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ABSTRACT

A significant issue in training deep neural networks to solve supervised learning
tasks is the need for large numbers of labeled datapoints. The goal of semi-
supervised learning is to leverage ubiquitous unlabeled data, together with small
quantities of labeled data, to achieve high task performance. Though substantial
recent progress has been made in developing semi-supervised algorithms that are
effective for comparatively small datasets, many of these techniques do not scale
readily to the large (unlabeled) datasets characteristic of real-world applications.
In this paper we introduce a novel approach to scalable semi-supervised learn-
ing, called Local Label Propagation (LLP). Extending ideas from recent work on
unsupervised embedding learning, LLP first embeds datapoints, labeled and other-
wise, in a common latent space using a deep neural network. It then propagates
pseudolabels from known to unknown datapoints in a manner that depends on the
local geometry of the embedding, taking into account both inter-point distance
and local data density as a weighting on propagation likelihood. The parameters
of the deep embedding are then trained to simultaneously maximize pseudolabel
categorization performance as well as a metric of the clustering of datapoints within
each psuedo-label group, iteratively alternating stages of network training and label
propagation. We illustrate the utility of the LLP method on the ImageNet dataset,
achieving results that outperform previous state-of-the-art scalable semi-supervised
learning algorithms by large margins, consistently across a wide variety of training
regimes. We also show that the feature representation learned with LLP transfers
well to scene recognition in the Places 205 dataset.

1 INTRODUCTION

Deep neural networks (DNNs) have achieved impressive performance on tasks across a variety of
domains, including vision (Krizhevsky et al., 2012; Simonyan & Zisserman, 2014; He et al., 2016a;
2017), speech recognition (Hinton et al., 2012; Hannun et al., 2014; Deng et al., 2013; Noda et al.,
2015), and natural language processing (Young et al., 2018; Hirschberg & Manning, 2015; Conneau
et al., 2016; Kumar et al., 2016). However, these achievements often heavily rely on large-scale
labeled datasets, requiring burdensome and expensive annotation efforts. This problem is especially
acute in specialized domains such as medical image processing, where annotation may involve
performing an invasive process on patients.

Semi-supervised learning (SSL) seeks to learn useful representations from limited amounts of
labeled data, leveraging it in conjunction with extensive unlabeled data. SSL has shown significant
promise (Liu et al., 2018; Iscen et al., 2019; Zhai et al., 2019; Miyato et al., 2018; Tarvainen &
Valpola, 2017; Lee, 2013; Grandvalet & Bengio, 2005; Qiao et al., 2018; Xie et al., 2019). However,
gaps to supervised performance levels still remain significant, and many recent SSL methods rely
on techniques whose efficiency scales poorly with dataset size and thus cannot be readily applied to
many real-world machine learning problems (Liu et al., 2018; Iscen et al., 2019).

Here, we propose a novel SSL algorithm that is specifically adapted for use with large sparsely-labeled
datasets. This algorithm, termed Local Label Propagation (LLP), learns a nonlinear embedding
of the input data, and exploits the local geometric structure of the latent embedding space to help
infer useful pseudo-labels for unlabeled datapoints. LLP borrows the framework of non-parametric
embedding learning, which has recently shown utility in unsupervised learning (Wu et al., 2018b;
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Zhuang et al., 2019), to first train a deep neural network that embeds labeled and unlabeled examples
into a lower-dimensional latent space. LLP then propagates labels from known examples to unknown
datapoints, weighting the likelihood of propagation by the local density of known examples. The
neural network is then optimized to categorize all datapoints according to their pseudo-labels (with
stronger emphasis on true known labels), while simultaneously encouraging datapoints sharing the
same (pseudo-)labels to aggregate in the latent embedding space. The resulting embedding thus
gathers both labeled images within the same class and unlabeled images sharing statistical similarities
with the labeled ones. Through iteratively applying the propagation and network training steps, the
LLP algorithm builds a good underlying representation for supporting downstream tasks, and trains
an accurate classifier for the specific desired task.

We apply LLP in the context of object categorization in the ImageNet dataset (Deng et al., 2009),
learning a high-performing network while discarding most of the labels. We show that LLP substan-
tially outperforms previous scalable semi-supervised algorithms (Zhai et al., 2019; Miyato et al., 2018;
Tarvainen & Valpola, 2017; Lee, 2013; Grandvalet & Bengio, 2005; Qiao et al., 2018) across a wide
variety of training regimes, and that LLP-trained features support improved transfer to Places205, a
large-scale scene-recognition task. We also present analyses that provide insights into the learning
procedure and justification of key parameter choices.

2 RELATED WORK

Below we describe conceptual relationships between our work and recent related approaches, and
identify relevant major alternatives for comparison.

Deep Label Propagation. Like LLP, Deep Label Propagation (Iscen et al., 2019) (DLP) also iterates
between steps of label propagation and neural network optimization. In contrast to LLP, the DLP label
propagation scheme is based on computing pairwise similarity matrices of learned visual features
across all (unlabeled) examples. Unlike in LLP, the DLP loss function is simply classification
with respect to pseudo-labels, without any additional aggregation terms ensuring that the pseudo-
labeled and true-labeled points have similar statistical structure. The DLP method is effective on
comparatively small datasets, such as CIFAR10 and Mini-ImageNet. However, DLP is challenging
to apply to large-scale datasets such as ImageNet, since its label propagation method is O(N2) in
the number N of datapoints, and is not readily parallelizable. In contrast, LLP is O(NM), where
M is the number of labeled datapoints, and is easily parallelized, making its effective complexity
O(NM/P ), where P is the number of parallel processes. In addition, DLP uniformly propagates
labels across the embedding space, while LLP’s use of local density-driven propagation weights
specifically exploits the geometric structure in the space, improving pseudo-label inference.

Deep Metric Transfer and Pseudolabels. The Deep Metric Transfer (Liu et al., 2018) (DMT) and
Pseudolabels (Lee, 2013) methods both use non-iterative two-stage procedures. In the first stage,
the representation is initialized either with a self-supervised task such as non-parametric instance
recognition (DMT), or via direct supervision on the known labels (Pseudolabels). In the second stage,
pseudo-labels are obtained either by applying a label propagation algorithm (DMT) or naively from
the pre-trained classifier (Pseudolabels), and these are then used to fine-tune the network. As in DLP,
the label propagation algorithm used by DMT cannot be applied to large-scale datasets, and does not
specifically exploit local statistical features of the learned representation. While more scalable, the
Pseudolabels approach achieves comparatively poor results. A key point of contrast between LLP
and the two-stage methods is that in LLP, the representation learning and label propagation processes
interact via the iterative training process, an important driver of LLP’s improvements.

Self-Supervised Semi-Supervised Learning. Self-Supervised Semi-Supervised Learning (Zhai
et al., 2019) (S4L) co-trains a network using self-supervised methods on unlabeled images and
traditional classification loss on labeled images. Unlike LLP, S4L simply “copies” self-supervised
learning tasks as parallel co-training loss branches. In contrast, LLP involves a nontrivial interaction
between known and unknown labels via label propagation and the combination of categorization and
aggregation losses, both factors that are important for improved performance.

Consistency-based regularization. Several recent semi-supervised methods rely on data-
consistency regularizations. Virtual Adversarial Training (VAT) (Miyato et al., 2018) adds small input
perturbations, requiring outputs to be robust to this perturbation. Mean Teacher (MT) (Tarvainen &
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Figure 1: Schematic of the Local Label Propagation (LLP) method. a.-b. We use deep convolu-
tional neural networks to simultaneously generate a lower-dimensional embedding and a category
prediction for each input example. c. If the embedding of the input (denoted by ⋆) is unlabeled, we
identify its close labeled neighbors (colored points), and infer ⋆’s pseudo-label by votes from these
neighbors, with voting weights jointly determined by their distances from ⋆ and the density of their
local neighborhoods (the highlighted circular areas). d. The pseudo-labels thereby created (colored
points) come equipped with a confidence (color brightness), measuring how accurate the pseudo-label
is likely to be. The network in b. is optimized (with per-example confidence weightings) so that its
category predictions match the pseudo-labels, while its embedding is attracted (q) toward other
embeddings sharing the same pseudo-labels and repelled (⧟) by embeddings of other pseudo-labels.

Valpola, 2017) requires the learned representation to be similar to its exponential moving average
during training. Deep Co-Training (DCT) (Qiao et al., 2018) requires the outputs of two views of the
same image to be similar, while ensuring outputs vary widely using adversarial pairs. Very recently,
Unsupervised Data Augmentation (UDA) (Xie et al., 2019) achieves state-of-the-art performance
by incorporating a substantially more complex data augmentation scheme into the data-consistency
framework, and employing computationally expensive but practically impactful details such as the use
of very large batch size during optimization. These methods all use unlabeled data in a “point-wise”
fashion, applying the proposed consistency metric separately on each. They thus differ significantly
from (and are thus likely complementary to) LLP, or indeed any method that explicitly relates
unlabeled to labeled points. LLP benefits from training a shared embedding space that aggregates
statistically similar unlabeled datapoints together with labeled (putative) counterparts. As a result,
adding more unlabeled images consistently increases the performance of LLP, unlike for (e.g.) MT.

3 METHODS

We first give an overview of the LLP method. At a high level, LLP learns a model fθ(⋅) from labeled
examples XL = {x1, . . . , xM}, their associated labels YL = {y1, . . . , yM}, and unlabeled examples
XU = {xM+1, . . . , xN}. fθ(⋅) is realized via a deep neural network whose parameters θ are network
weights. For each input x, fθ(x) generates two outputs (Fig. 1): an “embedding output”, realized as
a vector v in a D-dimensional sphere, and a category prediction output ŷ. In learning fθ(⋅), the LLP
procedure repeatedly alternates between two steps: label propagation and representation learning.
First, known labels YL are propagated fromXL toXU , creating pseudo-labels YU = {yM+1, . . . , yN}.
Then, network parameters θ are updated to minimize a loss function balancing category prediction
accuracy evaluated on the ŷ outputs, and a metric of statistical consistency evaluated on the v outputs.

In addition to pseudo-labels, the label propagation step also generates [0,1]-valued confidence scores
ci for each example xi. For labeled points, confidence scores CL = {c1, . . . , cM} are automatically
set to 1, while for pseudo-labeled examples, confidence scores CU = {cM+1, cM+2, ..., cN} are
computed from the local geometric structure of the embedded points, reflecting how close the
embedding vectors of the pseudo-labeled points are to those of their putative labeled counterparts.
The confidence values are then used as loss weights during representation learning.

Representation Learning. Assume that datapoints X = XU ∪ XL, labels and pseudo-labels
Y = YU ∪ YL, and confidences C = CU ∪ CL are given. Let V = {v1, . . . , vN} denote the set of
corresponding embedded vectors, and Ŷ = {ŷ1, . . . , ŷN} denote the set of corresponding category
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prediction outputs. In the representation learning step, we update the network embedding parameters
by simultaneously minimizing the standard cross-entropy loss LC(Y, Ŷ ) between predicted and
propagated pseudo-labels, while maximizing a global aggregation metric LA(V ∣Y ) to enforce overall
consistency between known labels and pseudo-labels.

The definition of LA(V ∣Y ) is based on the non-parametric softmax operation proposed in (Wu et al.,
2018b;a). Specifically, we define the joint probability of any two embedding vectors vi and vj as:

P (vi, vj) =
exp(vTi vj/τ)

Z
,Z =

N

∑
k=1

N

∑
l=1

exp(vTk vl/τ) (1)

where temperature τ ∈ (0, 1] is a fixed hyperparameter. Using this definition, we can get the
probability of vi and the conditional probability of vj given vi as:

P (vi) =
N

∑
j=1

P (vi, vj) =
∑N
j=1 exp(v

T
i vj/τ)

Z
,P (vj∣vi) =

P (vi, vj)
P (vi)

=
exp(vTi vj/τ)

∑N
l=1 exp(vTi vl/τ)

(2)

Additionally, for S ⊂ X , its probability given vi is P (S∣vi) = ∑vj∈S
P (vj∣vi). We then define the

aggregation metric as the (negative) log likelihood of the examples whose pseudo-labels are also y,
the pseudo-label of the current example v: LA(v) = −log(P (A∣v)), where A = {xi∣yi = y}.
Optimizing LA(v) encourages the embedding corresponding to a given datapoint to selectively
become close to embeddings of other datapoints with the same pseudo-label (Fig. 1).

The cross-entropy and aggregation loss terms are scaled on a per-example basis by the confidence
score, and an L2 weight regularization penalty is added. Thus, the final loss for example x is:
L(x∣θ) = c ⋅ [LC(y, ŷ) + LA(v)] + λ∥θ∥2

2, where λ is a regularization hyperparameter.

Label Propagation. To understand how LLP generates pseudo-labels YU and confidence scores CU ,
it is useful to start from the weighted K-Nearest-Neighbor classification algorithm (Wu et al., 2018b),
in which a “vote” is obtained from the top K nearest labeled examples for each unlabeled example
x, denoted NK(x). The vote of each xi ∈ NK(x) is weighted by the corresponding probabilities
P (vi∣v). Assuming S classes, the total weight for pseudo-labeled v as class j is thus:

wj(v) = ∑
i∈I(j)

P (vi∣v), where I
(j)
= {i∣xi ∈ NK(v), yi = j} (3)

Therefore, the probability pj(v) that datapoint x is of class j, the associated inferred pseudo-
label y, and the corresponding confidence c, may be defined as: pj(v) = wj(v)/∑S

k=1 wk(v),
y = arg maxj pj(v), and c = py(v). Although intuitive, weighted-KNN introduces a positive
correlation between the local density of a labeled example and the number of unlabeled examples
whose pseudo-labels are propagated from this labeled example. Moreover, if the labeled examples
within one category have higher densities than other categories, there will be more unlabeled examples
pseudolabled as this category. To avoid this correlation, we additionally penalize the labeled examples
with higher densities through dividing the KNN weight of a labeled example by its local density.
To formalize this penalization, we divide P (vi∣v) in the definition of wj(v) with a local density-
weighted probability:

P
L(vi∣v) = P (vi∣v)/ρ(vi) where ρ(vi) = ∑

j∈NT (vi)
P (vj , vi) (4)

where NT (vi) are T nearest unlabeled examples and denominator ρ(vi) is a measure of the local
embedding density. For consistency, we replace NK(v) with NL

K(v), which contains the K labeled
neighbors with highest locally-weighted probability, to ensure that the votes come from the most
relevant labeled examples. The final form of the LLP propagation weight equation is thus:

wj(v) = ∑
i∈I(j)

P (vi∣v)
∑k∈NT (vi) P (vk, vi)

,where I
(j)
= {i∣i ∈ NL

K(v), yi = j} (5)

The intuition behind the local density weighting idea is further quantitatively explored in §5.

Memory Bank. Both described steps implicitly require access to all the embedded vectors V at
every step. However, recomputing V becomes intractable for bigger dataset. We address this issue by
approximating realtime V with a memory bank V̄ that keeps a running average of the embeddings.
As this procedure is taken from Wu et al. (2018b), we refer readers there for a detailed description.
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Table 1: Top-1 accuracy (%) of ResNet-18 on ImageNet with varying p and q = 100

Method p = 1 p = 3 p = 5 p = 10

Supervised 17.35 28.61 36.01 47.89
DCT (Qiao et al., 2018) – – – 53.50

MT (Tarvainen & Valpola, 2017) 16.91 40.81 48.34 56.70
LLP (ours) 27.14 53.24 57.04 61.51

LLP + RJ (ours) 33.55 55.30 58.92 63.20

Table 2: Top-5 accuracy (%) of ResNet-50 on ImageNet with p = {1, 10} and q = 100

p Supervised Pseudolabels VAT-EM S
4
L

1 MT LLP (ours) LLP + RJ (ours)
1 48.43 51.56 46.96 53.37 40.54 61.89 72.20

10 80.43 82.41 83.39 83.82 85.42 88.53 89.55

4 RESULTS

We first evaluate the LLP method on visual object categorization in the large-scale ImageNet
dataset (Deng et al., 2009), under a variety of training regimes. We also illustrate transfer learning to
Places 205 (Zhou et al., 2014), a large-scale scene-recognition dataset.

Experimental settings. We follow Wu et al. (2018b) for most of our hyperparameters and optimiza-
tion settings. In the label propagation step, we set K = 10 and T = 25 (these choices are justified in
Section 5). We use ResNet-18v2 and ResNet-50v2 (He et al., 2016b). We find a “rate-jump” phase
beneficial: after the initial schedule for the learning rate, increasing and dropping it again improves
the performance. We think this is because a larger learning rate is needed to leverage the better
embedding space in the later training, especially given that the performance usually has big jumps
after dropping the learning rate and the dropped learning rate is already too small to exploit the
improved quality. To clearly show the effect of this phase, we list the performance after applying it
using “LLP + RJ” in Table 1-2. We also apply this phase to supervised learning and Mean Teacher
and their performances are not changed. More details are in Appendix A. We train on ImageNet with
p% labels and q% total images available, meaning that M ∼ p%× 1.2M, N ∼ q%× 1.2M. Different
regimes are defined by p ∈ {1, 3, 5, 10} and q ∈ {30, 70, 100}. Results are shown in Tables 1-3. Due
to the inconsistency of reporting metrics across different papers, we alternate between comparing
top1 and top5, depending on which was reported in the relevant previous work.

The results show that: 1. LLP significantly outperforms previous state-of-the-art methods by large
margins within all training regimes tested, regardless of network architectures, p, and q. 2. When
compared to the very recent UDA approach (Xie et al., 2019) for ResNet-50 with p = 10 and
q = 100, LLP achieves better top5 (89.55 v.s. 88.52, LLP v.s. UDA) and top1 (70.85 v.s. 68.66).
Moreover, LLP has the potential to achieve even higher performance if trained with the complex
preprocessing pipeline and large batch size used in UDA (15360 for UDA vs 64 for LLP here,
chosen due to computational resource limitations), as these details have been shown to meaningfully
improve performance; 3. LLP shows especially large improvements to other methods when p is small.
For example, ResNet-18 trained using LLP with p = 1 surpasses MT by 16.64% in top1 and our
ResNet-50 with p = 1 surpasses S4L by 18.83 in top5 (UDA does not report for less than 10% labels).

Leveraging additional unlabeled images. To examine how good LLP is at using unlabeled images,
we first vary the value of q while p remains at 10. As shown in Table 3, LLP consistently benefits
from additional unlabelled images and is not yet saturated using the whole ImageNet, unlike Mean
Teacher, where the number of unlabelled images appears essentially irrelevant.

To further assess how LLP might behave in noisier real-world settings, we additionally performed a
preliminary exploration using the YFCC100M (Thomee et al., 2015) dataset as a source of augmenta-

1 For S4
L, we list their S4

L-Rotation performance, which is their best reported performance using ResNet-
50. Note that although a model with higher performance is reported by S

4
L, that model uses a much more

complex architecture than ResNet-50.
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Table 3: Top-1 accuracy (%) of ResNet-18 on ImageNet with p = 10 and varying p. “FT” means the
fine-tuning process used in YFCC100M experiments, which is the same as the “rate-jump” phase.

Method ImageNet ImageNet + YFCC100M
q = 30 q = 70 q = 100 q = 100+ FT q = 100+FAR q = 100+NEAR

MT 56.07 55.59 55.65 - - -
LLP (ours) 58.62 60.27 61.51 63.20 63.14 63.53

Table 4: ResNet-50 transfer learning Top-1 accuracy (%) on Places205 using weights pretrained on
ImageNet with p = {1, 10}. Most numbers are from Zhai et al. (2019). *: Produced by us.

# labels Supervised Pseudolabels VAT VAT-EM S
4
L MT LLP (ours) LA*

10% 44.7 48.2 45.8 46.2 46.6 46.4 50.4 48.31% 36.2 41.8 35.9 36.4 38.0 31.6 48.5

tion. However, because YFCC100M is drawn from a very different distribution than ImageNet, we
select a subset of images that are more similar to ImageNet using the pipeline proposed by (Yalniz
et al., 2019). This pipeline is applied to two randomly chosen subsets of YFCC100M with 5M and
10M images, respectively, creating two selected training subsets each of roughly 480K images —
denoted FAR and NEAR — differing in how close to the ImageNet distribution the sets are. We then
combine each selected set with ImagetNet of p = 10 and q = 100 and train LLP. After this training,
we finetuned the model with only ImagetNet data using LLP, following the procedure in (Yalniz
et al., 2019). Please refer to Appendix B for more details of the selection and fine-tuning processes.

The results in Table 3 show that even with this very preliminary attempt, LLP achieves a 2.02%
performance improvement with augmentation of images chosen from the NEAR augmentation,
compared to the 61.51% baseline (though the fine-tuning process likely accounts for part of this
improvement). Almost certainly, such augmentations would be substantially greater if a larger number
of images from a better-matched distribution were available and a better network is used for selecting
the images (Yalniz et al., 2019). Unfortunately, a direct comparison between LLP and Yalniz et al.
(2019) is not presently possible as their ResNet18 result uses the entire labeled ImageNet and all
of YFCC100M to select matched augmentation images, both of which require significantly more
computation resources than are available to us. However, it is worth noting that LLP benefits even
from selecting the matched dataset from 10M YFCC images, while Yalniz et al. (2019) needs more
than 20M images to achieve a similar gain.

Transfer learning to Scene Recognition. To evaluate the quality of our learned representation in
other downstream tasks besides ImageNet classification, we assess its transfer learning performance
to the Places205 (Zhou et al., 2014) dataset. This dataset has 2.45M images total in 205 distinct
scene categories. We fix the nonlinear weights learned on ImageNet, add another linear readout
layer on top of the penultimate layer, and train the readout using cross-entropy loss using SGD as
above. Please refer to Appendix C for other details. We only evaluate our ResNet-50 trained with
p = {1, 10}, as Zhai et al. (2019) reported performance with this setting. Table 4 show that LLP
again significantly outperforms previous state-of-the-art results. It is notable that when trained with
p = 1, only LLP shows slightly better performance to Places205 than the Local Aggregation (LA)
method, the current state-of-the-art unsupervised learning method (Zhuang et al., 2019).

5 ANALYSES

Emerging clusters during training. Intuitively, the aggregation term LA(v) should cause embed-
ding outputs with the same label, whether known or propagated, to cluster together during training.
Fig. 2a shows clustering becoming more pronounced along the training trajectory both for labelled
and unlabelled datapoints, while unlabelled datapoints surround labelled datapoints increasingly
densely. A simple metric measuring the aggregation of a group of embedding vectors is the L2 norm
of the group mean, which, since all embeddings lie in the 128-D unit sphere, is inversely related to the
group dispersion. Computing this metric for each category and averaging across categories, we obtain
a quantitative description of aggregation over the learning timecourse (Fig. 2b), further supporting the
conclusion that LLP embeddings become increasingly clustered. We also investigate how network
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Figure 2: a. MDS embeddings of 128-D embedding outputs on 100 random images from each of
five random ImageNet categories, from the beginning to the end of LLP training. Larger points with
black borders are images with known labels. b. Trajectory of cross-category average of L2-norms
of category-mean embedding vectors. Sudden changes are due to learning rate drops. c. Histogram
of the L2-norm metrics for each category, for fully-trained ResNet-18 and ResNet-50 networks. d.
Scatter plot of L2-norm metric for ResNet-18 (x-axis) and ResNet-50 (y-axis). Each dot represents
one category. e.-g. MDS embeddings and exemplar images for images of “Monarch”, ”Spatula”, and
”Labrador”. For each category, MDS embedding is computed from 700 random images.
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Figure 3: Density weighting analysis. Orange color is for “NoDW” model and blue color is for LLP
model. a, b. Scatter plot of ImageNet classes. Each dot represents one class. For class i, X-axis is Di

and Y-axis is Qi. Both models are fully trained. c. Histogram plot of classes showing the distribution
of Qi. d. The trajectory of Pearson correlation between {Di} and {Qi} during training.

architecture influences learning trajectory and the final representation, comparing ResNet-50 and
ResNet-18 trained with 10% labels (Fig. 2b-d). The more powerful ResNet-50 achieves a more
clustered representation than ResNet-18, across timepoints and categories.

Category structure analysis: successes, failures, and sub-category discovery. It is instructive
to systematically analyze statistical patterns on a per-category basis. To do this, we visualize the
embeddings for three representative categories with 2D multi-dimensional scaling (MDS). For an
“easy” category with a high aggregation score (Fig. 2e), the LLP embedding identifies images with
strong semantic similarity, supporting successful image retrieval. For a “hard” category with low
score (Fig. 2f), image statistics vary much more and the embedding fails to properly cluster examples
together. Most interestingly, for multi-modal categories with intermediate scores (Fig. 2g), the
embedding can reconstruct semantically meaningful sub-clusters even when these are not present in
the labelling e.g. the “labrador” category decomposing into “black” and “yellow” subcategories.

Comparison to global propagation in the small-dataset regime. To understand how LLP com-
pares to methods that use global similarity information, but therefore lack scalability to large datasets,
we test several such methods on ImageNet subsets (see Appendix D for details). Table 5 shows that
LLP can be effective even in this regime, as it is comparable to the global propagation algorithm used
in DMT (Liu et al., 2018) and only slightly lower than DLP (Iscen et al., 2019).

Ablation studies. To illustrate the importance of key design choices in LLP, we conduct a series of
ablation studies exploring the following alternatives, using: 1. Different Ks (experiments Top50,
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Table 5: Label propagation performance on ImageNet subsets. LS: Label Spreading (Zhou et al.,
2004). LP: Label Propagation (Zhu & Ghahramani, 2002). LP_DMT: the method in DMT (Liu et al.,
2018). LP_DLP: the method in DLP (Iscen et al., 2019). Standard deviations are across 10 subsets.

Method LS LP LP_DMT LP_DLP LLP (ours)
Perf. 84.6 ± 3.4 87.7 ± 2.2 88.2 ± 2.3 89.2 ± 2.4 88.1 ± 2.3

Table 6: Top1 accuracy (%) for ResNet-18 and ResNet-50 trained with p = 10, q = 100 and other
settings. “TopX” means training withK =X. “NoC” does not weight the loss by confidence. “NoDW”
means the KNN weight is not weighted by densities.

Model Top50 Top20 Top5 NoC NoDW LLP
Res18 Perf. 61.07 61.48 60.90 55.88 58.41 61.51
Res50 Perf. – – – 64.01 66.41 68.90

Top20, and Top5 in Table 6); 2. Confidence weighting, or not (NoC); 3. Density-weighted probability,
or not (NoDW). Table 6 shows the contributions of each design choice, indicating that both confidence
weighting and density weighting lead to significant performance gains, across architectures.

Understanding density weighting. To better explain why the density weighting method is useful,
we compute two measures for each class i: the average density of its labeled examples, denoted Di;
and the number of unlabeled examples pseudolabled as i, denoted Qi. Formally, these are defined by:
Di = ∑j∈Li

Zρ(vj)/∥Li∥, where Li = {j∣xj ∈ XL, yj = i}, and Qi = ∥{j∣xj ∈ XU , yj = i}∥.
Fig. 3a illustrates the strong positive correlation between Di and Qi for the unweighted NoDW
model, which leads to an imbalanced distribution of Qi shown in Fig. 3c. After applying density
weighting, Di and Qi become decorrelated (Fig. 3b), creating an empirically accurate balanced
pseudo-label class distribution, throughout optimization (Fig. 3d). Another potential method to
enforce an empirically correct Qi distribution would be to reweight KNN coefficients to directly
reflect the empirical label ratio, replacing PL(vi∣v) in eq. 4 with PR(vi∣v) = P (vi∣v)×

Lyi

M
/ Qyi

N−M
.

However, this simple “ratio-based” scheme does not explicitly address the local correlation of Qi
and Di. Indeed, an experiment with PR(vi∣v) in place of PL(vi∣v) using ResNet-18 on 10%
labeled ImageNet only achieves top1 59.4%, substantially worse than LLP, further supporting the
effectiveness of the more sophisticated local density weighting approach.

6 CONCLUSION

In this work, we presented LLP, a method for semi-supervised deep neural network training that
efficiently propagates labels from known to unknown examples in a common embedding space,
ensuring high-quality propagation by exploiting the local structure of the embedding. The embedding
itself is simultaneously co-trained to achieve high categorization performance while enforcing
statistical consistency between real and pseudo-labels. LLP achieves state-of-the-art semi-supervised
learning results across all tested training regimes, including those with very small amounts of labelled
data, and transfers effectively to other non-trained tasks.

In future work, we seek to improve LLP by better integrating it with state-of-the-art unsupervised
learning methods (e.g. Zhuang et al. (2019)). This is especially relevant in the regime with very-low
fractions of known labelled datapoints (e.g. <1% of ImageNet labels), where the best unsupervised
methods outperform state-of-the-art semi-supervised methods. Combining LLP with the very distinct
point-wise methods in MT or UDA is also of interest, as would be the effective use of larger
computational resources to enable conceptually simple but practically important optimization details
such as (e.g.) significantly larger batch size in UDA. In addition, in its current formulation, LLP may
be less effective on small datasets than alternatives that exploit global similarity structure (e.g. Iscen
et al. (2019); Liu et al. (2018)). We thus hope to improve upon LLP by identifying methods of label
propagation that can take advantage of global structure while remaining scalable.
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A IMAGENET EXPERIMENT DETAILS

Following Wu et al. (2018b); Zhuang et al. (2019), τ = 0.07 and D = 128. Optimization uses SGD
with momentum of 0.9, batch size of 128, and weight-decay parameter λ = 0.0001. Learning rate
is initialized to 0.03 and then dropped by a factor of 10 whenever validation performance saturates.
Depending on the training regime specifics (how many labelled and unlabelled examples), training
takes 200-400 epochs, comprising three learning rate drops. After that, the learning rate is increased to
0.003 and dropped for two more times as a “relearning” phase. This additional phase can take around
200 more epochs. During training, pseudolabels are updated every step for the current examples after
the gradient updates. The density estimate ρ(vi) is recomputed for all labelled images at once at
the end of every epoch. For the network architectures, we add an additional fully connected layer
alongside the standard softmax categorization layer to generate the embedding output. Although the
aggregation loss requires the computation of P (v), which involves getting the dot product results of
v and all vectors stored in memory bank, we find this operation can be efficiently executed through
GPUs, which makes the noise-contrastive estimation in Wu et al. (2018b) unnecessary. Our algorithm
only adds a little extra computation time compared to a purely supervised training regime. As a
reference, a ResNet-18v2 trained on two Titan-Xps requires around 10 days to be fully-trained after
400 epochs. This time can be further reduced to less than one week through using NVIDIA DALI
preprocessing library. We use DALI for all of our main experiments except those with p = 1.

B IMAGENET + YFCC100M EXPERIMENT DETAILS

To select images that are more similar to ImageNet, we apply a LLP trained ResNet-18 model on
ImageNet with 10% labels to each image, predict its class confidence score, and retain P classes
with highest scores for this image. Then for each class, we select the top K images by confidence.
Following Yalniz et al. (2019), we set P = 10. K is heuristically set to be 500, based on the
explorations done in Yalniz et al. (2019). A more thorough parameter search on P and K may lead
to even better results than reported here.

For the fine-tuning process, we take the fully trained models and restart the LLP training with learning
rate 0.003. We then keep the training for two more learning drops.

C PLACES205 EXPERIMENT DETAILS

Learning rate is initialized at 0.01 and dropped by factor of 10 whenever validation performance on
Places205 saturates. Training requires approximately 500,000 steps, comprising two learning rate
drops.

D PROPAGATION IN THE SMALL-DATASET REGIME

ImageNet subsets are constructed through randomly sampling 50 categories from ImageNet and 50
images from each category. For each category selected, we choose 5 images to be labelled. For all
methods, we use embedding outputs of our trained ResNet-50 with p = 10 as data features.
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