a parametric network to learn a classifier which enforces a manifold criterion, requiring nearby
points to have similar representations. Basri & Jacobs|(2017) have argued that neural-networks can
efficiently represent manifolds as monotonic chain of linear segments by providing an architectural
construction and analysis. However, they do not address the manifold learning problem and their
experiments are based on supervised settings where the ground-truth embedding is known a priori.
Gong et al. (2006); Mishne et al.| (2017); |(Chui & Mhaskar| (2016)) use neural networks specifically
for solving the out-of-sample extension problem for manifold learning. However, their procedure in-
volves training a network to follow a pre-computed non-parametric embedding rather than adopting
an entirely unsupervised approach thereby inheriting some of the deficiencies of the non-parametric
methods.

It is advantageous to adopt a parametric approach to non-linear dimensionality reduction and replace
the computational block of the matrix construction and eigenvalue decomposition with a straightfor-
ward parametric computation. Directly characterizing the non-linear map provides a simple out-of-
sample extension which is a plain forward pass of the network. More importantly, it is expected that
the reduced and tightly controlled parameters would lead to an improved non-local generalization
of the manifold Bengio et al.|(2013).

In|Hadsell et al.[(2006) (henceforth DrLim), it was proposed to use Siamese Networks for manifold
learning using the popular hinge-embedding criterion (Equation (3)) as a loss function. A Siamese
configuration (Figure2)) comprises of two identical networks that process two separate units of data
to achieve output pairs that are compared in a loss function. The contrastive training comprises of
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Geodesic Distance: d X; € RP X, € RP

L(©) = (|| Fo(X1) - Fo(X2) | —d )

Figure 2: Siamese Configuration

k=N
constructing pairs {X(lk)7 X(zk), AR} | where A(®) € {0,1} is a label for indicating a positive (a
neighbor) or negative pair (not a neighbor) by building a nearest neighbor graph from the manifold
data.

£(©) =3 A0 || Fo(X{) - Fo (X))
) 3)
+(1 - /\(k)) max {0, p— H}"G(X(lk)) _ ]:@(X(zk))H}

Training with the loss in Equation means that at any given update step, a negative pair con-
tributes to the training only when their pairwise distance is less than p. This leads to a hard-negative
sampling problem where the quality of embedding depends on the selection of negative examples in
order to prevent excessive clustering of the neighbors. This typically requires an extensive training
effort with a huge amount of training data (30000 positive and approximately 17.9 million negatives
for a total of 6000 data samples as reported in|Hadsell et al.|(2000)).

3 A FRAMEWORK FOR PARAMETRIC MULTIDIMENSIONAL SCALING

We propose to incorporate the ideas of Least Squares Scaling into the computational infrastructure
of the Siamese configuration as shown in Figure [2| For every k*” pair, we estimate the geodesic dis-
tance using a shortest path algorithm and train the network to preserve these distances by minimizing
the Stress function

£©) =" (|| Fo(X{) - Fo(X$) || —d® )2 )
k

The advantage of adopting the loss in Equation () over Equation (3)) is that every pair of training
data contributes to the learning process thereby eliminating the negative sampling problem. More
importantly, it facilitates the use of efficient manifold sampling techniques like the Farthest Point
Sampling strategy that make it possible to train with much fewer pairs of examples. The farthest
point sampling strategy Bronstein et al.| (2008) (also referred to as the MinMax strategy in|De Silva
& Tenenbaum| (2004)) is a method to pick landmarks amongst the points of a discretely sampled
manifold such that under certain conditions, these samples uniformly cover the manifold much as
possible. Starting from a random selection, the landmarks are chosen one at a time such that, each
new selection from the unused samples has the largest geodesic distance to the set of the selected
sample points. Figure [3] provides a visualization of this sampling mechanism. We train the net-
work by minimizing the loss in Equation () by computing the pairwise geodesic distances of the
landmarks. Therefore, the pre-training computational effort is confined to computing the pairwise
geodesic distances of only the landmark points. The proposed geometric manifold learning algo-
rithm can be summarized in two steps,
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Figure 3: 2D embeddings of a three dimensional S-Curve Manifold generated by a 2-Layer MLP
with 70 hidden nodes, that was trained with varying number of landmark points obtained with the
Farthest Point Sampling Algorithm.

Stepl: Compute the nearest-neighbor graph from the manifold data and obtain a set of landmark-
points and their corresponding pairwise graph/geodesic distances using Dijkstra’s algo-
rithm and the Farthest Point Strategy.

Step2: Form a dataset of landmark pairs with corresponding geodesic distances {X:(lk), X(zk), d®}
and train network in Siamese configuration using the least-squares MDS loss in Equation

@

4 EXPERIMENTS

4.1 3D POINT CLOUD DATA

Our first set of experiments are based on point-cloud manifolds, e.g., like the Swiss Roll, S-Curve
and the Helical Ribbon. We use a multilayer perceptron (MLP) with the PReLLU() as the non-linear
activation function, given by

PReLU(z) = max(0,2) + a min(0, z), (5)

where a is a learnable parameter. The networks are trained using the ADAM optimizer with con-
stants (81, S2) = (0.95,0.99) and a learning rate of 0.01 for 1000 iterations. We run each optimiza-
tion 5 times with random initialization to ensure convergence. All experiments are implemented in
python using the PyTorch framework|Paszke et al.[(2017)). We used the scikit-learn machine learning
library for the nearest-neighbor and scipy-sparse for Dijkstra’s shortest path algorithms.

Figure [I] and [3] show the results of our method on the Helical Ribbon and S-Curve respectively
with varying number of training samples (in black) out of a total of 8172 data points. The number
of landmarks dictates the approximation quality of the low-dimensional embedding generated by
the network. Training with too few samples will result in inadequate generalization which can be
inferred from the corrugations of the unfurled results in the first two parts of Figure[3|and increasing
the number of landmarks expectedly improves the quality of the embedding. We compute the Stress
function (Equation (2)) of the entire point configuration to measure the quality of the MDS fit. Figure
shows the decay in the Stress as a function of the number of training points (or Landmarks) of a
2-Layer MLP.

The natural next question to ask is how many landmarks? how many layers? and how many hidden
nodes per layer? We observe that these questions relate to an analogous setup in numerical methods
for differential equations. For a given numerical technique, the accuracy of the solution depends on
the resolution of the spatial grid over which the solution is estimated. Therefore, numerical methods
are ranked by an assessment of the order of accuracy their solutions observe. This can be obtained
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Figure 4: Exploring the variations in architecture and the number of landmarks: (a) The log-
arithm of stress of all 8172 points as a function of number of landmarks. (b) Order of accuracy
estimates of varying architectures.

by assuming that the relationship between the approximation error £ and the resolution of the grid
h is given by
E=Ch" (6)

where P is the order of accuracy of the technique and C' is some constant. Therefore, P is obtained
by computing the slope of the line obtained by charting log(E) vs log(h),

log(E) = log(C) + P log(h). (7

We extend the same principle to evaluate network architectures (in place of numerical algorithms) for
estimating the quality of isometric maps. We use the generalized Stress in Equation (2)) as the error
function for Equation (6)). We assume that due to the 2-approximate property of the farthest point

strategy Hochbaum & Shmoys| (1985) the sampling is approximately uniform and hence h o \/%

where K 1s the number of landmarks. By varying the number of layers and the number of nodes per
layer we associate an order of accuracy to each architecture using Equation (7). Figure #b]shows the
results of our experiment. It shows that a single layer MLP has the capacity for modeling functions
upto the first order of accuracy. Adding an additional layer increases the representational power by
moving to a second order result. Adding more layers does not provide any substantive gain arguably
due to a larger likelihood of over-fitting as seen in the considerably noisier estimates (in green).
Therefore, a two layer MLP with 70 hidden nodes per layer can be construed as a good architecture
for approximating the isometric map of the S-Curve of Figure [3| with 200 landmarks.

4.2 IMAGE ARTICULATION MANIFOLDS

We extend the parametric MDS framework to image articulation manifolds where each sample point
is a binary image governed by the modulation of a few parameters. We specifically deal with im-
age manifolds that are isometric to Euclidean space |Donoho & Grimes| (2005), that is, the geodesic
distance between any two sample points is equal to the euclidean distance between their articulation
parameters. In the context of the main discussion of this paper, which is metric preserving proper-
ties of manifolds, we find that such datasets provide an appropriate test-bed for evaluating metric
preserving algorithms.

We construct a horizon articulation manifold where each image contains two distinct regions sep-
arated by a horizon which is modulated by a linear combination of two fixed sinusoidal basis ele-
ments. See Figure[5]

Iahoéz(u,v) = ]]-{vgz/)alyaz(u)}
Yar.a, (W) = a1 sin(wiu) + oo sin(wau) (8)

Thus, each sample has an intrinsic dimensionality of two - the articulation parameters (o, as)
which govern how the sinusoids representing the horizon are mixed. We sample the articulation
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Figure 5: Visualizing a horizon articulation manifold: 1000 samples generated as per equations
and@with w1 = 2, wy = 7. The color is proportional to the magnitude /o + a3
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Figure 6: (a) Comparing metric preserving properties for different manifold learning algorithms on
the image articulation manifold dataset. LE: |Belkin & Niyogi| (2003), DrLim: |Hadsell et al.| (2006).
The proposed method shows maximum fidelity to the ground truth shown in Figure[5|(b) Visualizing
the outputs of some filters trained using our method. The 1% column shows the input images. The
filters act to exaggerate (2" column) and suppress (3" column) a governing frequency in Equation

().

parameters from a 2D uniform distribution
(0417 a2) ~ U([07 1] X [Oa ”) (9)

We generate 1000 images of the horizon articulation manifold of size 100 x 100. The network
architecture comprises of two convolution layers each with kernel sizes 12 and 9, number of kernels
15 and 2 respectively along with a stride of 3 and followed by a fully connected layer mapping
the image to a two dimensional entity. We train using the ADAM optimizer Kingma & Ba| (2015)
with a learning rate of 0.01 and parameters (81, 52) = (0.95,0.99). We train the network using 50
Landmark points.

Figure [6a] shows the comparison between our method and other non-parametric counterparts along
with the parametric approach of DrLim. Training with the least squares loss of Equation (@) shows
high fidelity to the ground truth of Figure[5] Except for Isomap and our proposed method, all other
methods show some form of distortion indicating a suboptimal metric preservation property.

Training with the articulation manifold in Figurdd| provides an opportunity to get more detail in
understanding the parametric action of the neural networks. The 2" and 3™ columns in Figure
show the outputs of some of the filters in the first layer of the architecture trained on the manifold
in Figure[5] The distance preserving loss facilitates the learning of image filters which separate the
underlying frequencies governing the non-linear manifold, thereby providing a visual validation of
the parametric map.
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Figure 7: Comparing with nonparametric out-of-sample extensions: (a) Comparing numerical
stress values of embeddings generated for training and test data of our method and the interpolating
formulation of Landmark Isomap. (b) Visualizing the non-local generalization properties of our
method (top) and Landmark Isomap (bottom). Both algorithms were trained on the same Landmarks
(in red) sampled from only a part of the manifold.

4.3 COMPARISON WITH LANDMARK ISOMAP

We compare our parametric multi-dimensional scaling approach to its direct non-parametric com-
petitor: Landmark-Isomap |De Silva & Tenenbaum| (2004). The main idea of Landmark-Isomap is to
perform classical scaling on the inter-geodesic distance matrix of only the landmarks and to estimate
the embeddings of the remaining points using an interpolating formula (also mentioned in |[Bengio
et al.[(2004))). The formula uses the estimated geodesic distance of each new point to the selected
Landmarks in order to estimate its low dimensional embedding.

We use the image articulation manifold dataset to provide a quantitative and visual comparison be-
tween the two methods. Both the methods are imputed with the same set of landmarks for evaluation.
In the first experiment, we generate two independent horizon articulation datasets each containing
1000 samples generated using Equations (8) and (9 for training and testing. We then successively
train both algorithms on the training dataset with varying number of Landmark points and then use
the examples from the test data-set to evaluate performance. Figure[7](a) shows that low dimensional
embedding of Landmark-Isomap admits smaller stress values (hence better metric preservation) for
the training dataset, but behaves poorly on unseen examples. On the other hand, despite larger stress
values for training, the network shows better generalizability.

In order to visualize non-local generalization properties, we repeat the previous experiment with a
minor modification. We train both algorithms on horizon articulation manifolds with parameters
sampled from (o, ) ~ U([0,0.75] x [0,0.75]) and visualize the outputs on test datasets with
parameters sampled from (aq,a2) ~ U([0,1] x [0, 1]) thereby isolating a part of the manifold
during training. As shown in Figure [7p, the output of Landmark-Isomap shows a clustered result
due to the lack of non-local data in the geodesic distance calculations for the interpolation. In
contrast, the network clearly shows a better generalization property.

4.4 CAMERA POSE MANIFOLDS

Finally we test our method on a more realistic dataset where the constraint of being isometric to
a low dimensional euclidean space is not necessarily strict. We generate 1369 images obtained by
smoothly varying the azimuth and elevation of the camera.

Figure 8] shows the embeddings and associated training times of our method compared to the con-
ceptual (Landmark Isomap) and computational (DrLim Hadsell et al.|(2006))) siblings. We see that
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(c) Our Method. Training time ~~ 860s

Figure 8: Camera Pose Manifold: Embedding results and training times for Landmark-Isomap,
DrLim [Hadsell et al.| (2006) and our approach. Our hybrid parametric approach shows a faithful
result for a smaller training time.

the fast interpolation scheme of Landmark Isomap demonstrates higher distortion whereas DrLim
requires a considerable training effort, requiring all possible (13269) = 936396 pairs. Our integrated
approach yields an improved result in a considerably smaller training time (geodesic distances be-
tween only (630) = 179700 pairs). We used the same 600 landmarks from Isomap and the same

architecture of DrLim for generating the embedding in Figure [8c|

5 CONCLUSION

In the interest of obtaining a better understanding of neural network behavior, we advocate using
learning methodologies for solving geometric problems with data by allowing a limited infusion of
axiomatic computation to the learning process. In this paper we demonstrate such a scheme by com-
bining parametric modeling with neural networks and the geometric framework of multidimensional
scaling. The result of this union leads to reduction in training effort and improved local and non-
local generalization abilities. As future work, we intend to further explore methods that leverage
learning methodologies for improving the largely axiomatic setups of numerical algorithms.
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