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ABSTRACT

Recent work has shown that contextualized word representations derived from
neural machine translation (NMT) are a viable alternative to such from simple
word predictions tasks. This is because the internal understanding that needs to
be built in order to be able to translate from one language to another is much
more comprehensive. Unfortunately, computational and memory limitations as
of present prevent NMT models from using large word vocabularies, and thus
alternatives such as subword units (BPE and morphological segmentations) and
characters have been used. Here we study the impact of using different kinds of
units on the quality of the resulting representations when used to model syntax,
semantics, and morphology. We found that while representations derived from
subwords are slightly better for modeling syntax, character-based representations
are superior for modeling morphology and are also more robust to noisy input.

1 INTRODUCTION

Recent years have seen the rise of deep neural networks and the subsequent rise of representation
learning based on network-internal activations. Such representations have been shown useful when
addressing various problems from fields such as image recognition (He et al., 2016), speech recog-
nition (Bahdanau et al., 2015), and natural language processing (NLP) (Mikolov et al., 2013a). The
central idea is that the internal representations trained to solve an NLP task could be useful for
other tasks as well. For example, word embeddings learned for a simple word prediction task in
context, word2vec-style (Mikolov et al., 2013b), have now become almost obligatory in state-of-
the-art NLP models. One issue with such word embeddings is that the resulting representation is
context-independent. Recently, it has been shown that huge performance gains can be achieved by
contextualizing the representations, so that the same word could have a different embedding in dif-
ferent contexts. This is best achieved by changing the auxiliary task, e.g., the ElMo model learns
contextualized word embeddings from a language modeling task, using LSTMs (Peters et al., 2018).

More recently, it has been shown that complex tasks such as neural machine translation can yield
superior representations (McCann et al., 2017). This is because the internal understanding of the
input language that needs to be built by the network in order to be able to translate from one language
to another needs to be much more comprehensive compared to what would be needed for a simple
word prediction task. Such representations have yielded state-of-the-art results for tasks such as
sentiment analysis, textual entailment, and question answering.

Unfortunately, computational and memory limitations as of present prevent neural machine trans-
lation (NMT) models from using large-scale vocabularies, typically limiting them to 30-50k words
(Wu et al., 2016). This is a severe limitation, as most NLP applications need to handle vocabularies
of millions of words, e.g., word2vec (Mikolov et al., 2013b), GloVe (Pennington et al., 2014) and
FastText (Mikolov et al., 2018) offer pre-trained embeddings for 3M, 2M, and 2.5M words/phrases,
respectively. The problem is typically addressed using byte-pair encoding (BPE), where words are
segmented into pseudo-word character sequences based on frequency (Sennrich et al., 2016). A
somewhat less popular solution is to use characters as the basic unit of representation (Chung et al.,
2016; Lee et al., 2017). In the case of morphologically complex languages, another alternative is to
reduce the vocabulary by using unsupervised morpheme segmentation (Bradbury & Socher, 2016).
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The impact of using different units of representation in NMT models has been studied in previous
work (Ling et al., 2015; Costa-jussà & Fonollosa, 2016; Chung et al., 2016; Lee et al., 2017, among
others), but the focus has been exclusively on the quality of the resulting translation output. How-
ever, it remains unclear what input and output units should be chosen if we are primarily interested in
representation learning. Here, we aim at bridging this gap by evaluating the quality of NMT-derived
embeddings originating from units of different granularity when used for modeling morphology,
syntax, and semantics (as opposed to end tasks such as sentiment analysis and question answering).
Our contributions can be summarized as follows:

• We study the impact of using words vs. characters vs. BPE units vs. morphological
segments on the quality of representations learned by NMT models when used to model
morphology, syntax, and semantics.
• We further study the robustness of these representations with respect to noise.
• We make practical recommendations based on our results.

We found that while representations derived from morphological segments are better for modeling
syntax, character-based ones are superior for morphology and are also more robust to noise.

2 RELATED WORK

Representation analysis aims at demystifying what is learned inside the neural network black-box.
This includes analyzing word and sentence embeddings (Adi et al., 2016; Qian et al., 2016b; Ganesh
et al., 2017; Conneau et al., 2018, among others), RNN states (Qian et al., 2016a; Shi et al., 2016;
Wu & King, 2016; Wang et al., 2017), and NMT representations (Shi et al., 2016; Belinkov et al.,
2017), as applied to morphological (Qian et al., 2016b; Vylomova et al., 2016), semantic (Qian
et al., 2016b) and syntactic (Linzen et al., 2016; Tran et al., 2018; Conneau et al., 2018) tasks. While
previous work focused on words, here we compare units of different granularities.

Subword translation units aim at reducing vocabulary size and OOV rate. NMT researchers have
used BPE units (Sennrich et al., 2016), morphological segmentation (Bradbury & Socher, 2016),
characters (Lee et al., 2017), and hybrid units (Ling et al., 2015; Costa-jussà & Fonollosa, 2016).
There have also been comparisons between subword units in the context of NMT (Sennrich, 2017).
Unlike this work, here we focus on representation learning rather than on translation quality.

Robustness to noise is an important aspect in machine learning. It has been studied for various
machine learning models (Szegedy et al., 2014; Goodfellow et al., 2015), including NLP models
(Papernot et al., 2016; Samanta & Mehta, 2017; Liang et al., 2017; Ebrahimi et al., 2017; Gao et al.,
2018; Jia & Liang, 2017), and character-based NMT models (Heigold et al., 2018; Belinkov & Bisk,
2018). Unlike the above work, we compare robustness to noise for units of different granularity.
Moreover, we focus on representation learning rather than translation.

3 METHODOLOGY

Our methodology is inspired by research on interpreting neural network (NN) models. A typ-
ical framework involves extracting feature representations from different components (e.g., en-
coder/decoder) of a trained model and then training a classifier to make predictions for an auxiliary
task. The performance of the trained classifier is considered to be a proxy for judging the quality of
the extracted representations with respect to the particular auxiliary task.

Formally, for each input word xi we extract the LSTM hidden states from each layer of the en-
coder/decoder. We concatenate the representations of layers and we use them as feature vector zi
for the auxiliary task. We train a logistic regression classifier by minimizing the cross-entropy loss:

L(θ) = −
∑
i

logPθ(li|xi)

where Pθ(l|xi) = exp(θl·zi)∑
l′ exp(θl′ ·zi)

is the probability that word xi is assigned label l.

The weights θ ∈ RD×L are learned with gradient descent. HereD is the dimensionality of the latent
representations zi and L is the size of the label set for P .
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Table 1: Example sentence with different segmentations.

Words Professor admits to shooting girlfriend

BPE Professor admits to sho@@ oting gir@@ l@@ friend

Morfessor Professor admit@@ s to shoot@@ ing girl@@ friend

Characters P r o f e s s o r a d m i t s t o s h o o t i n g g i r l f r i e n d

Table 2: Example sentence with different annotations.

Words Obama receives Netanyahu in the capital of USA

POS NP VBZ NP IN DT NN IN NP
Sem. PER ENS PER REL DEF REL REL GEO
CCG NP ((S[dcl]\NP)/PP)/NP NP PP/NP PP/N N (NP\NP)/NP NP

3.1 WORD REPRESENTATION UNITS

We consider four representation units: words, byte-pair encoding (BPE) units, morphological units,
and characters. Table 1 shows an example of each representation unit. BPE splits words into symbols
(a symbol is a sequence of characters) and then iteratively replaces the most frequent sequences of
symbols with a new merged symbol. In essence, frequent character n-gram sequences merge to
form one symbol. The number of merge operations is controlled by a hyper-parameter OP, which
directly affects the granularity of segmentation: a high value of OP means coarse segmentation and
a low value means fine-grained segmentation. For morphologically segmented units, we use an
unsupervised morphological segmenter, Morfessor (Smit et al., 2014). Note that although BPE and
Morfessor segment words at a similar level of granularity, the segmentation generated by Morfessor
is linguistically motivated. For example, it splits the gerund shooting into base verb shoot and the
suffix ing. Compare this to the BPE segmentation sho + oting, which has no linguistic justification.
On the extreme, the fully character-level units treat each word as a sequence of characters.

Extracting Activations for Subword and Character Units Previous work on analyzing NMT
representations has been limited to the analysis of word representations only,1 where there is a one-
to-one mapping from input units (words) and their NMT representations (hidden states) to their
linguistic annotations (e.g., morphological tags). In the case of subword-based systems, each word
may be split into multiple subword units, and each unit has its own representation. It is less trivial
to define which representations should be evaluated when predicting a word-level property. We con-
sider two simple approximations to estimate a word representation from subword representations:

(i) Average: for each word, average the activation values of all the subwords (or characters)
comprising it. In the case of a bi-directional encoder, we concatenate the averages from the
forward and the backward activations of the encoder on the subwords (or characters) that
represent the current word.

(ii) Last: consider the activation of the last subword (or character) as the representation of the
word. For the bi-directional encoder, we concatenate the forward encoder’s activation on
the last subword unit with the backward encoder’s activation on the first subword unit.

This formalization allows us to analyze character- and subword-based representations at the word
level via prediction tasks. Such kind of analysis has not been performed before.

3.2 LINGUISTIC PROPERTIES

We choose three fundamental NLP tasks that serve as a good representative of various properties
inherent in a language, ranging from morphology (word structure), syntax (grammar) and semantics
(meaning).

1 Belinkov et al. (2017) analyzed representations from a charCNN (Kim et al., 2015), but the extracted
features were still based on word representations produced by the charCNN. As a result, they could not analyze
BPE and character-based models that do not assume segmentation into words.

3



Under review as a conference paper at ICLR 2019

Table 3: Statistics for NMT and Classifier Training – English (en), German (de), Russian (ru), and
Czech (cs) – CV = Cross Validation

(a) NMT Data

de-en cs-en ru-en

Train 507K 340K 370K
Dev 3000 3000 2818
Test 3000 3000 2818

(b) Number of tags

de cs ru en

Morphology 509 1004 602 42
Semantics 69 – – 66
Syntax 1272 – – –

(c) Classifier Data

de cs ru en

Morphology

Train 14498 14498 11824 14498
Test 8172 8172 6000 8172

Semantics

Train – – – 14084
Test – – – 12168
CV 1863 – – –

Syntax

Train – – – 41586
Test – – – 2407

In particular, we experiment with morphological tagging for German, Czech, Russian and English2

languages, lexical semantics tagging for English and German languages, and syntactic tagging via
CCG supertagging for English language. Table 2 shows an example sentence with annotations of
each task. The morphological tags capture word structure, semantic tags show semantic property,
and syntax tags (CCG super tags) captures global syntactic information locally at the lexical level.
For example in Table 2, – the morphological tag VBZ for the word “receives”, marks that it is a
verb with non-third person singular present property, the semantic tag ENS describes a present
simple event category, and the syntactic tag S[dcl]\NP)/NP indicates that the preposition
“in” attaches to the verb.

3.3 ARTIFICIAL ERROR INDUCTION

Recent studies have shown that small perturbations in the input can cause significant deterioration
in the performance of the deep neural networks. Here, we evaluate the robustness of various repre-
sentations under noisy input conditions. We use corpora of real errors harvested by Belinkov & Bisk
(2018). The errors contain a good mix of typos, misspellings, and other kinds of errors. In addition,
we create data with synthetic noise. We induced two kinds of errors: i) Swap and Middle. Swap is
a common error which occurs when neighboring characters are mistakenly swapped (e.g., word→
wodr). In Middle errors, the order of the first and the last characters of a word are preserved while
the middle characters are randomly shuffled (Rawlinson, 1976) (e.g., example→ eaxmlpe). We cor-
rupt (using swap or middle) or replace (using real errors corpora) n% words randomly in each test
sentence. We then re-extract feature vectors for the erroneous words in a sentence and re-evaluate
the prediction capability of these embeddings on the linguistic tasks.

4 EXPERIMENTAL SETUP

Data and Languages: We trained NMT systems for 4 language pairs: German-English, Czech-
English, Russian-English and English-German, using data made available through the two popu-
lar machine translation campaigns, namely, WMT (Bojar et al., 2017) and IWSLT (Cettolo et al.,
2016). The MT models were trained using a concatenation of NEWS and TED training data. We
used official TED testsets (testsets-11-13) to report translation quality (Papineni et al., 2002). The
morphological classifiers were trained and tested on a concatenation of NEWS and TED testsets,
which were automatically tagged as described in the next section. Semantic and syntactic classifiers
were trained and tested on existing annotated corpora. Statistics are shown in Table 3.

Taggers: We used RDRPOST (Nguyen et al., 2014) to annotate data for the classifier. For seman-
tic tagging, we used the the Groningen Parallel Meaning Bank (Abzianidze et al., 2017). The tags

2As English is morphologically poor, we use part-of-speech tags for it. We refer to English part-of-speech
tags as morphological tags later in the paper in order to keep the terminology consistent.
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Table 4: BLEU scores across language pairs.

de-en cs-en ru-en en-de

word→ bpe 34.0 27.5 20.9 29.7
bpe→ bpe 35.6 28.4 22.4 30.2
morfessor→ bpe 35.5 28.5 22.5 29.9
char→ bpe 34.9 29.0 21.3 30.0

Table 5: OOV rate (%) in the MT and classi-
fier tests.

de-en cs-en ru-en en-de

MT 3.42 6.46 6.86 0.82
Classifier 4.42 6.13 6.61 2.09

are grouped in coarse categories such as events, names, time, and logical expressions. Only 1863
annotated sentences (12783 tokens) were available for German. We performed cross-fold evaluation
to train and report semantic classification results for German. For CCG supertagging, we used the
English CCGBank (Hockenmaier & Steedman, 2007).3 See Table 3 for statistics.

MT Systems and Classifiers: We used seq2seq-attn (Kim, 2016) to train 2-layered atten-
tional long short-term memory (LSTM) (Hochreiter & Schmidhuber, 1997) encoder-decoder sys-
tems with bidirectional encoder. We used 500 dimensions for both word embeddings and LSTM
states. We trained systems with SGD for 20 epochs and used the final model for generating features
for the classifier. We trained the systems in both *-to-English and English-to-* directions and an-
alyze the representations from both encoder and decoder. To analyze the encoder-side, we fix the
decoder-side with BPE-based embeddings and train the source-side with word/BPE/Morfessor/char
units. Similarly, to analyze the decoder-side, we train the encoder representation with BPE units and
vary the decoder side with different input units. Our motivation for this setup is to analyze represen-
tations in isolation keeping the other half of the network static across different settings. We use 50k
BPE operations and limit the vocabulary of all systems to 50k. The word/BPE/Morfessor/character-
based systems were trained with sentence lengths of 80/100/100/400, respectively.

The classifier is a logistic regression whose input is either hidden states in word-based models, or
Last or Average representations in character- and subword-based models. Since we concatenate
forward and backward states from all layers, this ends up being 2000/1000 dimensions when classi-
fying the encoder/decoder: 500 dimensions×2 layers×2 directions (1 for decoder). The classifiers
are trained for 10 epochs.

Figure 1: Classifier accuracy on morphological tagging for the various systems and language pairs.
The encoder models are trained with BPE as target and the decoder models with BPE as a source.

5 RESULTS

We now present the results of using representations learned from different input units on the task of
predicting morphology, semantics and syntax. For subword and character units, we found that the
activation of the last subword/character unit of a word consistently better than using the average of
all activations. So we present the results using Last method only and discuss this more later.

3There are no available CCG banks for the other languages we experiment with, except for a German CCG
bank which is not publicly available (Hockenmaier, 2006).
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Figure 2: Morphological tagging accuracy vs. word frequency for different translation units.

(a) Semantic tagging (b) Syntactic tagging

Figure 3: Semantic and syntactic tagging for different units in English (EN) and German (DE).

5.1 MORPHOLOGICAL TAGGING

Figure 1 summarizes the results for predicting morphological tags with representations learned using
different units. The character-based representations consistently outperformed other representations
on all language pairs while the word-based representations achieved the lowest accuracy. The differ-
ences are more significant in the case of languages with relatively complex morphology, Czech and
Russian. We see a difference of up to 14% in favor of using character-based representations when
compared with the word-based representations. The improvement is minimal in the case of English
(1.2%), which is a morphologically simpler language. Comparing subword units as obtained using
Morfessor and BPE, we found Morfessor to give much better morphological tagging performance
especially in the case of morphologically rich languages, Czech and Russian. This is due to the
linguistically motivated segmentations which are helpful in for learning language morphology.

We further investigated whether the performance difference between various representation is due
to the difference in modeling infrequent and out-of-vocabulary words. Table 5 shows the OOVs rate
of each language which is higher for morphologically rich languages. Figure 2 shows that the gap
between different representations is inversely related to the frequency of the word in the training
data: character-based models perform much better than others on less frequent and OOV words.

Decoder Representations: Next, we used the decoder representations from the English-to-* mod-
els. We saw a similar performance trend as in the case of encoder-side representations, character
units performed the best while word units performed the worst. Also morphological units performed
better than the BPE-based units. Comparing encoder representation with decoder representation, it
is interesting to see that in several cases the decoder-side representations performed better than the
encoder-side representations, even though they are trained using a uni-directional LSTM only. Since
we did not see any difference in trend between encoder and decoder side representations, we only
present the encoder side results in the later part of the paper.
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Figure 4: Drop in classification accuracy with 25% noise in each sentence. Absolute scores (original
→ noisy) are inset. Note that with noisy data, the character-based systems are always better.

5.2 SEMANTIC TAGGING

Figure 3 summarizes the results on the semantic tagging task. On English, subword-based (BPE and
Morfessor) representations and character-based representation achieve comparable results. How-
ever, for German, BPE-based representations performed better than the other representations. These
results contrast to morphology prediction results, where character-based representations were con-
sistently better compared to their subword-based counterparts.

5.3 SYNTACTIC TAGGING

The final property we evaluate is CCG super-tagging, reflecting syntactic knowledge. Here we
only have English tags, so we evaluate encoder representations from English→German models,
trained with words, characters, and subwords. We found that morphologically segmented repre-
sentation units perform the best while words and BPE-based representations perform comparable.
The characters-based representations lag behind, though the difference between accuracy is small
compared to the morphological tagging results.4 It is noteworthy that characters perform below both
words and subwords here, contrary to their superior performance on the task of morphology. We
will return to this point in the discussion in Section 6.

5.4 ROBUSTNESS TO NOISE

We now evaluate the robustness of the representations towards noise. We induce errors in the testsets
by corrupting 25% of the words in each sentence using different error types (synthetic or real noise),
as described in Section 3.3. We extract the representations of the noisy testsets and re-evaluate the
classifiers. Figure 4 shows the performance on each task. Evidently, characters yield much better
performance on all tasks and for all languages, showing minimal drop in the accuracy, in contrast to
earlier results where they did not outperform subword units5 on the task of syntactic tagging. This
result shows character-based representations are more robust towards noise compared to others.

Surprisingly in a few cases, BPE-based representations performed even worst than word-based rep-
resentations, e.g. in the case of Syntactic tagging (80.3 vs. 81.1). We hypothesize that BPE segments
a noisy word into two known subword units that may have no close relationship with the actual word.
Using representations of wrong subword units resulted in a significant drop in performance.

We further investigated the robustness of each classifier by increasing the percentage of noise in
the test data and found that the difference in representation quality stays constant across BPE and

4For perspective, these numbers are above a majority baseline (most frequent tag in the training data) of
72% and below the state-of-the-art, which is around 94-95% Kadari et al. (2018); Xu (2016).

5We found similar trends comparing BPE and Morfessor and left out the latter in the interest of space.
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Table 6: Morphological tagging performance when combining representations

Language-Pair Word BPE Character Word+BPE BPE+Character Word+Character ALL

German-English 75.8 76.0 79.3 78.0 80.8 81.1 81.6
Czech-English 71.9 75.1 81.7 77.2 84.0 84.1 85.0
Russian-English 72.4 74.6 85.9 77.1 88.1 88.2 88.6
English-German 92.9 93.5 94.3 94.2 95.2 95.1 95.4

character representations where as word representations deteriorate significantly with increasing
amount of noise. Detailed accuracies are included in the supplementary material.

6 DISCUSSION

Comparing Performance Across Tasks Character-based representations outperformed in the
case of morphological tagging; BPE-based representations performed better than others in the se-
mantic tagging task for German (and about the same in English); and Morfessor performed slightly
better than others for syntax. Syntactic tagging requires knowledge of the complete sentence. Split-
ting a sentence into characters substantially increases the length (from 50 words in a sentence to
250 characters on average) of the sentence. The character-based models lack in capturing long
distance dependencies, which could be a reason for their low performance in this task. Similarly,
in case of morphological tagging, the information about the morphology of a word is dependent
on the surrounding words plus internal information (root, morphemes etc.) presents in the word.
The character-based system has access to all of this information which results in high tagging per-
formance. Morfessor performed better than BPE in the morphological tagging task because its seg-
ments are linguistically motivated units (segmented into root + morphemes), making the information
about the word morphology explicit in the representation. In comparison, BPE solely focuses on the
frequency of characters occurring together in the corpus and can yield linguistically incorrect units.

Translation vs. Representation Quality Table 4 summarizes the translation performance of each
system. In most of the cases, the subword-based systems perform better than the word-based and
character-based systems. However, this is not true in the case of using their representations as feature
in the core NLP tasks. For example, we found that character-based representations perform better
than others in the morphological tagging task. On an additional note, BPE-based representations
although perform better for some tasks, are sensitive to noise. Their ability to segment any unknown
words into two known subwords result in less reliable systems. Notably, the translation performance
of the BPE-based system falls below the character-based system even with 10% noise only.

Best of All Worlds The variation in the performance of the representations reflect that they may be
learning different aspects of the language. To investigate whether representations are complementary
to each other, we train the classifier on their concatenation. Table 6 summarizes the results on the
morphological tagging task. The performance of the classifier improved in all combinations of
representations while the best results are achieved using all three units together.

7 CONCLUSION AND FUTURE WORK

We studied the impact of using different representation units – words, characters, BPE units, and
morphological segments on the representations learned by NMT. Unlike previous work, which tar-
geted end tasks such as sentiment analysis and question answering, here we focused on modeling
morphology, syntax and semantics. We found that (i) while representations derived from subwords
units are slightly better for modeling syntax, (ii) character representations are distinctly better for
modeling morphology, and (iii) are also more robust to noise in contrast to subword representations,
(iv) and that using all representations together works best. Based on our findings, we conjecture that
although BPE segmentation is a de-facto standard in building state-of-the-art NMT systems, the un-
derlying representations it yields are suboptimal for external tasks. Character-based representations
provide a more viable and robust alternative in this regard, followed by morphological segmentation.
In future work, we plan to explore specialized character-based architectures for NMT. We further
want to study how different units affect representation quality in non-recurrent models such as the
Transformer (Vaswani et al., 2017) and in convolutional architectures (Gehring et al., 2017).
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A SUPPLEMENTARY MATERIAL

Table 7: BLEU Scores and Classifier Accuracies (right-most column) on Morphological tagging on
original and noisy tests

tst11 tst12 tst13 Accuracy tst11 tst12 tst13 Accuracy

German-to-English Czech-to-English

word 36.2 31.1 34.7 75.8 26.4 26.3 29.7 71.9
real 26.9 24.3 26.3 71.5 18.9 20.0 21.5 64.2
swap 22.5 20.3 22.2 69.8 17.3 17.5 19.3 64.6
middle 24.4 21.4 24.4 70.4 18.1 19.3 21.1 65.9

bpe 38.0 32.9 35.9 76.0 27.4 27.0 30.6 75.1
real 29.4 26.1 27.3 73.6 21.8 21.6 23.2 68.6
swap 26.1 23.2 25.3 72.5 18.9 19.0 20.7 71.8
middle 26.9 23.4 25.9 71.9 17.6 18.7 21.5 70.8

char 37.3 32.1 35.2 79.3 27.8 27.7 31.3 81.7
real 31.6 27.7 29.9 77.7 23.1 22.9 25.5 76.3
swap 30.5 26.0 29.4 77.6 23.8 23.2 26.4 79.6
middle 28.0 24.4 26.5 76.4 21.9 22.3 24.9 78.2

Russian-to-English English-to-German

word 21.3 19.8 21.6 72.4 30.3 28.0 30.6 92.9
real – – – – 15.6 13.7 14.9 82.4
swap 14.8 13.5 15.0 64.7 21.32 17.3 20.2 86.7
middle 16.4 15.2 15.3 65.5 23.1 20.1 21.8 87.7

bpe 22.9 20.9 23.3 74.6 31.5 27.8 31.5 93.5
real – – – – 17.4 15.0 16.3 86.0
swap 15.5 15.0 16.3 70.4 22.0 18.1 20.6 90.7
middle 16.0 15.0 16.3 69.3 23.1 20.0 22.5 90.4

char 22.1 22.0 21.8 85.9 30.7 28.3 31.1 94.3
real – – – – 21.8 19.0 20.5 89.5
swap 19.2 17.3 19.0 83.9 26.8 22.9 25.6 93.0
middle 16.9 15.7 15.7 81.2 25.2 22.2 24.4 92.4
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(a) Real noise

(b) Synthetic noise

Figure 5: Morphology classification accuracy when increasing amounts of induced noise.

14


	Introduction
	Related Work
	Methodology
	Word Representation Units
	Linguistic Properties
	Artificial Error Induction

	Experimental Setup
	Results
	Morphological Tagging
	Semantic Tagging
	Syntactic Tagging
	Robustness to Noise

	Discussion
	Conclusion and Future Work
	Supplementary Material

