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Abstract

Extreme multi-label classification (XMC) aims at assigning to an instance the most
relevant subset of labels from a colossal label set. There have been some success in
formulating the multi-label problem as sequence-to-sequence (Seq2Seq) learning,
where the positive class labels of each input instance are used as the corresponding
output sequence. Seq2Seq methods, nonetheless, have not yet been scalable to the
XMC setting due to the softmax bottleneck. In this paper, we propose a semantic
coding framework, namely SeCSeq, for a Seq2Seq approach to the XMC problem.
To circumvent the softmax bottleneck, SeCSeq compresses labels into sequences
of semantic-aware compact codes, on which Seq2Seq models are trained. For
inference, the generated semantic codes are then decompressed into sequences
of positive labels using ensemble techniques. Preliminary experiments on XMC
benchmark datasets show that SeCSeq is competitive with the state-of-the-art
while requiring significantly fewer model parameters.

1 Introduction

Extreme multi-label classification (XMC) refers to the problem of assigning to an instance the
most relevant subset of labels from an enormous label collection, where the number of labels
could be in the millions or more. XMC setting is universal in various industrial applications such
as Youtube recommendation [2], Amazon query ranking for sponsored product advertising [8],
Wikipedia categories tagging in the PASCAL Large-Scale Hierarchical Text Classification (LSHTC)
challenge [11], to name just a few. The huge label space raises research challenges such as data
sparsity and scalability for the existing multi-label algorithms.

Formally, multi-label classification (MLC) is the task of learning a function f that maps an input
x ∈ X to its target y ∈ Y = {0, 1}L, where L is the number of total unique labels. The objective is
to maximize the joint probability of labels conditioned on the input x:

max
f

P (y1, y2, . . . , yL|x; f) =
L∏

l=1

P (yl|x, y1, . . . , yl−1; f). (1)

The objective (1) can be interpreted as maximizing the subset 0/1 accuracy, which is the Bayes
optimal prediction [5]. We can solve (1) by fitting L conditional independent classifiers as done
by the Probabilistic Classifier Chain [5]. While enjoying strong statistical guarantees, PCC is not
practical because of the infeasible O(2L) complexity and the cascading errors during inference. To
overcome the above issues, [10] proposes to maximize the joint probability of positive labels:

max
f

P (yp1
,yp2

, . . . ,ypT
|x; f) =

T∏
t=1

P (ypt
|x,y1, . . . ,ypt−1

; f), (2)
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where y can be viewed as a set of 1-of-L vectors y = {ypt}Tt=1, ypt ∈ RL, and T � L is the number
of positive labels of the input x. Since instances may have different values of T , [10] considers
Seq2Seq models for solving (2). Inference requires computations over LT search space, which can
be approximated by beam search. Although reducing the complexity from O(2L) to O(LT ) thanks
to the sparse label cardinality in XMC, the number of parameters in the softmax layer of Seq2Seq
models f grows linearly with L, which hinders the feasibility of Seq2Seq models on industrial XMC
applications, where L is the order of millions or more. This stimulates us with the following question:
Can we find a compact representation of labels that has not only a constant sequence length which is
smaller than L and but a compact output space independent of L?

In this paper, we propose SeCSeq, a semantic coding framework for Seq2Seq approaches on the
XMC problem. To circumvent the softmax bottleneck, SeCSeq compresses labels into sequences of
semantic-aware compact codes, on which Seq2Seq models are trained. For inference, the generated
semantic codes are then decompressed to sequences of positive labels using ensemble trees. Prelimi-
nary experiments on XMC benchmark datasets not only show SeCSeq has competitive accuracy
among the state-of-the-art methods, but also enjoys a compact model size that is constant w.r.t the
number of labels.

2 SeCSeq: A Semantic Coded Seq2Seq Framework

In the proposed framework, each label yl is compressed into a K-way D-dimensional discrete
code. We denote the discrete code for the l-th label as cl = {c1l , c2l , . . . , cDl } ∈ BD, where B =
{1, 2, . . . ,K} is the set of code bits of K cardinality. The goal is to find a compression function
φ(·) : L → BD and a decompression function ψ(·) : BD → L with following properties: 1)
similar codes should reflect semantically similar labels; 2) compression and decompression should
be efficient; 3) maintain low collision errors while having high compression rate. The design of φ and
ψ is deferred to the end of this section.

Given an instance x and its target output y = {ypt}Tt=1, by applying φ sequentially on all postive
labels ypt

, the compressed sequence is {cp1
, . . . , cpt

, . . . , cpT
} where cpt

= {c1pt
, . . . , cDpt

} is the
K-way D-dimensional code. Thus, the objective becomes

max
f

P
(
{c1p1

, . . . , cDp1
}, . . . , {c1pT

, . . . , cDpT
}|x; f

)
, (3)

which can be solved by Seq2Seq models, as shown in Fig 1. The main intuition is to flexibly control
the trade-off between compressed sequence length T ·D and the output cardinality K. In the short
sequence extreme (T ·D = T,K = L), we reduce to the mlc2seq objective (2) [10] while for the
long sequence extreme (T ·D = L,K = 2), we reduce to the PCC objective (1) [5]. Another main
advantage is that the compact code output space K in the softmax does not explicitly depend on L.

Label Compression Provided the label embedding vl ∈ RP of label l, an example realization of
φ = q ◦ r is through a random projection r compositing with some quantization functions q [7]

φd(vl;K) = q
(
r(vl)d;K

)
, cl = {φ1(vl;K), . . . , φD(vl;K)}, d = 1, . . . , D. (4)

Notably, z = r(vl) = vT
l R is the random projection mapping where R ∈ RP×D, Rij

iid∼ N (0, 1).
Also, q is some quantization function such as uniform quantization or ordinal ranking quantization.

In practice, we sample multiple random projection matrices R1, . . . , Rm ∈ RP×D, and posit the
compact code c as the path traversing the random trees. Figure 2 demonstrates number of trees
m = 2. Analogous to the random forest ensemble prediction from all trees, SeCSeq embraces
similar benefit that m random projection trees encoding are trained by m different Seq2Seq models.

Our framework can readily incorporate the rich label side information, which is abundant in real-
world industrial applications. For example, label co-occurrence graph can be transformed into
label embedding via various label propagation methods such as DeepWalk [12]. Besides, labels
often associated with text description, which can be presented by some low-dimension contextual
embedding such as FastText [4] or ELMo [13].

Semantic Code Decompression Suppose we now have a sequence of compressed code s =
{{c1p1

, . . . , cDp1
}, . . . , {c1p′T , . . . , c

D
p′T
, } . . .} generated from the Seq2Seq model via Monte Carlo sam-

pling or beam search. To decompress the discrete code to labels, we consider the following greedy
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scheme: 1) Segment the sequence s into T ′ chunks, where T ′ = b|s|/Dc, ignoring the remaining
codes at the end; 2) For each chunk of length D subsequences {s(t−1)D+1, . . . , stD}, traverse this
subsequence along the random projection tree to a leaf node; 3) At the leaf node is a label count
histogram, which could be empty; 4) Accumulate the label count histogram for every chunk, and
output final label count histogram.

To ensemble prediction from M different random projection trees, we simply aggregate the label
histogram count from each tree, and output the top k label with highest counts.

3 Experiment

We compare the proposed SeCSeq to state-of-the-art XMC methods including tree-based
FastXML [14], OVA-based PD-Sparse [16], and Seq2Seq-based mlc2seq [10] on public available
benchmark multi-label datasets [15]. We follow [10] to obtain tokenized text representation for
deep learning methods (mlc2seq and SeCSeq) and use TF-IDF unigram features for feature-based
methods (PD-Sparse and FastXML). The data statistics are summarized in Table 3. Details are
available in Appendix A. We evaluate all methods in terms of example-based ranking measures
(Precision@k, for k = 1, 3, 5).

Experiment results of Wiki10-28K and AmazonCat-13K are presented in Table 1 and Table 2,
respectively. When the number of random projection tree M = 1, the proposed framework SeCSeq
can achieve comparable ranking performance as FastXML and PD-Sparse with a more compact
model size. For AmazonCat-13K, in particular, the model size of SeCSeq is 0.1 and 0.003 the
sizes of the PD-Sparse and FastXML models, respectively. Moreover, we find significant gain as
the number of random projection trees from M = 1 to M = 4, reaching the best on Wiki10-28K
and the best P@1,3 on AmazonCat-13K. This initial result encourages us to further explore random
projection using different feature embedding such that a more diverse semantic code could potentially
improve our framework.

Method Model Size Prec@1(%) Prec@3(%) Prec@5(%)

FastXML [14] 73M 83.22 68.79 58.48
PD-Sparse [16] 82M 82.36 68.98 57.77

mlc2seq [10] 239M 81.75 65.45 54.18

SeCSeq (M = 1) 46M 81.61 67.32 56.36
SeCSeq (M = 4) 184M 83.54 70.06 59.40
Table 1: results on Wiki10-28K. M is the number of random projection trees.

Method Model Size Prec@1(%) Prec@3(%) Prec@5(%)

FastXML [14] 15G 92.68 77.21 62.07
PD-Sparse [16] 463M 89.18 69.95 55.48

mlc2seq [10] 180M 91.52 74.77 59.13

SeCSeq (M = 1) 46M 92.10 74.78 59.05
SeCSeq (M = 4) 184M 93.19 77.34 61.74

Table 2: results on AmazonCat-13K. M is the number of random projection trees.

4 Conclusions

In this paper, we propose SeCSeq, a semantic coding framework for Seq2Seq approaches to the
XMC problem. To circumvent the softmax bottleneck, SeCSeq compresses labels into sequences
of semantic-aware yet compact codes, on which Seq2Seq models are trained. For inference, the
generated semantic codes are then decompressed to sequences of positive labels using ensemble trees.
Preliminary experiments on XMC benchmark datasets show that SeCSeq is competitive with the
state-of-the-art while requiring significantly fewer model parameters. Future work will focus on
the study of different quantization techniques and incorporation of heterogeneous label embeddings
(label graph embedding, ELMO, etc).
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A Datasets and Preprocessing

Dataset Ntrn Nval Ntst #features #labels

Wiki10-28K 11,265 1,251 5,732 99,920 28,139
AmazonCat-13K 1,067,616 118,623 306,782 161,926 13,234

Table 3: Data Statistics. Ntrn, Nval, Ntst refer to number of instances in training, validation, and test
set, respectively. The dataset is denote as its name, followed by a dash sign, followed by the #labels.

We consider two multi-label text classification datasets downloaded from the publicly available
Extreme Classification Repository [15] for which we had access to the full text, namely Wiki10-28K
and AmazonCat-13K. Summary statistics of the datasets are given in Table 3. We follow the
training and test split of [15] and set aside 10% of the training instances as the validation set for
hyperparameter tunning. However, since we adhere the text preprocessing procedure of [10], the data
statistics, particularly the #labels, would be slightly different from [15]. Specifically, for raw text
input to Seq2Seq-based methods,we replaced numbers with a special token and then build a word
vocabulary using the most frequent 50K words. Out-of-vocabulary (OOV) words were also replaced
with a special token and we truncated the documents after 300 words.

Wiki10-28K This dataset is originally from [17], made up by 20, 764 unique English Wikipedia
articles with at least 10 annotations from the social bookmarking website Delicious. Wiki10-28K is
widely used in the XMC literature such as SLEEC [3], PfastreXML [6] and DiSMEC [1].

AmazonCat-13K This dataset is originally from [9], made up by the co-purchase review data, along
with the ASIN title, descriptions, and categories. AmazonCat-13K is used in the XMC literature
such as PfastreXML [6] and DiSMEC [1].
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B Model Architecture

Figure 1: The proposed SeCSeq framework. Each positive label ypt
is represented as a K-way

D-dimensional semantic code cpt = {c1pt
, . . . , cDpt

} via some label compression functions φ. We
concatenate all positive labels’ codes into a longer sequence for training. The softmax layer now
becomes O(K), which significantly reduces model size, speedup training and inference time.

Figure 2: an instance of φ(·) function using random projection trees. Given a label embedding
vl, several semantic-aware embedding are available such as instance indicator vector, word2vec
embedding, Fasttext embedding, and more. Furthermore, we may consider an ensemble ofM random
projection trees, that leads to a set of M different semantic codes, and train the SeCSeq in parallel
without any further cost.
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