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ABSTRACT

3D objects (artefacts) are made to fulfill functions. Designing an object often
starts with defining a list of functionalities that it should provide, also known as
functional requirements. Today, the design of 3D object models is still a slow and
largely artisanal activity, with few Computer-Aided Design (CAD) tools existing
to aid the exploration of the design solution space. The purpose of the study is to
explore the possibility of shape generation conditioned on desired functionalities.
To accelerate the design process, we introduce an algorithm for generating object
shapes with desired functionalities. We follow the principle form follows function,
and assume that the form of a structure is correlated to its function. First, we use an
artificial neural network to learn a function-to-form mapping by analysing a dataset
of objects labeled with their functionalities. Then, we combine forms providing one
or more desired functions, generating an object shape that is expected to provide
all of them. Finally, we verify in simulation whether the generated object possesses
the desired functionalities, by defining and executing functionality tests on it.

1 MOTIVATION

Figure 1: Generated object
shape providing the contain-
ability and supportability func-
tionalities.

Design cycles of products are lengthy, as they usually involve thou-
sands of decisions on the form of the product that will implement
the desired functionalities. Despite efforts in the last two decades
to accelerate the workflow using CAD techniques (Kurtoglu, 2007;
Autodesk, Inc.), most of the design process is still done manually.
In an attempt to solve this pertinent problem, the Defense Advanced
Research Projects Agency (DARPA) launched in 2017 the Funda-
mental Design call for research projects on conceptual design of
mechanical systems, that would enable the generation of novel de-
sign configurations DARPA (2017). The purpose of our study is to
explore the possibility of automatic shape generation conditioned on
desired functionalities, as illustrated in Fig. 1.

This paper also has another motivation stemming from robotics.
Traditionally, research in autonomous robots deals with the problem
of recognising affordances of objects in the environment: i.e. given
an object, what actions does is afford to do? Given a shape, what are
its functionalities? This paper addresses the inverse problem: given a list of functionalities, what
shape would provide all of them?

This paper presents a method and an architecture for automatic generation of object shapes with
desired functionalities. It does so by autonomously learning mappings from object form to function,
and then applies this knowledge to conceive new object forms that satisfy given functional require-
ments. In a sense, this method performs functionality arithmetic (by analogy with shape arithmetic
(Wu et al., 2016)) through manipulation of latent vectors corresponding to functionalities (as opposed
to shapes). Fig. 2 illustrates the concept: combine features describing two different objects to create
another object possessing the functionalities of both initial objects. A quick skim through the other
figures of this paper may help the reader understand what we are talking about. A second contribution
is the use of experiments to verify the presence of affordances in the generated object shapes using a
physics simulator, both by defining explicit tests in the simulator, and by using state-of-art affordance
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(a) Wooden beams have the float-
ability affordance.

(b) Flat roads have the traverse-
ability affordance.

(c) Flat wooden roads (pontoon
bridges) offer both float-ability and
traverse-ability.

Figure 2: The features that describe (2a) wooden beams and (2b) flat roads can be combined, to
obtain an object design that possesses both float-ability and traverse-ability: (2c) a pontoon bridge.

detectors. To summarise, this paper has three contributions: (i) a novel method for extracting and
combining functional forms of object shapes, (ii) design and execution of specific validation tests for
the presence of desired affordances, (iii) a novel network architecture specialised for modeling 3D
shapes.

This remainder of the paper is organised as follows. Section 2 presents an overview of the related
work in object design, shape descriptors, and object affordances. Section 3 describes our methodology,
detailing the envisioned workflow for using this technology, and details regarding the architecture of
the network. It also describes the operators employed for object form manipulation. In Section 4 we
discuss the obtained results and describe the drawbacks of the method at its current state. Finally, in
Section 5 we draw a conclusion and detail the opportunities for future work. In this paper we will use
the terms affordance and functionality interchangeably.

2 RELATED LITERATURE

The literature review is organised in three sections, detailing the state-of-the-art in the three fields at the
intersection of which this study finds itself: object design, object shape descriptors (for manipulation
of object forms), and learning of object affordances (for relating object forms to functionalities).

2.1 OBJECT DESIGN

The idea of getting inspiration from previous designs when conceiving a new object is not new, and
appears under names such as Analogical reasoning, and Design reuse. A standard practice in design is
to consult knowledge ontologies (Bryant et al., 2005; Kurtoglu & Campbell, 2009; Bhatt et al., 2012)
that contain function-to-form mappings (Umeda & Tomiyama, 1997; Kurtoglu, 2007). However,
the knowledge acquisition required to populate such ontologies involves a (non-automated) process
known as functional decomposition, in which a human analyses existing objects by disassembling
them into components and noting the functionality provided by each component. A related review on
object functionality inference from shape information is presented in (Hu et al., 2018).

Recently, generative design emerged as an automated technique for exploring the space of 3D object
shapes (Autodesk, Inc.) using genetic algorithms. It formulates the shape search as an optimisation
problem, requiring an initial solution, a definition of parameters to optimise, and rules for exploring
the search space. However, it is far from trivial to identify rules for the intelligent exploration of the
shape space, that would provide results in reasonable time. In a similar context of generative design,
Umetani (2017) employed an AutoEncoder to explore the space of car shapes.

2.2 OBJECT SHAPE DESCRIPTORS

Object shape descriptions serve two purposes: (1) they contain extracted object shape features, which
are used to study the form-to-function relationship, and (2) they serve as basis for the reconstruction
of 3D object models. State-of-the-art techniques for automatically extracting object features are
practically all based on Neural Networks, typically Convolutional Neural Networks or Auto-Encoders
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(Girdhar et al., 2016), which have replaced the methods based on hand-crafted features like Scale-
invariant feature transform (SIFT) or Speeded up robust features (SURF).

In order to generate 3D shapes from descriptions, modern techniques also employ Neural Network
approaches: Auto-Encoders (Girdhar et al., 2016) and Generative Adversarial Networks (Wu et al.,
2016), which learn a mapping from a low-dimensional probabilistic latent space to the space of 3D
objects, allowing to explore the 3D object manifold. In this study, we used a Variational AutoEncoder
(VAE) (Kingma & Welling, 2013; Rezende et al., 2014) to both extract features describing 3D objects,
and reconstruct their 3D shapes when given such a description.

2.3 OBJECT FUNCTIONALITIES AS OBJECT AFFORDANCES

A field of research that also focuses on linking objects with their functionalities is that of affordance
learning. It is based on the notion of affordance that defines an action that an object provides (or
affords) to an agent (Gibson, 1977). In the context of this paper, we are interested in approaches that
map object features to corresponding object affordances (or functionalities). A common approach is to
extract image regions (from RGB-D frames) with specific properties and tag them with corresponding
affordance labels. An overview of machine learning approaches for detecting affordances of tools in
3D visual data is available in (Ciocodeica, 2016). Recent reviews on affordances in machine learning
for cognitive robotics include (Jamone et al., 2016; Min et al., 2016; Zech et al., 2017).

This paper introduces a method to automatically learn shape descriptors and extract a form-to-function
mapping, which is then employed to generate new objects with desired functionalities. The novelty
lies in the use of what we call functionality arithmetic (operations on object functionalities) through
manipulation of corresponding forms in a feature space. This is an application of the principle form
follows function in an automated design setting. Following this principle, we assume that object
forms are correlated to their function. Moreover, since we extract shape features from a dataset of
objects designed by humans for humans, it is reasonable to assume that their shapes are close to
optimal for performing their intended function.

3 METHODOLOGY

The purpose of the study is to explore the possibility of shape generation conditioned on desired
functionalities. The main idea is to train a VAE to generate voxel occupancy grids, and then generate
novel shapes by combining latent codes from existing examples with desired functionalities.

The working hypotheses are: (i) objects providing the same functionality have common form/shape
features, (ii) averaging over multiple shapes that provide the same functionality will extract a form
providing that functionality, that we call "functional form", (iii) parametric interpolation between
samples can generate novel shapes providing the combined functionalities of those samples. This last
assumption is contentious, as we cannot yet predict the behaviour of functionalities when combining
their underlying shapes. For this reason, we verify the presence of these functionalities in simulation.

We employed a voxelgrid representation for 3D object models as it satisfied the requirement of convo-
lutional AutoEncoders to have fixed-size input, and was the easiest to employ for a proof-of-concept.

The starting point for this research was the hypothesis that object functionalities arise due to fea-
tures that those objects possess. Therefore, if we intend to create an object with a desired set of
functionalities, then it should possess corresponding features providing these functionalities.

In this section we describe our workflow for object generation (Section 3.1), and the functionality
arithmetics operators that we used for generating shapes with desired functionalities (Section 3.2).
Technical details on the employed neural network architecture and its training are available in
Section A.1 of the appendix.
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3.1 PROPOSED WORKFLOW

For employing the proposed object generation method, we suggest a workflow composed of two
phases: (1) learning phase, in which a neural network is trained to generate feature-based representa-
tions of objects and to faithfully reconstruct objects using this representation, and (2) request phase,
in which a user requests the generation of a novel object with some desired functionalities among
those present in the traning dataset of affordance-labeled objects. The algorithm would then pick
object categories providing those functionalities, extract the shape features responsible for providing
those functionalities (generating the form-to-function mapping), and combine them to generate a
feature description of a new object. This description would then be used to generate a 3D model of
the desired object.

3.2 OPERATORS

In this section we describe the operators that we employed for manipulating object forms. Section 3.2.1
will describe the extraction of functional form of a category of objects, which is the set of features
that provides the functionalities of that category. Section 3.2.2 will describe how we combine two
object descriptions into a single new one, that is expected to have the functionalities of both input
objects.

3.2.1 EXTRACT THE functional form OF A CATEGORY OF OBJECTS

Every category of objects possesses a set of functionalities that defines it. From a form follows
function perspective, all objects samples contained in a category share a set of features that provide
its set of functionalities. We call this set of features the functional form of a category of objects.
Multiple methods may exist for extracting it. For example, Larsen et al. (2015) isolated face features
(e.g. presence of glasses, bangs, mustache) by computing the difference between the mean vector for
categories with the attribute and the mean vector for categories without the attribute. In our particular
case, we compute the vector of shape features that are responsible for the presence of functionalities
as the average latent vector of an object category. This functional form of an object category can then
be visualised by inputting the obtained feature (latent-vector) description into the decoder trained to
reconstruct 3D volumes. Fig. 4 illustrates some results obtained using this method.

Later, we assign an importance value to each latent variable composing the functional form of a
category. We do this by computing the Kullback–Leibler (KL) divergence between the Probability
Density Function (PDF) of these variables with the PDF of (1) variables describing a void volume,
and (2) a non-informative distribution of independent Gaussians with 0 mean and unit variance (called
prior). The motivation behind using these two KL divergences for ranking the variables is to identify
(1) which variables make the shape different from a void volume, to capture the filled voxels of the
model, and (2) which variables distinguish the shape description from that of a Gaussian prior. Both of
these KL divergences are normalised, so as to have unit norm. Then, an importance vector is defined
as the weighted sum of the normalized KL divergences with a void and a non-informative prior
distribution, with the corresponding weights wvoid = 1/2 and wprior = 1/2 chosen empirically.

3.2.2 COMBINE THE functional forms OF TWO DIFFERENT CATEGORIES OF OBJECTS

In order to combine two object descriptions (i.e. two latent vectors containing these descriptions), we
need to identify which of the variables in each vector are important for encoding the object shape.
In a degenerate case, if all the variables are critical for encoding the object shape, then their values
cannot be changed, and therefore the object cannot be combined with another one (or a conflict
resolution function must be devised). The hypothesis is that not all the variables are critical for
representing the object shape, meaning that some variables’ values can be neglected when combining
two object descriptions. We identify which variables are important for an object description using the
importance vector method described above in Section 3.2.1.

The combination of two object descriptions is guided by their corresponding importance vectors. For
simplicity, we describe the combination as being made between two object descriptions, although the
method is applicable to any number of objects. One object serves as a base object, from which are
taken the initial values of the latent variables’ distributions for the combined object description. The
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Table 1: Interaction cases between latent variables contained in the descriptions of two different
objects (Objbase, Objtop), which appear when attempting to combine them.

# Latent variable from Objbase Latent variable from Objtop Latent variable from Objcombined

1 non-important non-important value of base object
2 non-important important value of important variable
3 important non-important value of important variable
4 important important average of the two values

other object serves as top object, whose latent variables’ distributions are combined with those of the
base object according to the rules described in Table 1. The degree to which two object categories are
combined can be controlled by varying the amount of information kept from each object description
(i.e. the percentage of variables considered important for an object description).

Four cases appear when combining two latent vector descriptions of objects, as seen in Table 1. These
rules can be resumed as follows: if both variable distributions are important then average them (case
4 in the table), if only one is important then keep the important one (cases 2 and 3 in the table), else
keep the base values (case 1 in the table).

Figure 5 shows some outcomes of using these combination rules, including the impact of the order in
which objects are combined, and of different threshold levels for the importance vectors (50%, 60%,
70%, 80%, and 95%). The impact of different combination parameters on the output 3D models is
shown in Fig. 11 of the Appendix.

Employing a void volume as base object onto which the important features were overlaid did not
result in satisfactory outputs, as the models were mostly void. However, using a void volume as base
would have made the combination function commutative.

4 RESULTS AND DISCUSSION

In this section we provide our results on the (a) capacity of the VAE to describe and reconstruct
objects, (b) extraction of functional forms for different categories of objects, (c) generation of novel
objects through the combination of feature representations of object categories containing desired
functionalities, and (d) affordance testing for the generated objects. At the end of this section, we
discuss the limitations of the proposed method.

4.1 OBJECT REPRESENTATION AND RECONSTRUCTION RESULTS

Fig. 3 illustrates 3D object samples and their corresponding reconstructions generated by the network.
The satisfactory quality of reconstructions suggests that the encoder network can generate descriptions
of objects in a feature (latent vector) space, and that the decoder network can successfully reconstruct
objects from descriptions generated by the encoder network.

Figure 3: Examples of original voxelised objects (top) and their reconstructions (bottom) generated
by the VAE neural network. Objects taken from the ModelNet dataset (Wu et al., 2015).

4.2 FUNCTIONAL FORM EXTRACTION RESULTS

Through the extraction of functional forms of different object categories, we expected to identify
forms that provide functionalities offered by those categories of objects. Fig. 4 shows results on

5



Under review as a conference paper at ICLR 2019

functional form extraction for tables, chairs, and monitors. Relevant features have been extracted,
such as the flatness of tables providing support-ability, the seats and backrests of chairs providing
sit-ability and lean-ability, respectively. In the case of the chair object category, a considerable
proportion of objects had armrests, which led to this feature becoming part of the functional form.

(a) Sample tables (top), their reconstructions (bottom), and their common form features or functional
form (right). The flatness feature was successfully extracted, which can be interpreted as providing the
support-ability of tables. Since supports differed in the samples, their were not included in the set of
common shape features.

(b) Sample chairs (top), their reconstructions (bottom), and their common form features (right). The seat
and backrest are present in the set of common shape features, providing the sit-ability and lean-ability
affordances. Since multiple chairs had armrests in the samples, these were also included in the set of
common shape features.

(c) Sample monitors (top), their reconstructions (bottom), and their common form features (right). The
flatness of screens was successfully identified as a common shape feature.

Figure 4: Functional forms extracted for (a) tables, (b) chairs and (c) monitors. Objects taken from
the ModelNet dataset (Wu et al., 2015). Visualiser: viewvox (Min, 2004).

4.3 OBJECT COMBINATION RESULTS

The ability to extract a shape representation that constitutes the functional form of a category, coupled
with the ability to combine it with another object representation, makes it possible to extract and
combine shape features that provide desired functionalities. It is worth noting that the proposed
combination operator is non-commutative, meaning that the combination of two objects can generate
different results, depending on the order of objects in the combining operation (i.e. which object is
used as base object, and the order in which other objects are combined with it).

4.3.1 SIT-ABILITY AND WASH-ABILITY

In this experiment, we have attempted to extract the sit-ability and wash-ability of toilet seats
and bathtubs, respectively, in order to combine them into a new object providing both of these
functionalities. The obtained results may be interpreted as bidet objects.
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(a) Toilet
functional

form (base).

(b) Top 50%
bathtub

functional form
overlaid onto it.

(c) Top 60%
bathtub

functional form
overlaid onto it.

(d) Top 70%
bathtub

functional form
overlaid onto it.

(e) Top 80%
bathtub

functional form
overlaid onto it.

(f) Top 95%
bathtub

functional form
overlaid onto it.

(g) Bathtub
functional

form (base).

(h) Top 50%
toilet

functional form
overlaid onto it.

(i) Top 60%
toilet

functional form
overlaid onto it.

(j) Top 70%
toilet

functional form
overlaid onto it.

(k) Top 80%
toilet

functional form
overlaid onto it.

(l) Top 95%
toilet

functional form
overlaid onto it.

Figure 5: Object combination results for bathtubs and toilets functional forms, using a toilet
functional form base combined with a bathtub functional form (top), and a bathtub functional
form base combined with a toilet functional form (bottom), both of which can be interpreted as
a bidet. A gradual transformation is displayed (base functional form combined with top-50% to
top-95% of the second functional form). From left to right, the combination looks less like a toilet
(top) / bathtub (bottom) and more like a bidet.

4.3.2 WASH-ABILITY AND SUPPORT-ABILITY

This experiment displays the combination of support-ability and contain-ability functionalities with
the intent of creating something similar to a workdesk in a bathtub. The result is shown in Fig. 6.

(a) Table functional form,
with its characteristic flat-
ness providing support-
ability.

(b) Bathtub functional
form, providing wash-
ability with its convex
shape.

(c) A bathtub shape with a
flat surface on top, provid-
ing both wash-ability and
support-ability.

(d) Closest objects
from the training
set.

Figure 6: Combining features of objects providing respectively wash-ability and support-ability into
a novel object form, providing both functionalities. (6d) shows the two objects from the training
dataset that are closest to our generated object, in terms of similarity of the activation values of the
one-before-last layer of the decoder.

4.4 QUANTITATIVE RESULTS

We analysed the generated objects using 3 methods: (1) verification of affordance presence using
state-of-art affordance detectors, (2) comparison of generated objects to most similar objects in the
dataset, and (3) testing affordance presence in a physics simulation. These are detailed below.

4.4.1 AFFORDANCE DETECTORS

We attempted to identify the presence of the desired affordances (contain-ability, support-ability)
using affordance detectors developed by other groups.
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Sadly, we were not able to replicate the affordance detection results of Myers et al. (2015) on synthetic
object images seen by a Kinect RGBD camera inside the Gazebo simulator. It failed to recognise the
containability affordance in both standard objects like a bowl and a saucepan, and in generated ones.

We also tried the affordance detector of Do et al. (2018), called AffordanceNet. While it worked
on objects viewed in simulation (including those of objects from the ModelNet40 dataset on which
our network was trained), it had difficulties with recognising properly the affordances of generated
objects (see Fig. 7a). We found experimentally that the failure cases for affordance detection were
caused by the rugged surface of the object, and the fact that AffordanceNet was not trained on images
of rugged objects. After applying Poisson smoothing to this object’s surface, the detector correctly
identified the presence of contain-ability, although it still struggled to locate it properly (see Fig. 7b).

(a) The AffordanceNet detector correctly identified
support-ability (in light blue) and wrap-grasp-ability
(in mustard colour), and incorrectly identified hit-
ability (in purple).

(b) On a smoothed version of the object, and in
different lighting conditions, it correctly identified
wrap-grasp-ability (mustard), contain-ability (red), al-
though with imperfect segmentation. It incorrectly
identified hit-ability (purple) and support-ability (light
blue).

Figure 7: Affordance detection results using the AffordanceNet (Do et al., 2018).

4.4.2 MOST SIMILAR SHAPES IN THE TRAINING DATASET TO THE ONES GENERATED

To ensure that the employed algorithm does not simply generate models by copying samples from the
dataset, we compare the generated objects with the most similar samples from the dataset, based on
the similarity of outputs of the one-before-last layer of the decoder. The result from Fig. 6d confirmed
that generated objects are distinct from the samples in the training set.

4.4.3 AFFORDANCE TESTING IN SIMULATION

To verify that the generated objects indeed provide the requested affordances, we developed some
tests to execute in simulation. For this purpose, the generated voxelgrid model is transformed into a
mesh using the marching cubes method (Lorensen & Cline, 1987), after which we compute its inertia
matrix and create the Spatial Data File (SDF) file that allows to import it into the Gazebo simulator,
using the Bullet physics engine.

To verify for supportability, we suspended the object into the air, and verified which of its regions
can support a stable object with a flat base, by dropping from above from different (x,y) locations a
0.1 m3 cube with mass 1 kg, and checking whether this had any impact on the (x,y) coordinates of
its centroid. If only its z coordinate (altitude from ground) had changed, while the (x,y) coordinates
remained the same, then that location was marked as providing stability. On the contrary, if the region
was not flat, the cube would tumble over, landing on (x,y,z) coordinates distinct from its initial ones.
Fig. 8c shows the obtained result. To verify containability, we dropped spheres into the object until
they overflowed, and measured the ratio of the total volume of all spheres contained inside the object
versus the volume of its bounding box (see Fig. 8d).
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(a) Perspective view
of the generated ob-
ject.

(b) Top-down view
of the generated ob-
ject.

(c) White pixels
show locations with
supportability.

(d) Containability
test results with
spheres.

(e) Containability of
a humanoid robot in
the bathtub.

Figure 8: The generated bathtub-workdesk object in (8a) perspective view and (8b) top-down view.
(8c) shows the result of the support-ability test, while (8d) shows the result of the contain-ability test.
(8e) demonstrates that an iCub humanoid robot can fit inside the bathtub, and the Coca-Cola can
illustrates the supportability of the workdesk.

4.5 LIMITATIONS

The proposed method currently has a set of limitations: (i) The method used for extracting functional
forms from object categories, which employs averaging out the gaussians describing the voxel
locations, requires all samples in the dataset to be aligned. (ii) The combination method does not state
if a solution to the posed problem does not exist (i.e. if combining two different sets of affordances is
possible). (iii) The different scales of objects are not taken into consideration when combining objects.
Training the neural network on object models which are correctly sized relative to each other would
solve this issue. However, it would require increasing the size of the input voxel cube to fit inside
detailed descriptions of both small-scale objects (e.g. spoons, forks, chairs) and large scale objects
(e.g. dressers, sofas), which would also increase the training time. (iv) Since the features describe
the voxels mostly in the center of the bounding cube, combining two different feature descriptions
makes them compete for the same center voxels in this bounding volume. Introducing an operator for
spatially offseting some shape features would allow to construct composite objects. For instance, if
we want to extract the sit-ability and support-ability from chairs and tables, respectively, in order to
create something similar to a conference chair, it would be required to offset the table features with
respect to the chair features.

5 CONCLUSION AND FUTURE WORK

We have presented a method for generating objects with desired functionalities, by first extracting
a form-to-function mapping from a dataset of objects, and then manipulating and combining these
forms through functionality arithmetic. The method relies on a neural network to extract feature-based
descriptions of objects. These descriptions allow shape manipulation and arithmetics in a latent
feature space, before being transformed back into 3D object models. We then test the presence of
desired affordances in a physical simulator, and with an affordance detector.

In contrast to an ontology based approach, where modifications can be done deterministically, all the
object shape manipulations are probabilistic in our case. Thus, generated inexact models may prove
sufficient if regarded only as design suggestions. However, a production-grade technology would
require less noisy object-modeling results. We plan to employ a Generative Adversarial Network
(GAN) approach (Wu et al., 2016), encouraging the network to generate objects with smooth surfaces
similar to those of existing man-made objects. We also plan to implement a training procedure to
encourage neurons in the latent layer to represent specific transformations (rotation, scale) following
the approach of Kulkarni et al. (2015).

Our models still lack information about materials from which objects are composed, their colors or
textures (where necessary), and the articulations between subparts. Adding them would make the
approach much more practical.

The voxelgrid representation comes with a tradeoff (easy to use, but low model resolution, high
computational complexity for training the neural network), and it is possible to revise this decision
in our future work. This would require considering alternative representations such as point clouds,
mesh representations, shape primitives, etc.
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In addition, instead of using a dataset containing an implicit mapping of form-to-function (as objects
are categorised in categories), we intend to learn object functionalities/affordances automatically,
by letting a robot interact autonomously with a set of objects. This is related to the currently active
field of affordance learning in robotics. Moreover, the use of 3D shape descriptors developed in this
research will facilitate affordance learning and knowledge transfer in the case of autonomous robots.

The source code will be made available upon publication.

REFERENCES

Autodesk, Inc. Autodesk dreamcatcher. https://autodeskresearch.com/projects/
dreamcatcher. Accessed: 2018-05-15.

Mehul Bhatt, Joana Hois, and Oliver Kutz. Ontological modelling of form and function for architec-
tural design. Applied Ontology, 7(3):233–267, 2012.

Cari R Bryant, Robert B Stone, Daniel A McAdams, Tolga Kurtoglu, Matthew I Campbell, et al.
Concept generation from the functional basis of design. In ICED 05: 15th International Conference
on Engineering Design: Engineering Design and the Global Economy, pp. 1702. Engineers
Australia, 2005.

Sebastian Ciocodeica. A Machine Learning Approach for Affordance Detection of Tools in 3D Visual
Data. Bachelor’s thesis, University of Aberdeen, 2016.

DARPA. Disruption opportunity special notice darpa-sn-17-71. https://www.fbo.gov/spg/
ODA/DARPA/CMO/DARPA-SN-17-71/listing.html„ 2017. Accessed: 2018-05-15.

Thanh-Toan Do, Anh Nguyen, and Ian Reid. Affordancenet: An end-to-end deep learning ap-
proach for object affordance detection. In 2018 IEEE International Conference on Robotics and
Automation (ICRA), pp. 1–5. IEEE, 2018.

James Gibson. The theory of affordances. Perceiving, acting, and knowing: Toward an ecological
psychology, pp. 67–82, 1977.

Rohit Girdhar, David F. Fouhey, Mikel Rodriguez, and Abhinav Gupta. Learning a predictable and
generative vector representation for objects. In Bastian Leibe, Jiri Matas, Nicu Sebe, and Max
Welling (eds.), Computer Vision – ECCV 2016, pp. 484–499, Cham, 2016. Springer International
Publishing. ISBN 978-3-319-46466-4.

Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick,
Shakir Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual concepts with a
constrained variational framework. In International Conference on Learning Representations,
2017.

Ruizhen Hu, Manolis Savva, and Oliver van Kaick. Functionality representations and applications
for shape analysis. In Computer Graphics Forum, volume 37, pp. 603–624. Wiley Online Library,
2018.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
volume 1, pp. 3, 2017.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

Lorenzo Jamone, Emre Ugur, Angelo Cangelosi, Luciano Fadiga, Alexandre Bernardino, Justus Piater,
and Jose Santos-Victor. Affordances in psychology, neuroscience and robotics: a survey. IEEE
Transactions on Cognitive and Developmental Systems, (August):1–1, 2016. ISSN 2379-8920. doi:
10.1109/TCDS.2016.2594134.

Diederik P. Kingma and Max Welling. Auto-Encoding Variational Bayes. ArXiv e-prints, December
2013.

10

https://autodeskresearch.com/projects/dreamcatcher
https://autodeskresearch.com/projects/dreamcatcher
https://www.fbo.gov/spg/ODA/DARPA/CMO/DARPA-SN-17-71/listing.html
https://www.fbo.gov/spg/ODA/DARPA/CMO/DARPA-SN-17-71/listing.html


Under review as a conference paper at ICLR 2019

Tejas D Kulkarni, William F Whitney, Pushmeet Kohli, and Josh Tenenbaum. Deep convolutional
inverse graphics network. In Advances in neural information processing systems, pp. 2539–2547,
2015.

Tolga Kurtoglu. A computational approach to innovative conceptual design. PhD thesis, The
University of Texas at Austin, 2007.

Tolga Kurtoglu and M. I. Campbell. Automated synthesis of electromechanical design configura-
tions from empirical analysis of function to form mapping. Journal of Engineering Design, 20
(1):83–104, 2009. doi: 10.1080/09544820701546165. URL https://doi.org/10.1080/
09544820701546165.

Anders Boesen Lindbo Larsen, Søren Kaae Sønderby, Hugo Larochelle, and Ole Winther. Autoen-
coding beyond pixels using a learned similarity metric, 2015.

William E Lorensen and Harvey E Cline. Marching cubes: A high resolution 3d surface construction
algorithm. In ACM siggraph computer graphics, volume 21, pp. 163–169. ACM, 1987.

Huaqing Min, Chang’an Yi, Ronghua Luo, Jinhui Zhu, and Sheng Bi. Affordance research in
developmental robotics: A survey. IEEE Transactions on Cognitive and Developmental Systems, 8
(4):237–255, 2016.

Patrick Min. binvox. http://www.patrickmin.com/binvox or
https://www.google.com/search?q=binvox, 2004. Accessed: 2018-05-04.

Austin Myers, Ching Lik Teo, Cornelia Fermüller, and Yiannis Aloimonos. Affordance detection of
tool parts from geometric features. In ICRA, pp. 1374–1381, 2015.

Fakir S. Nooruddin and Greg Turk. Simplification and repair of polygonal models using volumetric
techniques. IEEE Transactions on Visualization and Computer Graphics, 9(2):191–205, 2003.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and
approximate inference in deep generative models. ArXiv preprint arXiv:1401.4082, January 2014.

Yasushi Umeda and Tetsuo Tomiyama. Functional reasoning in design. IEEE Expert, 12(2):42–48, 3
1997. ISSN 0885-9000. doi: 10.1109/64.585103.

Nobuyuki Umetani. Exploring generative 3d shapes using autoencoder networks. In SIGGRAPH
Asia 2017 Technical Briefs, SA ’17, pp. 24:1–24:4, New York, NY, USA, 2017. ACM. ISBN
978-1-4503-5406-6. doi: 10.1145/3145749.3145758. URL http://doi.acm.org/10.1145/
3145749.3145758.

Jiajun Wu, Chengkai Zhang, Tianfan Xue, Bill Freeman, and Josh Tenenbaum. Learning a
probabilistic latent space of object shapes via 3d generative-adversarial modeling. In D. D.
Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett (eds.), Advances in Neural
Information Processing Systems 29, pp. 82–90. Curran Associates, Inc., 2016. URL http://
papers.nips.cc/paper/6096-learning-a-probabilistic-latent-space-
of-object-shapes-via-3d-generative-adversarial-modeling.pdf.

Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang, and Jianxiong
Xiao. 3d shapenets: A deep representation for volumetric shapes. In 2015 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 1912–1920, 6 2015. doi: 10.1109/
CVPR.2015.7298801.

Philipp Zech, Simon Haller, Safoura Rezapour Lakani, Barry Ridge, Emre Ugur, and Justus Pi-
ater. Computational models of affordance in robotics: a taxonomy and systematic classifi-
cation. Adaptive Behavior, 25(5):235–271, 2017. doi: 10.1177/1059712317726357. URL
https://doi.org/10.1177/1059712317726357.

11

https://doi.org/10.1080/09544820701546165
https://doi.org/10.1080/09544820701546165
http://doi.acm.org/10.1145/3145749.3145758
http://doi.acm.org/10.1145/3145749.3145758
http://papers.nips.cc/paper/6096-learning-a-probabilistic-latent-space-of-object-shapes-via-3d-generative-adversarial-modeling.pdf
http://papers.nips.cc/paper/6096-learning-a-probabilistic-latent-space-of-object-shapes-via-3d-generative-adversarial-modeling.pdf
http://papers.nips.cc/paper/6096-learning-a-probabilistic-latent-space-of-object-shapes-via-3d-generative-adversarial-modeling.pdf
https://doi.org/10.1177/1059712317726357


Under review as a conference paper at ICLR 2019

encoder

layer

643×1 323×8 encoder

layer

163×64 encoder

layer

83×256 encoder

layer

43×2048

43×2048

max
pool

max
pool

ℇ

×
2048

2048

+ ...

(a) Encoder architecture

decoder

layer

13×2048
...

decoder

layer

43×256 decoder

layer

83×64 decoder

layer

163×32 323×8 643×1transpose
convolution

(b) Decoder architecture
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A APPENDIX

A.1 NEURAL NETWORK ARCHITECTURE

To come up with an automatic method for describing the features of objects, we employ a VAE that
we train on the ModelNet 40 dataset of common household objects (Wu et al., 2015). This dataset
contains 3D models of bathtubs, beds, chairs, desks, dressers, monitors, night stands, sofas, tables,
toilets, etc. (see examples in Fig. 3). For processing, we convert the samples in the dataset from
OFF to binary voxelgrid (BINVOX) format (Min, 2004; Nooruddin & Turk, 2003), obtaining exact
voxelgrid models centered in a volume of dimension 64x64x64 voxels. We augment the dataset by
rotating the voxelgrid models by 90, 180 and 270 degrees around their vertical axis.

The network architecture is shown in Figure 9. The inputs are cubes of size 64 × 64 × 64, which
is identical to the dimensions of the reconstructed outputs. Both the encoder and the decoder
employ convolutional layers, interspersed with rectified linear unit (ReLU) non-linearities and batch
normalization (Ioffe & Szegedy, 2015) operations. Inspired by DenseNet architecture (Huang et al.,
2017), we have stacked the outputs of activation layers throughout the encoder and decoder layers.
However, unlike the bottleneck layers of (Huang et al., 2017), we have used max-pool operations (and
reshape operation, in the case of the decoder) to align the shapes (see Figure 10). This was motivated
by the fact that a significant bottleneck already exists in the latent variable layer.

The last layer of the encoder performs a reduce-max operation, in order to generate the means and
variances for the gaussian distributions that model each of the variables of the latent vector. The VAE
employs a latent vector of size 211 (i.e. 2048) latent variables, which serves both as a bottleneck and
as container of the object description. We use a VAE loss to train the network, which is composed
of two parts: weighted binary cross-entropy (the reconstruction loss) and KL divergence with a
non-informative prior (a Gaussian with zero mean and unit variance) which is a regularisation loss.
For a single example, the (non-weighted) reconstruction loss is computed as follows:∑

−
(
x · log(x′) + (1− x) · log(1− x′)

)
(1)

where x is the data, and x′ is the reconstruction. To improve training speed, we employ a weighted
cost function, that penalises proportionately more the network for errors in reconstructing full voxels
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than for errors in reconstructing empty voxels:

Eq(z|x)[log p(x|z)] =
∑
−
(
α · x · log(x′) + (1− x) · log(1− x′)

)
(2)

where α is the weight factor for the filled voxels, log(.) is applied element-wise, and the summation
is over the whole volume. This is useful, since on average most of the reconstructed volume is
empty, while the objects occupy only ≈ 4% of all the voxels. This allows to avoid the local minimum
trap at the beginning of training, when the network prefers to reconstruct only empty volumes. We
empirically set this weight to a value of α = 10. The regularisation loss is computed as:

DKL(q(z|x)||p(z)) =
1

2

J∑
j=1

(1 + log(σ2
j )− µ2

j − σ2
j ) (3)

where J is the number of latent variables (2048 = 211 in our case), and µj and σj are the parameters
of the posterior of the latent variables (i.e. probability of the latent vector given the observation of
a single data point: q(z|x)). To improve the quality of reconstructions, we use a modified version
of Eq. 3, referred to as beta VAE (Higgins et al., 2017) that encourages the network to use all the
capacity of its latent layer:

Eq(z|x)[log p(x|z)]− βDKL(q(z|x)||p(z)) (4)

with β = 0.01 kept constant during training.
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A.2 IMPACT OF COMBINATION PARATERS ON THE OUTPUT 3D MODELS

Figure 11: Impact of the different parameters used when combining shape encodings. Left to right:
amount of total variables used (ranging from 0 to 1, in steps of 0.2), ranked by their importance
score. The left-most column has only void, as no variables are used for combinations. The right-most
column corresponds to interpolations between the functional forms of a toilet and a bathtub. Top to
bottom: weight of KL divergence with the encoding of a void volume (from 0 to 1, in steps of 0.2);
the weight of KL divergence with a Gaussian prior is (1 - KL divergence with void).
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