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Abstract

The issue of fairness in machine learning models has recently
attracted a lot of attention as ensuring it will ensure contin-
ued confidence of the general public in the deployment of
machine learning systems. Here, we focus on mitigating the
harm incurred by a biased system that offers better outputs
(e.g. loans, jobs) for certain groups than for others. We show
that bias in the output can naturally be handled in probabilis-
tic models by introducing a latent target output. This formu-
lation has several advantages: first, it is a unified framework
for several notions of fairness such as Demographic Parity
and Equalized Odds; second, it is expressed as a marginal-
ization instead of a constrained problem; and third, it allows
the encoding of our knowledge of what the bias in the out-
puts should be. Practically, the second allows us to reuse off-
the-shelf toolboxes, and the latter translates to the ability to
control the level of fairness by directly varying fairness target
rates such as true positive rates and positive rates. In con-
trast, existing approaches rely on intermediate, arguably un-
intuitive, control parameters such as covariance thresholds.

1 Introduction
Algorithmic assessment methods are used for predicting hu-
man outcomes such as bail decision and mortgage approval.
This contributes, in theory, to a world with decreasing hu-
man biases. To achieve this, however, we need advanced ma-
chine learning models that are free of algorithmic biases (fair
models), despite the fact that they are written by humans and
trained based on historical and biased data.

There is no single accepted definition of algorith-
mic fairness for automated decision-making though sev-
eral have been proposed. One definition is referred to
as statistical or demographic parity. Given a binary sen-
sitive attribute (married/unmarried) and a binary deci-
sion (yes/no to getting a mortgage), demographic par-
ity requires equal positive rates (PR) across married and
unmarried individuals, i.e. P(mortgage = yes|married) =
P(mortgage = yes|not married). Another fairness crite-
rion, equalized odds (Hardt et al. 2016), takes into ac-
count binary label (yes/no in making a payment), and
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requires equal true positive rates (TPR) and false pos-
itive rates (FPR) across married and unmarried groups,
i.e. P(mortgage = yes|married, payment = yes) =
P(mortgage = yes|not married, payment = yes) for equal
TPR rates, and accordingly for the FPR rates.

Many models are available for enforcing demographic
parity or equalized odds (Agarwal et al. 2018; Calders,
Kamiran, and Pechenizkiy 2009; Kamishima et al. 2012;
Zafar et al. 2017a; 2017b), however none of them give hu-
mans the control to set the rate of positive predictions (e.g.
a PR of 0.6), or the rate of true positives (e.g. a TPR of 0.6).
What is the advantage of being able to control PR/TPR/FPR
rates? In this paper, we show that we can actually control
the level of fairness by directly tuning those target rates.
This means machine learning practitioners can trade off fair-
ness and accuracy by directly controlling parameters that are
intuitive and thereby understandable to the general public.
In contrast, existing approaches to balancing accuracy and
fairness rely on intermediate, unintuitive control parameters
such as allowable constraint violation ε (e.g. 0.01) in Agar-
wal et al. (2018), or a covariance threshold c (e.g. 0 that
is controlled by another parameters τ and µ – 0.005 and
1.2 – to trade off this threshold and accuracy) in Zafar et
al. (2017a).

We propose a method for incorporating fairness into prob-
abilistic classifiers. We assume the existence of unbiased
output decision, which will modulate the likelihood term of
the classifier. With this formulation, we can show the theo-
retical mutual exclusivity of demographic parity and equal-
ized odds (Chouldechova 2017; Kleinberg, Mullainathan,
and Raghavan 2016) as a by-product of the sum and product
probability rules. This is in stark contrast to many existing
approaches that embed fairness criteria as constraints in the
optimization procedure (Donini et al. 2018; Quadrianto and
Sharmanska 2017; Zafar et al. 2017a; 2017b); those methods
can then violate mutual exclusivity as there is no mechanism
to prevent multiple constraints being added. We instantiate
our approach with a parametric logistic regression classifier
and a Bayesian nonparametric Gaussian process classifier
(GPC). For the latter, as our formulation is not expressed as
a constrained problem, we can draw upon advancements in
automated variational inference (Bonilla, Krauth, and Dez-



fouli 2016; Gardner et al. 2018; Krauth et al. 2016) for learn-
ing the fair model, and for handling large amounts of data.

The method presented in this paper is closely related to
a number of previous works, e.g. Kamiran and Calders;
Calders and Verwer (2012; 2010). Proper comparisons with
them requires knowledge of our approach. We will thus ex-
plain our approach in the subsequent sections, and defer de-
tailed comparisons to Section 4 Related Work.

2 Target labels for handling label bias
In order to motivate the notion of optimising for target la-
bels, let us consider the recidivism prediction problem used
to inform bail and parole decisions. Here, the goal is to pre-
dict whether a person, if released, will re-offense within a
fixed period of time. We, however, do not have data on who
commits crimes (target labels), we only have data on who is
arrested (proxy labels). Arrest data could be a poor proxy for
actual crimes committed if over-policing in a certain group
of individuals happens.

Suppose then we want to enforce the fairness criterion de-
mographic parity. In demographic parity, we demand that
the overall probability of being assigned a positive predic-
tion (ŷ = 1) is the same for all demographic groups s
(here with s ∈ {0, 1}): P(ŷ = 1|s = 0) = P(ŷ =
1|s = 1). The above equation does not (in general) hold
for the labels in the training set. Enforcing demographic
parity can be understood as learning from a dataset with
“incorrect” or proxy labels (Chouldechova and Roth 2018;
Tolan 2019). The fair classifier — with respect to demo-
graphic parity — makes predictions that are distributed dif-
ferently than the labels in the dataset. From the perspective
of the fair classifier, the training labels are “wrong”, because
they are biased.

Furthermore, we argue that for classification, it is not as
useful to consider any bias in the features and we will there-
fore only consider the bias in the labels. This is because
when building a fair classifier it is not necessary to explic-
itly construct a fair version of the features, all that mat-
ters in the end is the fair prediction. If the classifier learns
from unbiased labels, it will find an implicit representation
of the features that can predict these unbiased labels. There
are, however, situations where an explicit fair representation
of the features is necessary; e.g. when wanting to sell the
data (Madras et al. 2018).

Inspired by this point of view, we introduce a new vari-
able to represent the unbiased labels (or “true” labels): ȳ. We
call these the target labels. The target labels are unknown
but using the prior knowledge about what the distribution of
the target labels, we can establish a relationship between the
training labels and the target labels.

Our framework can be used with any likelihood-based
model, such as Logistic Regression of Gaussian Process
models. The loss for these models typically contains a term
for the negative log-likelihood, e.g. the negative Bernoulli
log-likelihood for binary classification problems, or the neg-
ative Categorical log-likelihood for the multi-class setting.
These aspects of the loss remain the same, but the computa-
tion of the likelihood changes. The goal is for the model to
learn to predict the target labels instead of the training labels.

The likelihood with respect to the target label P(ȳ|x, θ),
where θ represents the model parameters, can be readily
computed in the usual way, but the concrete ȳ is unknown,
so we have to express it in terms of y.

Focusing on the binary case, the training label likelihood
is P(y = 1|x, s, θ) for the fairness-aware case, where the
prediction is allowed to depend on s. We expand this likeli-
hood in terms of ȳ:

P(y = 1|x, s, θ) =
∑

ȳ∈{0,1}

P(y = 1, ȳ|x, s, θ)

=
∑

ȳ∈{0,1}

P(y = 1|ȳ, x, s, θ)P(ȳ|x, s, θ) . (1)

The overall likelihood is still computed with respect to the
training labels, but the model itself is asked to predict the
likelihood of ȳ. Tying this together is the conditional prob-
ability P(y = 1|ȳ, x, s, θ), which captures the relationship
between ȳ and y.

By considering the relations between all the variables
more closely, we can make some simplifications to the stated
probabilities. In particular, we are assuming that the corrup-
tion of ȳ does not depend on x. This is a relatively strong
assumption and we can consider a relaxation. In that case,
we need a probability distribution over the high-dimensional
space in which x lives, that tells us how likely y = 1 is, if
ȳ = 0 or ȳ = 1. This distribution has to be prior knowledge
as it cannot be learned from the data which inputs x expe-
rienced the highest discrimination. This prior knowledge re-
lates to the weakly meritocratic notion of individual fairness
(Joseph et al. 2016) which relies on the unknown labels of
an individual as a measure of merit, and requires that in-
dividuals who have a higher probability of really having a
positive label should have only a higher probability of being
classified as positive. As we do not have this prior knowl-
edge, we have to make the assumption that the corruption is
independent of x.

We arrive at the following:

P(y = 1|x, s, θ) =
∑

ȳ∈{0,1}

P(y = 1|ȳ, s)P(ȳ|x, θ) . (2)

At test time, we simply use P(ȳ|x, θ) to make predictions,
which does not depend on s. This is important in order to
avoid direct discrimination (Barocas and Selbst 2016).

We refer to the parameters expressed by P(y = 1|ȳ, s) as
debiasing parameters. We give an intuition for the meaning
of these parameters and how to set their values in Section 3.
For a binary sensitive attribute s (and binary label y), there
are 4 debiasing parameters (see Algorithm 1 where ds=j

ȳ=i :=

P(y = 1|ȳ = i, s = j)):
P(y = 1|ȳ = 0, s = 0), P(y = 1|ȳ = 1, s = 0) (3)
P(y = 1|ȳ = 0, s = 1), P(y = 1|ȳ = 1, s = 1) . (4)
The above derivation applies to binary classification but

can easily be extended to the multi-class case.

3 Realization of concrete fairness constraints
This section focuses on how to set values of the debiasing
parameters for tuning a variety of fairness target rates.



Algorithm 1 Training loop with Target Labels
Input: Training set D = {(xi, yi, si)}Ni=1, debiasing pa-

rameters ds=0
ȳ=0, ds=0

ȳ=1, ds=1
ȳ=0, ds=1

ȳ=1
Output: fair model parameters θ

1: Initialize θ (randomly)
2: for all xi, yi, si do
3: Pȳ=1 ← c̄(xi, θ) (e.g. logistic(〈x, θ〉))
4: Pȳ=0 ← 1− Pȳ=1

5: if si = 0 then
6: Py=1 ← ds=0

ȳ=0 · Pȳ=0 + ds=0
ȳ=1 · Pȳ=1

7: else
8: Py=1 ← ds=1

ȳ=0 · Pȳ=0 + ds=1
ȳ=1 · Pȳ=1

9: end if
10: `← yi · Py=1 + (1− yi) · (1− Py=1)
11: update θ to maximize likelihood `
12: end for

3.1 Meaning of the parameters

Before we consider concrete values, we give some intuition
for the debiasing parameters. Let s = 0 refer to the disad-
vantaged group. For this group, we want to make more pos-
itive predictions than the dataset labels indicate. Variable ȳ
is supposed to be our fair label. Thus, in order to make more
positive predictions, some of the y = 0 labels should be as-
sociated with ȳ = 1. However, we do not know which. So,
if our model predicts ȳ = 1 (high P(ȳ = 1|x, θ)) while the
dataset label is y = 0, then we allow for the possibility that
this is actually correct. That is, P(y = 0|ȳ = 1, s = 0) is not
0. If we choose, for example, P(y = 0|ȳ = 1, s = 0) = 0.3
then that means that 30% of positive virtual labels ȳ = 1
may correspond to negative dataset labels y = 0. This way
we can have more ȳ = 1 than y = 1, overall. On the other
hand, predicting ȳ = 0 when y = 1 holds, will always be
deemed incorrect: P(y = 1|ȳ = 0, s = 0) = 0; this is be-
cause we do not want any additional negative labels.

For the advantaged group s = 1, we have the exact op-
posite situation. If anything, we have too many positive la-
bels. So, if our model predicts ȳ = 0 (high P(ȳ = 0|x, θ))
while the dataset label is y = 1, then we should again al-
low for the possibility that this is actually correct. That is,
P(y = 1|ȳ = 0, s = 1) should not be 0. On the other hand,
P(y = 0|ȳ = 1, s = 1) should be 0 because we do not want
additional positive labels for s = 1. It could also be that the
number of positive labels is exactly as it should be, in which
case we can just set y = ȳ for all data points with s = 1.

3.2 Demographic Parity

Demographic Parity is characterized by an independence of
predictions ȳ and the sensitive attribute s. Given that we
have complete control over the debiasing parameters, we
can ensure this independence by requiring P(ȳ = 1|s =
0) = P(ȳ = 1|s = 1). Our fairness constraint is then that
both of these probabilities are equal to the same value, which
we will call the target rate PRt (“PR” as positive rate):

P(ȳ = 1|s = 0)
!
= PRt and

P(ȳ = 1|s = 1)
!
= PRt . (5)

This leads us to the following constraints for s′ ∈ {0, 1}:

PRt = P(ȳ = 1|s = s′)

=
∑
y

P(ȳ = 1|y, s = s′)P(y|s = s′). (6)

We call P(y = 1|s = j) the base rate PRj
b which we esti-

mate from the training set:

P(y = 1|s = i) =
number of points with y = 1 in group i

number of points in group i
.

Expanding the sum, we get

PRt = P(ȳ = 1|y = 0, s = s′) · (1− PR1
b)+

+ P(ȳ = 1|y = 1, s = s′) · PR1
b . (7)

This is a system of linear equations consisting of two equa-
tions (one for each value of s′) and four free variables:
P(ȳ = 1|y, s) with y, s ∈ {0, 1}. The two unconstrained de-
grees of freedom determine how strongly the accuracy will
be affected by the fairness constraint. If we set P(ȳ = 1|y =
1, s) to 0.5, then this expresses the fact that a train label y
of 1 only implies a target label ȳ of 1 in 50% of the cases.
In order to minimize the effect on accuracy, we make P(ȳ =
1|y = 1, s) as high as possible and P(ȳ = 1|y = 0, s), con-
versely, as low as possible. However, the lowest and highest
possible values are not always 0 and 1 respectively. To see
this, we solve for P(ȳ = 1|y = 0, s = j) in Eq (7):

P(ȳ = 1|y = 0, s = j)

=
PRj

b

1− PRj
b

(
PRt

PRj
b

− P(ȳ = 1|y = 1, s = j)

)
. (8)

If PRt/PRj
b were greater than 1, then setting P(ȳ = 1|y =

0, s = j) to 0 would imply a P(ȳ = 1|y = 1, s = j)
value greater than 1. A visualization that shows why this
happens can be found in the Appendix. Algorithm 2 shows
pseudocode of the whole procedure, including the computa-
tion of the allowed minimal and maximal value.

We may call the P(ȳ = 1|y = 1, s) (s ∈ {0, 1}) the
biased TPRs. If these TPRs happen to be the same, then this
enforces Equality of Opportunity as well; but in general this
will not be the case.

Once all these probabilities have been found, the debias-
ing parameters are fully determined by applying Bayes’ rule:

P(y = 1|ȳ, s) =
P(ȳ|y = 1, s)P(y = 1|s)

P(ȳ|s)
(9)

Choosing a target rate. Having decided to enforce demo-
graphic parity, there is still considerable freedom in choos-
ing the target rate PRt := P(ȳ = 1). However, this choice
affects the accuracy as well, as Theorem 1 and Corollary 1.1
in the following state.



Before we get to the theorem, we introduce some notation.
We are given a dataset D = {(xi, yi)}i, where the xi are
vectors of features and the yi the corresponding labels. We
refer to the tuples (x, y) as the samples of the dataset. The
number of samples is N = |D|.

We assume binary labels (y ∈ {0, 1}) and thus can form
the (disjoint) subsets Y0 and Y1 with

Yj = {(x, y) ∈ D|y = j} with j ∈ {0, 1} . (10)

Furthermore, we associate each sample with a classification
ŷ ∈ {0, 1}. The task of making the classification ŷ = 0 or
ŷ = 1 can be understood as sorting each sample from D
into one of two sets: C0 and C1, such that C0 ∪ C1 = D and
C0 ∩ C1 = ∅.

We refer to the set A = (C0 ∩ Y0) ∪ (C1 ∩ Y1) as the set
of correct (or accurate) predictions. The accuracy is given
by acc = N−1 · |A|.
Definition 1.

ra :=

∣∣Y1
∣∣

|D|
=

∣∣Y1
∣∣

N
(11)

is called the base acceptance rate of the dataset D.

Definition 2.

r̂a =

∣∣C1
∣∣

|D|
=

∣∣C1
∣∣

N
(12)

is called the predictive acceptance rate of the predictions.

Theorem 1. For a dataset with the base rate ra and cor-
responding predictions with a predictive acceptance rate of
r̂a, the accuracy is limited by

acc ≤ 1− |r̂a − ra| . (13)

Corollary 1.1. Given a dataset that consists of two subsets
S0 and S1 (D = S0 ∪ S1) where p is the ratio of |S0| to |D|
and given corresponding acceptance rates r0

a and r1
a and

predictions with target rates r̂0
a and r̂1

a, the accuracy is lim-
ited by

acc ≤ 1− p ·
∣∣r̂0

a − r0
a

∣∣− (1− p) ·
∣∣r̂1

a − r1
a

∣∣ . (14)

The proofs are fairly straightforward and can be found in
Appendix X.

Corollary 1.1 implies that in the common case where
group s = 0 is disadvantaged (r0

a < r1
a) and also underrep-

resented (p < 1
2 ), the highest accuracy under demographic

parity can be achieved at PRt = r1
a with

acc ≤ 1− p ·
(
r1
a − r0

a

)
. (15)

However, this means willingly accepting a bad accuracy in
the (smaller) subset S0 that is compensated by a very good
accuracy in the (larger) subset S1. An decidedly “fairer” ap-
proach is to aim for the same accuracy in both subsets which
is achieved by using the average of the base acceptance rates
for the target rate. We compare the two choices (PRmax

t and
PRavg

t ) in Section 5.

Algorithm 2 Targeting PR (e.g. demographic parity)

Input: target rate PRt, biased acceptance rate PRi
b

Output: debiasing parameter ds=i
ȳ=j

1: if PRt > PRi
b then

2: P(ȳ = 1|y = 1, s = i)← 1
3: else
4: P(ȳ = 1|y = 1, s = i)← PRt

PRi
b

5: end if
6: if j=0 then
7: P(ȳ = 0|y = 1, s = i)← 1− P(ȳ = 1|y = 1, s = i)

8: ds=i
ȳ=0 ←

P(ȳ=0|y=1,s=i)·PRi
b

1−PRt

9: else if j=1 then
10: ds=i

ȳ=1 ←
P(ȳ=1|y=1,s=i)·PRi

b

PRt

11: end if

3.3 Equality of Opportunity
Equality of opportunity — another fairness definition —
enforces independence of the prediction and the sensitive at-
tribute s conditional on y = 1. If we see ȳ as the prediction
(which is not entirely correct as discussed below), then this
fairness constraint can be expressed as ȳ⊥s | (y = 1). Simi-
larly to before, we enforce this by setting P(ȳ = 1|y = 1, s)
for both s = 0 and s = 1 to the same target TPR: TPRt.

We can do the same for the TNR in order to enforce equal-
ized odds: TNRt = P(ȳ = 0|y = 0, s). Together with
the base rate P(y|s), TPR and TNR already determine the
debiasing parameters uniquely; P(ȳ|s) is obtained from the
sum rule. Thus, the target rate P(ȳ|s) is not free to set, and
the mutual exclusivity of demographic parity and equality of
opportunity (Kleinberg, Mullainathan, and Raghavan 2016;
Chouldechova 2017) naturally falls out of our framework.

At first glance, it seems desirable to set both the target
TNR (true negative rate), TNRt, and the target TPR, TPRt,
to 1, because any value lower than 1 necessarily reduces the
accuracy (as the accuracy is a weighted average of TPR and
TNR). However, when target TNRs and target TPRs are all
set to 1, then the debiasing parameters are all either 1 or 0 in
a way that is equivalent to ȳ = y for all data-points, making
the ȳ pointless. This problem is connected to the assumption
above that we can substitute ŷ with ȳ. This is only true for a
perfect predictor which predicts all labels correctly. Such a
predictor would fulfill equality of opportunity even if trained
on y. Generally, our predictors are not perfect, however, so
they make some classification errors. What equality of op-
portunity demands is that this classification error is the same
for all specified groups. We thus set the target TPR (TPRt)
to a lower value that is the same for all groups, and thereby
purposefully sacrifice some accuracy to make the errors the
same. The value of TPRt should be such that the classifier
can achieve this TPR for all groups, but not lower than that.

Choosing values for the TPR target rate (and the TNR tar-
get rate) is not as straightforward as in the case of targeting
an acceptance rate because TPR and TNR are inextricably
linked to the classifier that is used. We additionally found
that the achieved TPR does not just depend on the target
TPR, but also on the target TNR. More specifically, targeting



Table 1: Accuracy and fairness (with respect to demographic parity) for various methods on the Adult dataset. Fairness is
defined as PRs=0/PRs=1 (a completely fair model would achieve a value of 1.0). Left: using race as the sensitive attribute.
Right: using gender as the sensitive attribute. The mean and std of 10 repeated experiments.

Algorithm Fair→ 1.0← Accuracy ↑
GP 0.56 ± 0.02 0.853 ± 0.002
LR 0.57 ± 0.03 0.846 ± 0.003
SVM 0.61 ± 0.02 0.859 ± 0.002
FairGP (ours) 0.62 ± 0.03 0.853 ± 0.003
FairLR (ours) 0.73 ± 0.04 0.844 ± 0.003
ZafarAccuracy (Zafar et al. 2017b) 1.31 ± 0.36 0.800 ± 0.012
ZafarFairness (Zafar et al. 2017b) 0.58 ± 0.14 0.846 ± 0.003
Kamiran&Calders (2012) 0.60 ± 0.03 0.831 ± 0.003
Agarwal et al. (2018) 0.61 ± 0.06 0.847 ± 0.003

Fair→ 1.0← Accuracy ↑
0.32 ± 0.03 0.854 ± 0.003
0.33 ± 0.02 0.847 ± 0.002
0.26 ± 0.02 0.857 ± 0.003
0.65 ± 0.04 0.846 ± 0.004
0.67 ± 0.03 0.839 ± 0.003
1.22 ± 0.40 0.793 ± 0.009
0.35 ± 0.10 0.846 ± 0.003
0.64 ± 0.03 0.847 ± 0.003
0.35 ± 0.03 0.847 ± 0.003

a lower TNR makes it easier to achieve a higher TPR. This
is perhaps not surprising, as lowering the TNR will result
in more positive predictions (ŷ = 1), which means that the
general threshold for a positive predictions is lowered. This
lowered threshold makes it more likely that a given false
negative prediction will be flipped; i.e., becomes a true pos-
itive prediction. A decrease of false negatives coupled with
an increase in true positives will increase the TPR.

TPRt and TNRt have to be tuned for each dataset and
each machine learning algorithm separately, because these
settings interact deeply with the internals of the algorithm.
However, we can give some guidelines to finding good val-
ues for TPRt and TNRt. As mentioned, tweaking either
value can achieve the desired fairness. However, if the pre-
diction task is such that false negatives are especially unde-
sirable then TPRt should be held close to 1.0 and TNRt

should be lowered instead. The opposite holds if false posi-
tives are undesirable.

4 Related work
There are several ways to enforce fairness in machine
learning models: as a pre-processing step (Kamiran and
Calders 2012; Louizos et al. 2016; Lum and Johndrow 2016;
Zemel et al. 2013; Chiappa 2019), as a post-processing step
(Feldman et al. 2015; Hardt et al. 2016), or as a constraint
during the learning phase (Calders, Kamiran, and Pech-
enizkiy 2009; Zafar et al. 2017a; 2017b; Donini et al. 2018;
Dimitrakakis et al. 2019). Our method enforces fairness
during the learning phase (an in-processing approach) but,
unlike other approaches, we do not cast fair-learning as a
constrained optimization problem. Constrained optimiza-
tion requiress a customized procedure. In Goh et al. (2016),
Zafar et al. (2017a), and (2017b), suitable majorization-
minimization/convex-concave procedures (Lanckriet and
Sriperumbudur 2009) were derived. Furthermore, such con-
strained optimization approaches may lead to more unstable
training, and often yield classifiers with both worse accuracy
and more unfair (Cotter et al. 2018).

The approaches most closely related to ours were given
by Kamiran and Calders (2012) who present four pre-
processing methods: Supression, Massaging the dataset,
Reweighing, and Sampling. In our comparison we focus on

methods 2, 3 and 4, because the first one simply removes
sensitive attributes and those features that are highly cor-
related with them. All the methods given by Kamiran and
Calders (2012) aim only at enforcing demographic parity.

Massaging the dataset approach uses a classifier to first
rank all samples according to their probability of having a
positive label (y = 1) and then flips the labels that are clos-
est to the decision boundary such that the data then satisfies
demographic parity. This pre-processing approach is simi-
lar in spirit to our in-processing method but differs in the
execution. In our method (Section 3.2), “ranking” and clas-
sification happen in one step and labels are not flipped but
assigned probabilities of them being wrong.

The reweighing method re-weights samples based on
whether they belong to an overrepresented or underrepre-
sented demographic group. The sampling approach is based
on the same idea but works by re-sampling instead of re-
weighting. The weights are determined by a completely
different procedure than ours. The prior work defines the
weights based on observed proxy labels, while our method
defines the weights (called debiasing parameters) based on
latent target labels.

One approach in Calders and Verwer (2010) is also worth
mentioning. It is based on a generative Naı̈ve Bayes model
in which a latent variable L is introduced which is remi-
niscent to our target label ȳ. We provide a discriminative
version of this approach. In discriminative models, parame-
ters capture the conditional relationship of an output given
an input, while in generative models, the joint distribution
of input-output is parameterized. With this conditional re-
lationship formulation (P(y|ȳ, s) = P(ȳ|y,s)P(y|s)/P(ȳ|s)), we
can show the theoretical mutual exclusivity of demographic
parity and equalized odds, and we can have detailed control
in setting the target rate. Calders and Verwer (2010) focuses
only on the demographic parity fairness metric.

5 Experiments
We compare the performance of our target-label model with
other existing models based on two real-world datasets.
These datasets have been previously considered in the
fairness-aware machine learning literature.



Implementation. The proposed method is compatible
with any likelihood-based algorithm. We consider both a
nonparametric and a parametric model. The nonparametric
model is a Gaussian process model, and Logistic regression
is the parametric counterpart. Since our fairness approach
is not being framed as a constrained optimization problem,
we can reuse off-the-shelf toolboxes including the GPy-
Torch library by Gardner et al. (2018) for Gaussian process
models. This library incorporates recent advances in scal-
able variational inference including variational inducing in-
puts and likelihood ratio/REINFORCE estimators. The vari-
ational posterior can be derived from the likelihood and the
prior. We need just need to modify the likelihood to take into
account the target labels (Algorithm 1).

Data. The first dataset is the Adult Income
dataset (Dheeru and Karra Taniskidou 2017). It con-
tains 33,561 data points with census information from US
citizens. The labels indicate whether the individual earns
more (y = 1) or less (y = 0) than $50,000 per year. We use
the dataset with race and gender as the sensitive attribute.
The input dimension, excluding the sensitive attributes, is
12 in the raw data; the categorical features are then one-hot
encoded. For the experiments, we removed 2,399 instances
with missing data and used only the training data, which we
split randomly for each trial run. The second dataset is the
ProPublica recidivism dataset. It contains data from 6,167
individuals that were arrested. The data was collected for
the COMPAS risk assessment tool (Angwin et al. 2016).
The task is to predict whether the person was rearrested
within two years (y = 1 if they were rearrested, y = 0
otherwise). We again use the dataset with race and gender
as the sensitive attributes.

Method. We evaluate two versions of our target label
model1: FairGP, which is based on Gaussian Process mod-
els, and FairLR, which is based on logistic regression. We
also train baseline models that do not take fairness into ac-
count.

The fair GP models and the baseline GP model are
all based on variational inference and use the same set-
tings. During training, each batch is equivalent to the whole
dataset. The number of inducing inputs is 500 on the ProP-
ublica dataset and 2500 on the Adult dataset which corre-
sponds to approximately 1/8 of the number of training points
for each dataset. We use a squared-exponential (SE) kernel
with automatic relevance determination (ARD) and the pro-
bit function as the likelihood function. We optimize the hy-
perparameters and the variational parameters with the Adam
method (Kingma and Ba 2015) with the default parameters.
We use the full covariance matrix for the Gaussian vari-
ational distribution. The logistic regression is trained with
RAdam (Liu et al. 2019) and uses L2 regularization. For the
regularization coefficient, we conducted a hyperparameter
search over 10 folds of the data. For each fold, we picked
the hyperparameter which achieved the best fairness among
those 5 with the best accuracy scores. We then averaged over
the 10 hyperparameter values chosen in this way and then

1The code is available in the supplementary folder.
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Figure 1: Accuracy and fairness (demographic parity) for
various target choices. (a): Adult dataset using race as the
sensitive attribute; (b): Adult dataset using gender. Center of
the box is the mean; height and width of the box encode half
of standard derivation of accuracy and disparate impact.

used this average for all runs to obtain our final results.
In addition to the GP and LR baselines, we compare our

proposed model with the following methods: Support Vector
Machine (SVM), Kamiran & Calders (Kamiran and Calders
2012) (“reweighing” method), Agarwal et al. (Agarwal et
al. 2018) (using logistic regression as the classifier) and
several methods given by Zafar et al. (Zafar et al. 2017b;
2017a), which include maximizing accuracy under demo-
graphic parity fairness constraints (ZafarFairness), maxi-
mizing demographic parity fairness under accuracy con-
straints (ZafarAccuracy), and removing disparate mistreat-
ment by constraining the false negative rate (ZafarEqOpp).
Every method is evaluated over 10 repeats that each have
different splits of the training and test set.
Results for Demographic Parity on Adult dataset. Fol-
lowing Zafar et al. (Zafar et al. 2017b) we evaluate demo-
graphic parity on the Adult dataset. Table 1 shows the accu-
racy and fairness for several algorithms. In the table, and in
the following, we use PRs=i to denote the observed rate of
positive predictions per demographic group P(ŷ = 1|s = i).
Thus, PRs=0/PRs=1 is a measure for demographic parity
where a completely fair model would attain a value of 1.0.
This measure for demographic parity is also called “dis-
parate impact” (see e.g. Feldman et al.; Zafar et al. (2015;
2017a)). As the results in Table 1 show, FairGP is clearly
fairer than the baseline GP. We use the mean (PRavg

t ) for
the target acceptance rate. In Fig. 1, we investigate which
choice of target (PRavg

t , PRmin
t or PRmax

t ) gives the best
result. We use PRavg

t for all following experiments as this
is the fairest choice (cf. Section 3.2). The Fig.1(a) shows
results from Adult dataset with race as sensitive attribute
where we have PRmin

t = 0.156, PRmax
t = 0.267 and

PRavg
t = 0.211. PRavg

t performs equal (for race as sen-
sitive attribute) or better (for gender) compared with the two
other possibilities. ZafarAccuracy can achieve good fairness
results at the cost of accuracy. The results of FairGP are
characterized by high fairness and high accuracy. FairLR
achieves similar results to FairGP, but with generally slightly
lower accuracy but better fairness. We used the two step pro-
cedure of Donini et al. (Donini et al. 2018) to verify that we
cannot achieve the same fairness result with just parameter
search on LR.
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Figure 2: Predictions with different target acceptance rates (demographic parity) on Adult dataset. (a) and (b): PRs=0 vs
PRs=1. (c) and (d): PRs=0/PRs=1 vs accuracy. Left column: using race as the sensitive attribute; Right column: using gender.
The base rate indicates the positive rates of the training data. “use s” indicates that s was appended to the input features.
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Figure 3: Predictions with different target true positive rates (TPRt; equality of opportunity) on ProPublica dataset. Our results
were obtained with the Logistic Regression model. (a) and (b): TPRs=0/TPRs=1 vs accuracy. (c) and (d): TPRs=0 vs
TPRs=1. Left column: using race as the sensitive attribute; Right column: using gender. s is not used as an input feature.

Fig. 2(a) and (b) show runs of FairGP where we explic-
itly set a target acceptance rate, PRt := P(ȳ = 1), instead
of taking the mean PRavg

t . A perfect targeting mechanism
would produce a diagonal. The data points are not exactly
on the diagonal but they show that setting the target rate has
the expected effect on the observed acceptance rate. This
tuning of the target rate is the unique aspect of the approach.
This would be very difficult to achieve with existing fairness
methods; a new constraint would have to be added. Fig. 2(c)
and (d) show the same data as Fig. 2(a) and (b) but with
different axes. It can be seen from from this Fig. 2(a) and
(b) that the target acceptance rate can be used to control
the trade-off between accuracy and fairness. In this specific
case, changing the target rate barely affects fairness and it
only affects the accuracy because target acceptance rates that
are different from the base acceptance rate necessarily lead
to “missclassifications”.
Results for Equality of Opportunity on ProPublica
dataset. For equality of opportunity, we again follow Za-
far et al. (Zafar et al. 2017a) and evaluate the algorithm on
the ProPublica dataset. As we did for demographic parity,
we define a measure of equality of opportunity via the ra-
tio of the true positive rates (TPRs) within the demographic
groups. We use TPRs=i to denote the observed TPR in
group i: P(ŷ = 1|y = 1, s = i), and TNRs=i for the ob-
served true negative rate (TNR) in the same manner. The
measure is then given by TPRs=0/TPRs=1. A perfectly
fair algorithm would achieve 1.0 on the measure.

In order to demonstrate the tuning aspect of our proposed

framework, we set different target TPRs and TNRs. By set-
ting a low target TNR we can achieve very high TPRs. The
results of 10 runs are shown in Fig. 3. Fig. 3(a) and (b)
show the accuracy-fairness trade-off; (c) and (d) show the
achieved TPRs. The latter two plots make clear that the TPR
ratio does not tell the whole story: the realization of the fair-
ness constraint can differ substantially. Tuning these hidden
aspects of fairness is the strength of our method.

6 Discussion and conclusion
We have developed a machine learning framework which
allows us to set a target rate for a variety of fairness no-
tions, including demographic parity and equality of oppor-
tunity. For example, we can set the target true positive rate
for equality of opportunity to be 0.6 for different groups.
This capability is unique to our approach and can be used as
an intuitive mechanism to control the trade-off between fair-
ness and accuracy. In contrast to other methods which rely
on unintuitive parameters, such as covariance thresholds, to
enforce fairness, our method enables more control over tun-
ing fairness, by introducing control parameters that are un-
derstandable to the general public: true positive rates, false
positive rates, and positive rates. Our framework is general
and will be applicable for sensitive variables with binary and
multi-level values. The current work focuses on a single bi-
nary sensitive variable. Future work could extend our tuning
approach to other fairness concepts like the closely related
predictive parity group fairness (Chouldechova 2017) or in-
dividual fairness (Dwork et al. 2012).



References
Agarwal, A.; Beygelzimer, A.; Dudik, M.; Langford, J.; and
Wallach, H. 2018. A reductions approach to fair classifica-
tion. In ICML, volume 80, 60–69.
Angwin, J.; Larson, J.; Mattu, S.; and Kirchner, L. 2016.
Machine bias. ProPublica 23.
Barocas, S., and Selbst, A. D. 2016. Big data’s disparate
impact. California Law Review 104:671–732.
Bonilla, E. V.; Krauth, K.; and Dezfouli, A. 2016. Generic
inference in latent gaussian process models. arXiv preprint
arXiv:1609.00577.
Calders, T., and Verwer, S. 2010. Three naive bayes ap-
proaches for discrimination-free classification. Data Mining
and Knowledge Discovery 21(2):277–292.
Calders, T.; Kamiran, F.; and Pechenizkiy, M. 2009. Build-
ing classifiers with independency constraints. In ICDM
Workshops, 13–18. IEEE.
Chiappa, S. 2019. Path-specific counterfactual fairness. In
AAAI.
Chouldechova, A., and Roth, A. 2018. The frontiers of fair-
ness in machine learning. arXiv preprint arXiv:1810.08810.
Chouldechova, A. 2017. Fair prediction with disparate im-
pact: A study of bias in recidivism prediction instruments.
Big data 5(2):153–163.
Cotter, A.; Jiang, H.; Wang, S.; Narayan, T.; Gupta,
M. R.; You, S.; and Sridharan, K. 2018. Optimiza-
tion with non-differentiable constraints with applications
to fairness, recall, churn, and other goals. arXiv preprint
arXiv:1809.04198.
Dheeru, D., and Karra Taniskidou, E. 2017. UCI machine
learning repository.
Dimitrakakis, C.; Liu, Y.; Parkes, D. C.; and Radanovic, G.
2019. Bayesian fairness. In AAAI.
Donini, M.; Oneto, L.; Ben-David, S.; Shawe-Taylor, J. S.;
and Pontil, M. 2018. Empirical risk minimization under
fairness constraints. In NeurIPS, 2796–2806.
Dwork, C.; Hardt, M.; Pitassi, T.; Reingold, O.; and Zemel,
R. 2012. Fairness through awareness. In ITCS, 214–226.
Feldman, M.; Friedler, S. A.; Moeller, J.; Scheidegger, C.;
and Venkatasubramanian, S. 2015. Certifying and removing
disparate impact. In KDD, 259–268. ACM.
Gardner, J. R.; Pleiss, G.; Bindel, D.; Weinberger, K. Q.;
and Wilson, A. G. 2018. GPyTorch: Blackbox matrix-
matrix gaussian process inference with GPU acceleration.
In NeurIPS, 7587–7597.
Goh, G.; Cotter, A.; Gupta, M.; and Friedlander, M. P. 2016.
Satisfying real-world goals with dataset constraints. In
NIPS, 2415–2423.
Hardt, M.; Price, E.; Srebro, N.; et al. 2016. Equality of
opportunity in supervised learning. In NIPS, 3315–3323.
Joseph, M.; Kearns, M.; Morgenstern, J. H.; and Roth, A.
2016. Fairness in learning: Classic and contextual bandits.
In NIPS, 325–333.

Kamiran, F., and Calders, T. 2012. Data preprocessing tech-
niques for classification without discrimination. Knowledge
and Information Systems 33(1):1–33.
Kamishima, T.; Akaho, S.; Asoh, H.; and Sakuma, J. 2012.
Fairness-aware classifier with prejudice remover regularizer.
In ECML PKDD, 35–50. Springer.
Kingma, D., and Ba, J. 2015. Adam: A method for stochastic
optimization. In ICLR.
Kleinberg, J.; Mullainathan, S.; and Raghavan, M. 2016.
Inherent trade-offs in the fair determination of risk scores.
arXiv preprint arXiv:1609.05807.
Krauth, K.; Bonilla, E. V.; Cutajar, K.; and Filippone, M.
2016. AutoGP: Exploring the capabilities and limitations of
Gaussian Process models. arXiv preprint arXiv:1610.05392.
Lanckriet, G. R., and Sriperumbudur, B. K. 2009. On the
convergence of the concave-convex procedure. In NIPS,
1759–1767.
Liu, L.; Jiang, H.; He, P.; Chen, W.; Liu, X.; Gao, J.; and
Han, J. 2019. On the variance of the adaptive learning rate
and beyond. arXiv preprint arXiv:1908.03265.
Louizos, C.; Swersky, K.; Li, Y.; Welling, M.; and Zemel, R.
2016. The variational fair autoencoder. In ICLR.
Lum, K., and Johndrow, J. 2016. A statistical framework for
fair predictive algorithms. arXiv preprint arXiv:1610.08077.
Madras, D.; Creager, E.; Pitassi, T.; and Zemel, R. S. 2018.
Learning adversarially fair and transferable representations.
In ICML, 3381–3390.
Quadrianto, N., and Sharmanska, V. 2017. Recycling priv-
ileged learning and distribution matching for fairness. In
NIPS, 677–688.
Tolan, S. 2019. Fair and unbiased algorithmic decision
making: Current state and future challenges. arXiv preprint
arXiv:1901.04730.
Zafar, M. B.; Valera, I.; Gomez Rodriguez, M.; and Gum-
madi, K. P. 2017a. Fairness beyond disparate treatment &
disparate impact: Learning classification without disparate
mistreatment. In WWW, 1171–1180.
Zafar, M. B.; Valera, I.; Rogriguez, M. G.; and Gummadi,
K. P. 2017b. Fairness constraints: Mechanisms for fair clas-
sification. In AISTATS, 962–970.
Zemel, R.; Wu, Y.; Swersky, K.; Pitassi, T.; and Dwork, C.
2013. Learning fair representations. In ICML, 325–333.


