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ABSTRACT

Attribute-aware CF models aims at rating prediction given not only the histori-
cal rating from users to items, but also the information associated with users (e.g.
age), items (e.g. price), or even ratings (e.g. rating time). This paper surveys
works in the past decade developing attribute-aware CF systems, and discovered
that mathematically they can be classified into four different categories. We pro-
vide the readers not only the high level mathematical interpretation of the existing
works in this area but also the mathematical insight for each category of models.
Finally we provide our preliminary experiment results comparing the effectiveness
of the major works in each category.

1 INTRODUCTION

Collaborative filtering is arguably the most effective idea in building a recommender system. It
assumes that a user’s preferences on items can be inferred collaboratively from other users’ pref-
erences. In practice, users’ past records toward items, such as explicit ratings or implicit feedback
(e.g. binary access records), are typically used to infer similarity of taste among users for recom-
mendation. In the past decade, matrix factorization (MF) has become a widely adopted realization
of collaborative filtering. Specifically, MF learns a latent representation vector for a user and an
item, and compute their inner products as the predicted rating. The learned latent user/item factors
are supposed to embed the specific information about the user/item accordingly. That is, two users
with similar latent representation shall have similar taste to items with similar latent vectors.

In big data era, classical MF using only ratings suffer a serious drawback for not being able to
exploit other accessible information such as the features of users/items/ratings. For instance, data
could contain the location and time about where and when a user rated an item. These rating-relevant
attributes, or contexts, could be useful in determining the scale of a user liking an item. The side
information or attributes relevant to users or items (e.g. the demographic information of users or
the item genera) can also reveal useful information. Such side information is particularly useful
for situation when the ratings about a user or an item is sparse, which is known as the cold-start
problem for recommender systems. Therefore, researchers have formulated the attribute-aware
recommender systems (see Figure 1) aiming at leverage not only the rating information but also the
attributes associated with ratings/users/items to improve the quality of recommendation.

We have included about 80 papers in this area in the past decade, and found that the majority of
the works propose an extension of matrix factorization to incorporate attribute information in col-
laborative filtering. The main contribution in this paper is to not only provide the review report,
but rather a means to classify these works into four categories: (I) discriminative matrix factor-
ization, (II) generative matrix factorization, (III) generalized factorization, and (IV) heterogeneous
graphs. Inside each category, we provide the probabilistic interpretation of the models. The ma-
jor distinction of these four categories lies in the representation of the interactions of users, items
and attributes. The discriminative matrix factorization models extend the traditional MF by making
the attributes prior knowledge input to learn the latent representation of users or items. Generative
matrix factorization further considers the distributions of attributes, and learn such together with the
rating distributions. Generalized factorization models view the user/item identity simply as a kind of
attribute, and various models are designed for learning the low-dimensional representation vectors
for rating prediction. The last category of models propose to represent the users, items and attributes
using a heterogeneous graph, where a recommendation task can be cast into a link prediction task

1



Under review as a conference paper at ICLR 2018

Users
1
2

  ⋮
u
⋮

Nu

1  2 ⋯  i  ⋯  Ni   Items
User-relevant 

attributes Item-relevant 
attributes

Rating-relevant 
attributes

⋮

⋮

⋯ ⋯

Ratings
rui ∈ R

⋯ ⋯

⋮

⋮

Figure 1: Overview of attribute-aware recommender systems. Attributes can be appended to users,
items or ratings (feedback).

on the heterogeneous graph. In the following sections, we will elaborate the general mathematical
explanations of the four types of model designs, and discuss the similarity/difference among models.
We summarize our classification of models in table 1.

There have been four prior survey works (Adomavicius & Tuzhilin, 2011; Verbert et al., 2012;
Bobadilla et al., 2013; Shi et al., 2014) introducing attribute-aware recommender systems. We claim
two major differences between our work and the existing papers. First, previous survey mainly
focuses on grouping different types of attributes, discussing the distinctions of memory-based col-
laborative filtering and model-based collaborative filtering, and presenting new challenges to be
addressed. In contrast, we are the first that aims at classifying the existing works based on the
methodology proposed, instead of the data used. We further provide mathematical representation
for different types of models so the readers can better understand the spirit of the design of different
models as well as their technical differences. Furthermore, previous survey include works published
no later than the year of 2014, which means a large amount of state-of-the-art models, in particu-
lar deep-learning technology based models were not covered. This survey includes at least 25 new
publications in this area. The publications being surveyed are classified and listed in the following
table.

Note that this survey does not cover the hybrid recommender systems that leverage both rating
and content information. While the contents typically indicate text attributes, this paper focuses on
technique that handles independent attributes instead of attributes with local dependency (e.g. text,
image attributes).

2 PRELIMINARY: COLLABORATIVE FILTERING AND MATRIX
FACTORIZATION

Please refer to our Appendix A.

3 CLASSIFICATION OF ATTRIBUTE-AWARE RECOMMENDER SYSTEMS

We first observe that most of the existing works use seperated matrices to represent the rating and
attribute information. That is, there is a rating matrix between users and items, as well as attribute
matrices between user and user-attributes, item and item-attributes, rating and rating-attributes, or a
combination of them. Such attribute-matrices then become either the prior knowledge for learning
the latent factors (Section 3.1) or the generative outputs from the latent factors (Section 3.2). On the
other hand, some of the models can be regarded as a generalization of matrix factorization (Section
3.3). They view user or item IDs just as a kind of attributes and cast the recommendation task as a
regression task to predict the ratings. Finally, some works attempt to model the interactions between
users and items using a heterogeneous network, which can incorporate attributes by simply adding
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Table 1: Our classification of attribute-aware recommender systems.

DMF Similarity
Li et al. (2010a),Gu et al. (2010),Du et al. (2011),Zhou et al. (2012),

Barjasteh et al. (2015), Yu et al. (2017),Adams et al. (2010),
Chen et al. (2014), Gönen et al. (2013)

Linear Porteous et al. (2010),Menon & Elkan (2010),Menon et al. (2011),
He & McAuley (2016), Zhao et al. (2016), Guo (2017),Feipeng Zhao (2017)

Bilinear
Stern et al. (2009),Li et al. (2010b), Agarwal & Chen (2009),Shin et al. (2015)

Yang et al. (2011), Chen et al. (2012),Park et al. (2013), Xu et al. (2013),
Kim & Choi (2014), Natarajan & Dhillon (2014),Lu et al. (2016),Chou et al. (2016)

GMF Multiple
Matrix Factorization

Sedhain et al. (2017),Singh & Gordon (2008),Shan & Banerjee (2010),
Ma et al. (2011),Yoo & Choi (2011),Fang & Si (2011),Bouchard et al. (2013),

Saveski & Mantrach (2014),Gao et al. (2015),Ge et al. (2016),Brouwer & Liò (2017)
Deep

Neural Networks
Li et al. (2015),Wang et al. (2015),Zhang et al. (2016),

Wang et al. (2016), Dong et al. (2017), Li & She (2017)

GF TF Tengfei Zhou (2017),Karatzoglou et al. (2010),Hidasi & Tikk (2012),
Hidasi (2015),Kasai & Mishra (2016)

FM
He & Chua (2017),Rendle et al. (2011),Cheng et al. (2014),

Nguyen et al. (2014),Blondel et al. (2015),Blondel et al. (2016),
Juan et al. (2016),Cao et al. (2016),Guo et al. (2017),Lu et al. (2017)

HG Yu et al. (2014),Zheng et al. (2016),Palumbo et al. (2017)

attribute-representing nodes (Section 3.4). The rating estimation task is hence reduced to a link
prediction problem between user and item nodes. Below we will discuss each class of models.

3.1 DISCRIMINATIVE MATRIX FACTORIZATION (FIGURE 2)

u = 1 to Nu
i = 1 to Ni

ruiwu hi

σRσW σH

xu yizπ

Figure 2: Graphical interpretation of discriminative probabilistic matrix factorization whose at-
tributesX,Y ,Z are observed for ratings and latent factors. User and item-relevant attributesX,Y
could affect the generation of latent factors W ,H or ratings R, while rating-relevant attributes Z
typically determines the rating predictionR.

Here we propose to view the problem from a probabilistic perspective. The learning of Probabilistic
Matrix Factorization (PMF) attempts to maximize posterior probability p(W ,H | R) of two latent
factor matrices W (for users) and H (for items), given observed ratings matrix R. Given extra
attribute matrixX , based on Bayes’ rule, the posterior probability can be shown as follows:

argmax
W ,H

p (W ,H | R,X)︸ ︷︷ ︸
Posterior

= argmax
W ,H

p (R |W ,H,X) p (W ,H |X)

p (R |X)

= argmax
W ,H

p (R |W ,H,X) p (W ,H |X)

= argmax
W ,H

p (R |W ,H,X)︸ ︷︷ ︸
Likelihood

p (W |X) p (H |X)︸ ︷︷ ︸
Prior

. (1)
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We ignore the denominator p(R | X) since it is fully observed. As to the prior, we follow the
independence assumption W⊥H of PMF, despite that here the independence is conditioned on
the attribute matrix X . Compared with the classical PMF, both likelihood p (R |W ,H,X) and
prior p (W |X) p (H |X) could be affected by attributesX . Attributes in the likelihood function
directly affects the ranking prediction, while attributes in the priors regularize the learning directions
of latent factors.

We further generate the sub-categoryies as below.

3.1.1 ATTRIBUTES IN A LINEAR MODEL

This is the generalized form to utilize attributes in this category. Given the attributes, a weight vector
is applied to perform linear regression on the attributes. Its characteristic in mathematical form is
shown in likelihood functions:

argmax
W ,H,θ

∏
(u,i)|rui∈δ(R)

N
(
rui | µR = w>u hi + a

>
u xu + b

>
i yi + c

>zπ(u,i), σ
2
R

)
p(W |X)p(H | Y ),

(2)

where θ = {a, b, c,α,β}, δ(R) denotes the non-missing ratings in the training data, and π(u, i) is
the column index corresponding to user u and item i. X ∈ RK×Nu ,Y ∈ RK×Ni ,Z ∈ RK×|δ(R)|

respectively denote attribute matrices relevant to user, item and ratings, while a, b, c are their corre-
sponding weight vectors. A simple linear regression model can be expressed as a likelihood function
of normal distribution N (r | µ, σ2) with mean µ and variance σ2. Ideally the distributions of latent
factors W ,H shall have prior knowledge from attributes X,Y , but we have not yet observed an
approach aiming at designing attribute-aware priors as the last two terms of (2).

Bayesian Matrix Factorization with Side Information (BMFSI) (Porteous et al., 2010) is an ex-
ample case in this sub-category. On the basis of Bayesian Probabilistc Matrix Factorization (BPMF)
(Salakhutdinov & Mnih, 2008a), BMFSI uses a linear combination like (2) to introduce attribute
information to rating prediction. It is formulated as:

argmax
W ,H,θ

p(R |W ,H, θ)︸ ︷︷ ︸
Likelihood

p(W )p(H)︸ ︷︷ ︸
Priors

= argmax
W ,H,θ

∏
(u,i)|rui∈δ(R)

N
(
rui | w>u hi + a>u xu + b>i yi, σ2

R

)
︸ ︷︷ ︸

Matrix factorization using attributes

∏
u

N (wu | µu,Σu)
∏
i

N (hi | µi,Σi)︸ ︷︷ ︸
Regularization

,

(3)

where θ = {a, b, c} and δ(R) is the set of training ratings. The difference from (2) is that rating
attributes z shall be concatenated with either xu or yu, and thus we drop an independent weight
variable c in BMFSI. We ignore other attribute-free designs of BMFSI (e.g. Dirichlet process).

3.1.2 ATTRIBUTES IN A BILINEAR MODEL

This a popular method when two kinds of attributes (usually user and item) are provided. Given user
attribute matrix X and item attribute matrix Y , a matrix A is used to model the relation between
them. The mathematical form can be viewed as the following:

argmax
W ,H,θ

∏
(u,i)|rui∈δ(R)

N
(
rui | µR = x>uAyi + c

>
u xu + d

>
i yi + b, σ

2
R

)
p(W |X)p(H|Y ), (4)

where θ = {A, b, c,d,α,β}. In fact, as mentioned in Lu et al. (2016), c>u xu + d
>
i yi + b

can be absorbed into the first term, by appending a new dimension whose value is fixed to 1 for each
x and y:

µR = x>uAyi + c
>
u xu + d

>
i yi + b = x̃

>
u Ãỹi. (5)

Works in this category differ in whether the bilinear term is explicit or implicit. (4) implies that the
form of the dot product of two linear-transformed attributes wu = Sxu and hi = Tyi since it can
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be reformed as w>u hi = x>u (S
>T )yi where A = S>T . Some works such as Regression-based

Latent Factor Model (see below) chooses to softly constrain wu ≈ Sxu and hi ≈ Tyi instead of
strict equations.

Regression-based Latent Factor Model (RLFM) (Agarwal & Chen, 2009) . Given three types of
attribute matrices: user-relevant X , item-relevant Y and rating-relevant Z, RLFM models them in
different parts of biased matrix factorization. X,Y serve as the hyperparameters of latent factors,
whileZ joins the regression framework to predict ratings together with latent factors. RLFM can be
written as:

argmax
W ,H,θ

p(R |W ,H, c,d,γ,Z)︸ ︷︷ ︸
Likelihood

p(W | A,X)p(H | B,Y )p(c | α,X)p(d | β,Y )︸ ︷︷ ︸
Prior

= argmax
W ,H,θ

∏
(u,i)|rui∈δ(R)

N
(
rui | w>u hi + cu + di + γ

>zπ(u,i), σ
2
R

)
︸ ︷︷ ︸

Matrix factorization using attributes∏
u

N (wu | Axu,ΣW )N
(
cu | α>xu, σ2

c

)∏
i

N (hi | Byi,ΣH)N
(
di | β>yi, σ2

d

)
︸ ︷︷ ︸

Regularization using attributes

(6)

where θ = {c,d,A,B,α,β,γ}, and δ(R) is the set of non-missing ratings for training. Biased
matrix factorization adds two vectors c,d to learn the biases for each user or item. Parameters
A,B,α,β,γ map attributes with latent factors (forX,Y ) or rating prediction (for Z).

3.1.3 ATTRIBUTES IN A SIMILARITY MATRIX

In this case, a similarity matrix which measures the closeness of attributes between users or between
items is presented. Given the user attribute matrix X ∈ RD×Nu , where Nu is the number of users
and D is the dimension of user attribute, a similarity matrix S ∈ RNu×Nu is computed. There
are many metrics to for similarity calculation such as Euclidean distance or kernel functions. The
similarity matrix is then used for matrix factorization or other solutions. The speciality of this case
is that human knowledge is involved in determining how the interactions between attributes should
be modeled. Kernelized Probabilistic Matrix Factorization is an example which utilizes both user
similarity matrix and item similarity matrix.

Kernelized Probabilistic Matrix Factorization (KPMF) (Zhou et al., 2012) . Let K,Nu, Ni be
the number of latent factors, users and items. Given user-relevant attribute matrix X ∈ RK×Nu or
item-relvant attribute matrix Y ∈ RK×Ni , we can always obtain a similarity matrix SX ∈ RNu×Nu

or SY ∈ RNi×Ni where each entry stores a pre-defined similarity between a pair of users or items.
Then KPMF formulates the similarty matrix as the prior of its corresponding latent factor matrix:

argmax
W ,H

p(R |W ,H)︸ ︷︷ ︸
Likelihood

p(W |X)p(H | Y )︸ ︷︷ ︸
Prior

= argmax
W ,H

∏
(u,i)|rui∈δ(R)

N
(
rui | w>u hi, σ2

R

)
︸ ︷︷ ︸

Matrix factorization

∏
k

N
(
wk | 0,SX

)∏
l

N
(
hl | 0,SY

)
.︸ ︷︷ ︸

Regularization using attributes

(7)

Here we use subscripts wu to denote the u-th column vector of a matrix W , while superscripts wk

imply the k-th row vector ofW . Intuitively, the similarity matrices control the learning preferences
of user or item latent factors. If two users have similar user-relevant attributes (i.e., they have a
higher similarity measure in SX ), then their latent factors are forced to be closer during the matrix
factorization learning.

3.2 GENERATIVE MATRIX FACTORIZATION (FIGURE 3)

Mathematically, by Bayes’ rule, we maximize a posteriori as follows:

argmax
W ,H

p (W ,H | R,X)︸ ︷︷ ︸
Posterior

= argmax
W ,H

p (R,X |W ,H) p (W ,H)

p (R,X)
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Figure 3: Graphical interpretation of generative probabilistic matrix factorization whose attributes
X,Y ,Z together with ratings are generated by latent factors. Rating-relevant attributes Z is likely
to result from both W and H . For models of this class, some of the gray arrows are removed to
represent their additional independence assumptions about attribute generation.

= argmax
W ,H

p (R,X |W ,H) p (W ,H)

= argmax
W ,H

p (R |W ,H) p (X |W ,H)︸ ︷︷ ︸
Likelihood

p (W ) p (H)︸ ︷︷ ︸
Prior

. (8)

where p(R,X) does not affect the posterior maximization. Typically relevant works assume ad-
ditional independence R⊥X given latent factors W ,H in (8). Furthermore, some existing works
choose to consider attributes on either side of p(X |W ) and p(X |H).

There are two different branches is this direction. On one hand, earlier works use the matrix factor-
ization technique again, to generate attributes from user or item latent factors. It can be seen as a
linear mapping between latent factors and attributes. On the other hand, with the help of deep neural
networks, recent works combine matrix factorization and deep autoencoders to realize non-linear
mappings for attribute generation. We will introduce them in the following sections.

3.2.1 ATTRIBUTES IN MATRIX FACTORIZATION

Similar to PMF R ≈ W>H for rating distributions, attributes distributions are modeled using
another matrix factorization form. Given user attribute matrixX , item attribute matrix Y and rating
attribute matrix Z, they can be factorized asX ≈ A>W ,Y ≈ B>H of low rank. Specifically, its
objective function is written as:

argmax
W ,H,A,B

∏
(u,i)|rui∈δ(R)

N
(
rui | µR = w>u hi, σ

2
R

) ∏
(j,u)

N
(
xju | a>j wu, σ2

X

) ∏
(v,i)

N
(
xvi | b>v hi, σ2

Y

)
∏

(u,i)|rui∈δ(R)

N
(
zui | w>uChi, σ2

Z

)
p(W )p(H), (9)

where δ(R) denote the non-missing entries of matrix R. The insight of (9) is to share the latent
factors W ,H in multiple factorization tasks. W is shared with user attributes, while H is shared
with item attributes. Z requires the sharing of both W and H due to user and item-specific rating
attributes. Therefore the side information of both X,Y and Z can indirectly transfer to rating pre-
diction. Auxiliary matrices A,B and C learns the mappings between latent factors and attributes.
With respect to the mathematical form of matrix factorization, the expectation of feature values is
linearly correlated with its corresponding latent factors.

Collective Matrix Factorization (CMF) (Singh & Gordon, 2008) Here we introduce a common
model in this sub-category. The CMF framework relies on the combination of multiple matrix
factorization objective functions. CMF first builds the MF for rating matrixR. Then user and item-
relevant attribute matrices X,Y are appended to the matrix factorization objectives. Overall we
have:

argmax
W ,H,A,B

p(R |W ,H)p(X |W ,A)p(Y |H,B)︸ ︷︷ ︸
Likelihood

p(W )p(H)p(A)p(B)︸ ︷︷ ︸
Prior

6
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= argmax
W ,H,A,B

∏
(u,i)|rui∈δ(R)

N
(
rui | w>u hi, σ2

R

)
︸ ︷︷ ︸

Matrix factorization ofR

∏
(j,u)

N
(
xju | a>j wu, σ2

X

)
︸ ︷︷ ︸

Matrix factorization ofX

∏
(v,i)

N
(
yvi | b>v hi, σ2

Y

)
︸ ︷︷ ︸

Matrix factorization of Y∏
u

N (wu | 0,ΣW )
∏
i

N (hi | 0,ΣH)
∏
j

N (aj | 0,ΣA)
∏
v

N (bv | 0,ΣB)︸ ︷︷ ︸
Regularization

(10)

where δ(R), δ(X), δ(Y ) denote the non-missing entries of matrix R,X,Y that are generated by
latent factor matrices W ,H,A,B of zero-mean normal priors (i.e., l2 regularization). In (10),
W ,H are shared by at least two matrix factorization objectives. Attribute information in X,Y is
transferred to rating prediction R through sharing the same latent factors. Note that CMF is not
limited to three matrix factorization objectives (10).

3.2.2 ATTRIBUTES IN DEEP NEURAL NETWORKS

In deep neural networks, an autoencoder is usually used to learn latent representation of observed
data. Specifically the model tries to construct a encoder E and a decoder D, where the encoder
learns to map from a possibly modified attributes X̃ to low-dimensional latent factors, and the
decoder recover from latent factors to the original attributes X . Moreover, activation functions
in autoencoders can reflect non-linear mappings between latent factors and attributes, which may
capture the characteristics of attributes more accurately.

To implement an autoencoder, at first we generate another attribute matrix X̃ from X . X̃ could
be the same as X , or different due to corruption, e.g., adding random noise. Autoencoders aim to
predict the originalX using latent factors that are inferred from generated X̃ . Here attributes serve
not only as the generation results X , but also as the prior knowledge X̃ of latent factors. Let us
review Bayes’ Rule to figure out where autoencoders appears for generative matrix factorization:

argmax
W ,H

p
(
W ,H | R,X, X̃

)
= argmax

W ,H

p
(
R,X |W ,H, X̃

)
p
(
W ,H | X̃

)
p
(
R,X | X̃

)
= argmax

W ,H
p
(
R,X |W ,H, X̃

)
p
(
W ,H | X̃

)
= argmax

W ,H
p
(
R |W ,H, X̃

)
︸ ︷︷ ︸

Matrix factorization

p
(
X |W ,H, X̃

)
︸ ︷︷ ︸

DecoderD︸ ︷︷ ︸
Likelihood

p
(
H | X̃

)
p
(
W | X̃

)
︸ ︷︷ ︸

Priors, i.e, EncoderE

.

(11)

p(R,Y | Ỹ ) is eliminated due to irrelevance in maximization of (11). By sharing latent factors
W ,H between autoencoders and matrix factorization, attribute information can affect the learning
of rating prediction. Modeling D with normal distributions, we can conclude that the expectation of
attributes X is non-linearly mapped from from latent factors W ,H . Although latent factors have
priors from attributes, we categorize relevant works into generative matrix factorization, since we
explicitly model attribute distributions in the decoder part of autoencoders.

Collaborative Deep Learning (CDL) (Wang et al., 2015). The model presents a combination
method of collaborative filtering and Stacked Denoising Auto-Encoder (SDAE). Since the model
claim to exploit item attributes Y only, in the following introduction we define Y =X, Ỹ = X̃ in
(11).

In SDAE, input attributes Ỹ is not equivalent toY due to adding random noise to Ỹ . CDL implicitly
adds several independence assumptions (R⊥Ỹ |W ,H), (Y ⊥W |H, Ỹ ), (W⊥Ỹ ) to formulate
its model. Then using identical notations in CMF introduction, normal distributions N are again
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applied to CDL:

argmax
W ,H,θ,φ

p (R, |W ,H) p
(
Y |H, Ỹ

)
︸ ︷︷ ︸

Likelihood

p
(
H | Ỹ

)
p (W )︸ ︷︷ ︸

Prior

= argmax
W ,H,θ,φ

∏
(u,i)|rui∈δ(R)

N
(
rui | w>u hi, σ2

R

)
︸ ︷︷ ︸

Matrix factorization

∏
i

N (yi | Dφ(Eθ(ỹi)),ΣY )N (hi | Eθ(ỹi),ΣH)︸ ︷︷ ︸
Stacked denoising auto-encoder for Y∏

u

N (wu | 0,ΣW )︸ ︷︷ ︸
Regularization

. (12)

Functions E ,D indicate the encoder and the decoder of SDAE. The two functions could be formed
by multi-layer perceptrons whose parameters are denoted by θ,φ. It is clear to see the distribution
of attribute matrix Y be modeled in the decoder part. Last but not least, the analysis from (11)
to (12) imply that others ideas, user-relevant attributes for example, could be naturally involved in
CDL, as long as we remove more independence assumptions.

3.3 GENERALIZED FACTORIZATION

d = Dm to DM

l = (j1...jd) 
from (j1 to jN)

rj = 1 to N

r

wl

σW

xj

μW

(a) w-weighted generalization

j = 0 to N
k = 1 to Kj

rj = 1 to N

r

vjk

σV

xj

μV

(b) v-approximate generalization

Figure 4: Graphical interpretation of generalized factorization. Attributes x including user or item
indices are weighted with corresponding w in order to fit a true rating r. If we have all the w, v’s
follow normal distributions of shared hyperparameters, then there are hyperparameters µW , σW or
µV , σV .

Thanks to the success of matrix factorization in recommender systems, there emerge advanced works
asking for generalizing the concept of matrix factorization, in order to extract more information
from attributes or interactions between users and items. The works classified in either Section 3.1
or Section 3.2 propose to design attribute-aware components on the basis of PMF. They explicitly
express an assumption of vanilla PMF: a latent factor matrix W to represent user preferences and
another matrix H for items. However the works classified in this section do not regard W and H
as a special existence in models. Rather, such works propose a expanded latent factor space shared
by users, items and attributes. Here neither users nor items are special entities in a recommender
system. They are simply considered as categorical attributes. Taking rating rui for example, it
implies that we have a one-hot user encoding vector where all the entries are 0 except for the u-th
entry; similarly, we also have a one-hot item encoding vector of the i-th entry being 1. Thus external
attributes X can be simply involved in the matrix-factorization-based models, because now users
and items are also attributes whose interactions commonly predict or rank ratings.
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We first propose the most generalized version of interpretation: Given a rating r and its correspond-
ing attribute vector x ∈ RN , then we make rating estimate:

argmax
w

∏
r∈δ(R)

N

r | µR =

DM∑
d=Dm

N∑
j1=1

N∑
j2=j1+1

. . .

N∑
jd=jd−1+1

wj1j2...jd (xj1xj2 . . . xjd) , σ
2
R

 ,

(13)

where δ(R) indicates the set of observed ratings in training data. Variable d ∈ {0} ∪ N determines
the dth-order multiplication interaction between attributes xj . As d = 0, we introduce an extra
bias weight w0 ∈ R in (13). The large number of parameters w ∈ R is very likely to overfit
training ratings due to the dimensionality curse. To alleviate overfitting problems, the ideas in matrix
factorization are applied here. For higher values of d, it is assumed that each w is a function of low-
dimensional latent factors:

wj1j2...jd = fd (vj1 ,vj2 , . . . ,vjd) , (14)

where vj ∈ RKj implies the K-dimensional (Kj � N ∀j) latent factor or representation vector
for each element xj of x. Function fd maps these d vectors to a real-valued weight. Then our
learning parameters become v. The overall number of parameters (Dm ≤ d ≤ DM ) decreases from∑DM

d=Dm

n!
d!(n−d)! = O(2N ) to

∑N
j=1Kj = O(NK) where K = max1≤j≤N Kj . Next we prove

that matrix factorization is a special case of (13). Let Dm = DM = 2 and x be the concatenation
of one-hot encoding vectors of users as well as items. Also we define f2(v,y) = v>y. Then for
rating rui of user u to item i, we have:

argmax
v

∏
rui∈δ(R)

N

r̂ui | µR =

N∑
j1=1

N∑
j2=j1+1

v>j1vj2 (xj1xj2) = v
>
u vNu+i, σ

2
R

 , (15)

where Nu denotes the number of users. (15) is essentially equivalent to matrix factorization.

In this class, the existing works either generalize or improve two early published works: Tensor
Factorization (TF) and Factorization Machine (FM). Both models can be viewed as the special case
of (13). We introduce TF and FM in the sections below.

3.3.1 TF-EXTENDED MODELS

Tensor Factorization (TF) (Karatzoglou et al., 2010) requires the input featores to be categorical.
Attribute vector x ∈ {0, 1}N is the concatenation of D one-hot encoding vectors. (D − 2) cate-
gorical rating-relevant attributes form their own binary one-hot representations. The additional two
one-hot vectors respectively represent ID’s of users and items. As a special case of (13), TF fixes
Dm = DM = D to build a single D-order interactions between attributes. Since weight function
fD in (14) allows individual dimensions Kj for each latent factor vector vj , TF defines a tensor
S ∈ RK1×K2×...×KD to exploit tensor product of all latent factor vectors. In sum, (13) is simplified
as the following:

µR =

N∑
j1=1

N∑
j2=j1+1

. . .

N∑
jD=jD−1+1

fD (vj1 ,vj2 , . . . ,vjD ) (xj1xj2 . . . xjD )

= fD (vl1 ,vl1 , . . . ,vlD ) as xl1 = xl2 = . . . = xlD = 1, other x = 0

= 〈S,vl1 ,vl2 , . . . ,vlD 〉

=

K1∑
k1=1

K2∑
k2=1

. . .

KD∑
kD=1

sk1k2...kDvl1k1vl2k2 . . . vlDkD (16)

where function f(·) =< · > denotes the tensor product. Note that attribute vectors x in TF must
consist of exact C 1’s due to one-hot encoding. Therefore there exists only match j1 = l1, j2 =
l2, . . . , jD = lD where all the attributes in these positions are set to 1.

9



Under review as a conference paper at ICLR 2018

3.3.2 FM-EXTENDED MODELS

Factorization Machine (FM) (Rendle et al., 2011) allows numerical attributes x ∈ RN as input,
including one-hot representations of users and items. Although higher order interactions between
attributes could be formulated, FM focuses on at most second-order interactions. To derive FM from
(13), let 0 = Dm ≤ d ≤ DM = 2 and wj1j2 = f2(vj1 ,vj2) = v>j1vj2 in (14) be applied for the
second-order interaction. Then we begin to simplify (13):

µR = w0︸︷︷︸
d=0

+

N∑
l=1

wlxl︸ ︷︷ ︸
d=1

+

N∑
j1=1

N∑
j2=j1+1

wj1j2 (xj1xj2)︸ ︷︷ ︸
d=2

= w0 +

N∑
l=1

wlxl +

N∑
j1=1

N∑
j2=j1+1

v>j1vj2 (xj1xj2) (17)

which is exactly the formulation of FM. Note that FM implicitly requires all the latent factor vectors
v of the same dimension K; however the requirement could be released from the viewpoint of our
general form (13). Models in this category mainly differs in two aspects. First, linear mapping can
be replaced by deep neural networks, which allows non-linear mapping of attributes. Second, FM
only extracts first-order, second-order interactions. Further works such as Cao et al. (2016) extracts
higher-order interactions between attributes.

3.4 HETEROGENEOUS GRAPHS

We notice several relevant works that perform low-rank factorization or representation learning in
heterogeneous graphs, such as (Yu et al., 2014; Zheng et al., 2016; Palumbo et al., 2017). The
interactions of users and items can be represented by a heterogeneous graph of two node types. An
edge is unweighted for implicit feedback, while weighted for explicit opinions. External attributes
are typically leveraged by assigning them extra nodes in the heterogeneous graph. Heterogeneous
graph structure is more suitable for categorical attributes, since each candidate value of attributes
can be naturally assigned a node.

In heterogeneous graphs, recommendation can be viewed as a link prediction problem. Predicting a
future rating corresponds to forecasting whether an edge will be built between user and item nodes.
The existing works commonly adopt a two-stage algorithm to learn the model. At first, we perform
a random walk or a meta-path algorithms to gather the similarities between users and items from
a heterogeneous graph. The similarity information can be kept as multiple similarity matrices or
network embedding vectors. Then a matrix factorization model or other supervised machine learning
algorithms are applied to extract discriminative features from the gathered similarity information,
which is used for future rating prediction.

3.5 MODEL DIFFERENCES

In our previous classification, there are still a number of works in each category. Although Models
in the same category share similar mathematical form in terms of the design of objective function,
but can vary in certain design aspect. One most important difference is the task they focus on. Some
models emphasize on predicting future ratings. Therefore, they usually dedicated to minimize Root
Mean Square Error (RMSE) to have a more accurate prediction on scores. Some other models care
about top-N items that a user may like. Hence, they adopt pairwise ranking to predict the preference
of items on a given user.A second difference is based on the types of attributes that are exploited. For
example, Yang et al. (2011) takes a social network as its input feature matrices. A third difference
is that each model claimed its source of attributes. Some models claim to accept only user attributes
while others might be more general for different types of attributes.

4 EXPERIMENT AND FUTURE WORK

Although the major goal of this paper is to provide the mathematical interpretation to summarize the
existing models, we still report some experimental results on rating prediction using the Movielens
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dataset. 3.1, 3.2 and 3.3. The results are shown in table 2 and it seems FM model yields the superior
results. Detailed descriptions are shown in the appendix. Future works include more complete
empirical analysis and potentially a unified solution in this direction.

Table 2: RMSE on MovieLens-1M. TF:Karatzoglou et al. (2010); CMF:Singh & Gordon (2008);
RLFM:Agarwal & Chen (2009); FIP:Yang et al. (2011); FM:Rendle et al. (2011); CDL:Wang et al.
(2015). ’*’ means its memory usage exceeds machine’s limit. ’-’ means it is not suitable in this task.

Rating Attribute TF CMF RLFM FIP FM CDL

All
(MF: 0.9002)

(1) 0.9315 0.9468 0.8815 0.9488 0.8793 -
(2) * 1.1671 0.8849 0.9482 0.8824 1.6013
(3) * 0.9436 0.8824 0.9368 0.8798 -

Without cold-start
(MF: 0.8986)

(1) 0.9308 0.9435 0.8804 0.9482 0.8782 -
(2) * 1.1222 0.8840 0.9479 0.8816 1.5664
(3) * 0.9398 0.8813 0.9363 0.8788 -

Cold-start
(MF: 1.0419)

(1) 0.9993 1.2215 0.9840 1.0030 0.9792 -
(2) * 3.3385 0.9672 0.9807 0.9533 3.6165
(3) * 1.2523 0.9848 0.9821 0.9679 -

In this paper, we discuss a novel viewpoint to the domain of recent attribute-aware recommender
systems. Most of the proposed works try to make classical matrix factorization methods recongnize
either user, item or rating-relevant attributes for recommendation improvement. Using systemmat-
ical introduction to our general mathematical formulations, we review and cover the most popular
model designs of a large number of attribute-aware recommender systems. It is expected to help
new researchers understand this domain, while figure out the potential to propose new ideas from
these model design categories or even not belonging to any of our category. This paper only focuses
on the theoretical observations of attribute-aware recommender systems; however we also observe
that most previous works prefer to apply certain datasets and much referenced matrix factorization
extended approaches in their recommendation experiments. To our knowledge, among the exising
survey works on attribute-aware recommender systems, there is only one work (Bobadilla et al.,
2013) conducting experiments on memory-based recommender systems, but not model-based rec-
ommender systems that include matrix factorization. As our futre work, we would like to compare
the empirical performance of several well-known matrix factorization extended models on bench-
mark datasets.
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A PRELIMINARY: COLLABORATIVE FILTERING AND MATRIX
FACTORIZATION

Collaborative filtering (CF) has become the most prevailing technique to realize recommender sys-
tems in recent years (Adomavicius & Tuzhilin, 2005; Shi et al., 2014; Adomavicius & Tuzhilin,
2011; Isinkaye et al., 2015). It assumes preferences that users exhibit towards interacted items can
be generalized and infer their preferences towards items they never interact with. CF aims to infer
a set of items that a user prefers the most but never interacts with from records of other users with
similar preferences. This section briefly introduces conventional CF denoting CF techniques that
only take advantage of user-item interactions, or rating matrix R. In practice, they are commonly
categorized into memory-based CF and model-based CF (Shi et al., 2014; Isinkaye et al., 2015;
Adomavicius & Tuzhilin, 2005).

Matrix factorization (MF) (Shi et al., 2014; Koren et al., 2009; Paterek, 2007; Koren & Bell, 2011),
in the basic form, represents each user u as a parameter vector wu ∈ RK and each item i as
hi ∈ RK , whereK is the dimension of latent factors. The prediction of user u’s rating or preference
towards item i, denoted as r̂ui, can be computed using inner product:

r̂ui = w
>
u hi, (18)

which captures the interaction between them. MF seeks to generate rating predictions as close as
possible to those recorded ratings. In matrix form, it can be written as finding W ,H such that
R ≈ W>H where R ∈ RNu×Ni . MF is essentially learning a low-rank approximation of the
rating matrix since the dimension of representations K is usually much smaller than the number of
users Nu and items Ni. To learn the latent factors of users and items, the system tries to findW ,H
that minimize the regularized square error on the set of known ratings δ(R):

(W ∗, H∗) = argmin
W ,H

∑
(u,i)∈δ(R)

1

2

(
rui −w>u hi

)2
+
λW
2

Nu∑
u=1

‖wu‖22 +
λH
2

Ni∑
i=1

‖hi‖22, (19)

where λW and λH are regularization parameters. MF tends to cluster users or items with similar
rating configuration into groups in the latent factor space which implies that similar users or items
will be close to each other. Furthermore, MF assumes the rank of rating matrix R or the dimension
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of the vector space generated by rating configuration of users is far smaller than the number of users
Nu. This implies that each user’s rating configuration can be obtained by a linear combination of
ratings from a group of other users since they are all generated by K principle vectors. Thus MF
entails the spirit of collaborative filtering, which is to infer a user’s unknown ratings by ratings of
several other users.

u = 1 to Nu i = 1 to Ni

ruiwu hi

σR

σW σH

Figure 5: Graphical interpretation of Probabilistic Matrix Factorization (PMF). User or item latent
factorsW ,H are put to generate observed ratingsR. Parameters σW , σH , σR control the certainty
in the generation process.

Probabilistic matrix factorization (PMF, Figure 5) (Salakhutdinov & Mnih, 2007; 2008b) is a prob-
abilistic linear model with observed Gaussian noise and can be viewed as a probabilistic extension
of MF. PMF adopts the assumption that users and items are independent and represents each user or
each item with a zero-mean spherical multivariate Gaussian distribution as follows:

p
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)
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N
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wu | 0, σ2

W I
)
, p

(
H | σ2

H

)
=
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hi | 0, σ2

HI
)
, (20)

where σ2
W and σ2

H are observed user-specific and item-specific noise. PMF then formulates the
conditional probability over the observed ratings as

p
(
R |W ,H, σ2

)
=

∏
(i,j)∈δ(R)

N
(
rui | w>u hi, σ2

R

)
, (21)

where δ(R) is the set of known ratings and N (x | µ, σ2) denotes the Gaussian distribution with
mean µ and variance σ2. Learning of PMF is conducted by maximum a posteriori (MAP) estimation,
which is equivalent to maximize the log of the posterior distribution ofW ,H:
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(22)

where C is a constant independent of all parameters and K is the dimension of user or item repre-
sentations. With Gaussian noise σ2

R, σ
2
W , σ

2
H observed, maximizing the log-posterior is identical to

minimize the objective function with the form:

∑
(u,i)∈δ(R)

1

2
(rui −w>u hi)2 +

λW
2

Nu∑
u=1

‖wu‖22 +
λH
2

Ni∑
i=1

‖hi‖22, (23)

where λW = σ2
R/σ

2
W , λH = σ2

R/σ
2
H . Note that (23) has exactly the same form as the regularized

square error of MF and gradient descent or its extensions can then be applied in training PMF.
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B EXPERIMENT DETAILS

We evaluate the effectiveness of each model by examining their performance on MovieLens-1M.
We focus on the rating prediction task since the majority of models have their objectives designed
for this task. We also compare the performance of each competitor under different conditions:
with/without user-relevant attributes or item-relevant attributes. Hyperparameters for each model
are tuned based on grid search.

We consider several popular models for comparison: Tensor Factorization (TF) Karatzoglou et al.
(2010), Collective Matrix Factorization (CMF) Singh & Gordon (2008), Regression-based Latent
Factor Model (RLFM) Agarwal & Chen (2009), Friendship-Interest Propagation (FIP) Yang et al.
(2011), Factorization Machine (FM) Rendle et al. (2011) and Collaborative Deep Learning (CDL)
Wang et al. (2015). We also select Matrix Factorization (MF) Chin et al. (2016) as the baseline
model that does not include any attribute. The attribute types that each model accepts are concluded
in Table 3.

Table 3: Attribute types that claimed to be used for each model.

Model User-relevant attributes Item-relevant attributes Rating-relecant attributes
TF X X X

CMF X X
RLFM X X X

FIP X X
FM X X X

CDL X
MF

Table 4: Notations referring to attribute type combinations used in an experiment case.

Type User attributes Item attributes Rating attributes
(1) X
(2) X
(3) X X

B.1 DATASET

MovieLens-1M contain ratings that users give to different movies. It also includes some user infor-
mation, such as genre, age and occupation, and item information, for example the category a movie
belongs to and the year when the movie was produced. Training set and test set are divided by the
time that the rating was generated. The latest 10% ratings serve as test set while the others are served
as train set.

B.2 EVALUATION METRIC

Adopted by the experiments in these baseline models, Root Mean Square Error (RMSE) is selected
as the evaluation metric in our experiments. By our observation, RMSE is the most widely used
evaluation metric for rating prediction, since most of model-based collaborative filtering methods
try to minimize MSE (RMSE without root) as their objectives, including all of our experimented
models. In our opinions, it is fair to test all the baseline models using the evaluation metric they all
try to optimize.

B.3 COLD-START SETTING

Cold-start is a special case that many recommend systems are designed to deal with. In practical use,
it is difficult to recommend items to a user especially when the user has few or even no past rating
records. Since it is an important issue to deal with in the real world, we want to compare different
models under this condition. Instead of extracting a new train set designed for cold-start setting (for
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example, a set formed by randomly reducing the size of the original train set until number of ratings
for each user is less than a specific amount), we simulate the cold-start situation by evaluating the
performance of a new test set. The new test set is formed by repeatedly extracting all test instances of
a user from the original test set where the user has few ratings in train set. The extracting procedure
halts when the size of the new test set reaches a threshold. The threshold is set to 1000 in our
experiment setting. The other ratings that are not extracted form another set, called ”without cold-
start” in the following, to compare the result with cold-start. Compared with extracting a new train
set, this evaluation metric saves the time to train a new dataset while preserving cold-start property.
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