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ABSTRACT

Understanding the loss surface of a neural network is fundamentally important
to the understanding of deep learning. This paper presents how piecewise linear
activation functions substantially shape the loss surfaces of neural networks. We
first prove that the loss surfaces of many neural networks have infinite spurious
local minima which are defined as the local minima with higher empirical risks
than the global minima. Our result demonstrates that the networks with piecewise
linear activations possess substantial differences to the well-studied linear neural
networks. This result holds for any neural network with arbitrary depth and arbi-
trary piecewise linear activation functions (excluding linear functions) under most
loss functions in practice. Essentially, the underlying assumptions are consistent
with most practical circumstances where the output layer is narrower than any hid-
den layer. In addition, the loss surface of a neural network with piecewise linear
activations is partitioned into multiple smooth and multilinear cells by nondiffer-
entiable boundaries. The constructed spurious local minima are concentrated in
one cell as a valley: they are connected by a continuous path, on which empirical
risk is invariant. Further for one-hidden-layer networks, we prove that all local
minima in a cell constitute an equivalence class; they are concentrated in a valley;
and they are all global minima in the cell.

1 INTRODUCTION

Neural networks have been successfully deployed in many real-world applications (LeCun et al.,
2015; Witten et al., 2016; Silver et al., 2016; He et al., 2016; Litjens et al., 2017). In spite of this,
the theoretical foundations of neural networks are somewhat premature. To the many deficiencies
in our knowledge of deep learning theory, the investigation into the loss surfaces of neural networks
is of fundamental importance. Understanding the loss surface would be helpful in several relevant
research areas, such as the ability to estimate data distributions, the optimization of neural networks,
and the generalization to unseen data.

This paper studies the role of the nonlinearities in activation functions in shaping the loss surfaces
of neural networks. Our results demonstrate that the impact of nonlinearities is profound.

First, we prove that the loss surfaces of nonlinear neural networks are substantially different to those
of linear neural networks, in which local minima are created equal, and also, they are all global
minima (Kawaguchi, 2016; Baldi & Hornik, 1989; Lu & Kawaguchi, 2017; Freeman & Bruna,
2017; Zhou & Liang, 2018; Laurent & von Brecht, 2018; Yun et al., 2018). By contrast,

Neural networks with arbitrary depth and arbitrary piecewise linear activa-
tions (excluding linear functions) have infinitely many spurious local minima un-
der arbitrary continuously differentiable loss functions.
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This result only relies on four mild assumptions that cover most practical circumstances: (1) the
training sample set is linearly inseparable; (2) all training sample points are distinct; (3) the output
layer is narrower than the other hidden layers; and (4) there exists some turning point in the piece-
wise linear activations that the sum of the slops on the two sides does not equal to 0.

Our result significantly extends the existing study on the existence of spurious local minimum. For
example, Zhou & Liang (2018) prove that one-hidden-layer neural networks with two nodes in the
hidden layer and two-piece linear (ReLU-like) activations have spurious local minima; Swirszcz
et al. (2016) prove that ReLU networks have spurious local minima under the squared loss when
most of the neurons are not activated; Safran & Shamir (2018) present a computer-assisted proof
that two-layer ReLU networks have spurious local minima; a recent work (Yun et al., 2019b) have
proven that neural networks with two-piece linear activations have infinite spurious local minima,
but the results only apply to the networks with one hidden layer and one-dimensional outputs; and
a concurrent work (Goldblum et al., 2020) proves that for multi-layer perceptrons of any depth, the
performance of every local minimum on the training data equals to a linear model, which is also
verified by experiments.

The proposed theorem is proved in three stages: (1) we prove that neural networks with one hidden
layer and two-piece linear activations have spurious local minima; (2) we extend the conditions to
neural networks with arbitrary hidden layers and two-piece linear activations; and (3) we further ex-
tend the conditions to neural networks with arbitrary depth and arbitrary piecewise linear activations.
Since some parameters of the constructed spurious local minima are from continuous intervals, we
have obtained infinitely many spurious local minima. At each stage, the proof follows a two-step
strategy that: (a) constructs an infinite series of local minima; and (b) constructs a point in the pa-
rameter space whose empirical risk is lower than the constructed local minimum in Step (a). This
strategy is inspired by Yun et al. (2019b) but we have made significant and non-trivial development.

Second, we draw a “big picture” for the loss surfaces of nonlinear neural networks. Soudry & Hoffer
(2018) highlight a smooth and multilinear partition of the loss surfaces of neural networks. The
nonlinearities in the piecewise linear activations partition the loss surface of any nonlinear neural
network into multiple smooth and multilinear open cells. Specifically, every nonlinear point in the
activation functions creates a group of the non-differentiable boundaries between the cells, while the
linear parts of activations correspond to the smooth and multilinear interiors. Based on the partition,
we discover a degenerate nature of the large amounts of local minima from the following aspects:

• Every local minimum is globally minimal within a cell. This property demonstrates that
the local geometry within every cell is similar to the global geometry of linear networks,
although technically, they are substantially different. It applies to any one-hidden-layer
neural network with two-piece linear activations for regression under convex loss. We rig-
orously prove this property in two stages: (1) we prove that within every cell, the empirical
risk R̂ is convex with respect to a variable Ŵ mapped from the weights W by a mapping
Q. Therefore, the local minima with respect to the variable Ŵ are also the global minima in
the cell; and then (2) we prove that the local optimality is maintained under the constructed
mapping. Specifically, the local minima of the empirical risk R̂ with respect to the param-
eter W are also the local minima with respect to the variable Ŵ . We thereby prove this
property by combining the convexity and the correspondence of the minima. This proof is
technically novel and non-trivial, though the intuitions are natural.

• Equivalence classes and quotient space of local minimum valleys. All local minima in
a cell are concentrated as a local minimum valley: on a local minimum valley, all local
minima are connected with each other by a continuous path, on which the empirical risk is
invariant. Further, all these local minima constitute an equivalence class. This local minima
valley may have several parallel valleys that are in the same equivalence class but do not
appear because of the restraints from cell boundaries. If such constraints are ignored, all
the equivalence classes constitute a quotient space. The constructed mapping Q is exactly
the quotient map. This result coincides with the property of mode connectivity that the
minima found by gradient-based methods are connected by a path in the parameter space
with almost invariant empirical risk (Garipov et al., 2018; Draxler et al., 2018; Kuditipudi
et al., 2019). Additionally, this property suggests that we would need to study every local
minimum valley as a whole.
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• Linear collapse. Linear neural networks are covered by our theories as a simplified case.
When all activations are linear, the partitioned loss surface collapses to one single cell, in
which all local minima are globally optimal, as suggested by the existing works on linear
networks (Kawaguchi, 2016; Baldi & Hornik, 1989; Lu & Kawaguchi, 2017; Freeman &
Bruna, 2017; Zhou & Liang, 2018; Laurent & von Brecht, 2018; Yun et al., 2018).

Notations. If M is a matrix, Mi,j denotes the (i, j)-th component of M . If M is a vector, Mi

denotes the i-th component of M . Define Eij as a matrix in which the (i, j)-th component is 1
while all other components are 0. Also, denote ei as a vector such that the i-th component is 1 while
all others are 0. Additionally, we define 1k ∈ Rk×1 is a vector whose components are all 1, while
those of 0n×m ∈ Rn×m (or briefly, 0) are all 0. For the brevity, [i : j] denotes {i, · · · , j}.

2 RELATED WORK

Some works suggest that linear neural networks have no spurious local minima. Kawaguchi (2016)
proves that linear neural networks with squared loss do not have any spurious local minimum under
three assumptions about the data matrix X and the label matrix Y : (1) both matrices XXT and
XY T have full ranks; and (2) the input layer is wider than the output layer; and (3) the eigenvalues
of matrix Y X>

(
XXT

)−1
XY T are distinct with each other. Zhou & Liang (2018) give an analytic

formulation of the critical points for the loss function of deep linear networks, and thereby obtain
a group of equivalence conditions for that critical point is a global minimum. Lu & Kawaguchi
(2017) prove the argument under one assumption that both matrices X and Y have full ranks, which
is even more restrictive. However, in practice, the activations of most neural networks are not linear.
The nonlinearities would make the loss surface extremely non-convex and even non-smooth and
therefore far different from the linear case.

The loss surfaces of over-parameterized neural networks have some special properties. Choroman-
ska et al. (2015) empirically suggest that: (1) most local minima of over-parameterized networks are
equivalent; and (2) small-size networks have spurious local minima but the probability of finding
one decreases rapidly with the network size. Li et al. (2018) prove that over-parameterized fully-
connected deep neural networks with continuous activation functions and convex, differentiable loss
functions, have no bad strict local minimum. Nguyen et al. (2019) suggest that “sufficiently over-
parameterized” neural networks have no bad local valley under the cross-entropy loss. Nguyen
(2019) further suggests that the global minima of sufficiently over-parameterized neural networks
are connected within a unique valley. Many other works study the convergence, generalization, and
other properties of stochastic gradient descent on the loss surfaces of over-parameterized networks
(Chizat & Bach; Arora et al., 2018; Brutzkus et al., 2018; Du et al., 2019; Soltanolkotabi et al., 2018;
Allen-Zhu et al., 2019a;b; Oymak & Soltanolkotabi, 2019).

Many advances on the loss surfaces of neural networks are focused on other problems. Zhou &
Feng (2018) and Mei et al. (2018) prove that the empirical risk surface and expected risk surface
are linked. This correspondence highlights the value of investigating loss surfaces (empirical risk
surfaces) to the study of generalization (the gap between empirical risks to expected risks). Hanin &
Rolnick (2019) demonstrate that the input space of neural networks with piecewise linear activations
are partitioned by multiple regions, while our work focuses on the partition of the loss surface. Xie
et al. (2017) proves that the training error and test error are upper bounded by the magnitude of the
gradient, under the assumption that the geometry discrepancy of the parameterW is bounded. Sagun
et al. (2016; 2018) present empirical results that the eigenvalues of the Hessian of the loss surface
are two-fold: (1) a bulk centered closed to zero; and (2) outliers away from the bulk. Kawaguchi
& Kaelbling (2020) prove that we can eliminate the spurious local minima by adding one unit per
output unit for almost any neural network in practice. Tian (2017); Andrychowicz et al. (2016);
Soltanolkotabi (2017); Zhong et al. (2017); Brutzkus & Globerson (2017); Tian (2017); Li & Yuan
(2017); Zou et al. (2019); Li & Liang (2018); Du et al. (2018a; 2019); Zhang et al. (2019b); Zhou
et al. (2019); Wang et al. (2019) study the optimization methods for neural networks. Other relevant
works include Sagun et al. (2016; 2018); Nguyen & Hein (2018); Du et al. (2018b); Haeffele & Vidal
(2017); Liang et al. (2018); Wu et al. (2018); Yun et al. (2019a); Zhang et al. (2019a); Kuditipudi
et al. (2019); Garipov et al. (2018); Draxler et al. (2018); He et al. (2019); Kawaguchi & Kaelbling
(2020).
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3 NEURAL NETWORK HAS INFINITE SPURIOUS LOCAL MINIMA

This section investigates the existence of spurious local minima on the loss surfaces of neural net-
works. We find that almost all practical neural networks have infinitely many spurious local minima.
This result stands for any neural network with arbitrary depth and arbitrary piecewise linear activa-
tions excluding linear functions under arbitrary continuously differentiable loss.

3.1 PRELIMINARIES

Consider a training sample set {(X1, Y1), (X2, Y2), . . . , (Xn, Yn)} of size n. Suppose the dimen-
sions of feature Xi and label Yi are dX and dY , respectively. By aggregating the training sample
set, we obtain the feature matrix X ∈ RdX×n and label matrix Y ∈ RdY ×n.

Suppose a neural network has L layers. Denote the weight matrix, bias, and activation in the j-
th layer respectively by Wj ∈ Rdj×dj−1 , bj ∈ Rdj , and h : Rdj×n → Rdj×n, where dj is the
dimension of the output of the j-th layer. Also, for the input matrix X , the output of the j-th layer
is denoted as the Y (j) and the output of the j-th layer before the activation is denoted as the Ỹ (j),

Ỹ (j) = WjY
(j−1) + bi1

T
n , (1)

Y (j) = h
(
WjY

(j−1) + bi1
T
n

)
. (2)

The output of the network is defined as follows,

Ŷ = hL
(
WLhL−1

(
WL−1hL−2

(
. . . h1

(
W1X + b11

T
n

)
. . .
)

+ bL−11
T
n

)
+ bL1

T
n

)
. (3)

Also, we define Y (0) = X , Y (L) = Ŷ , d0 = dX , and dL = dY . In some situations, we use
Ŷ
(

[Wi]
L
i=1 , [bi]

L
i=1

)
to clarify the parameters, as well as Ỹ (j), Y (j), etc.

This section discusses neural networks with piecewise linear activations. A part of the proof uses
two-piece linear activations hs−,s+ which are defined as follows,

hs−,s+(x) = I{x≤0}s−x+ I{x>0}s+x, (4)

where |s+| 6= |s−| and I{·} is the indicator function.
Remark. Piecewise linear functions are dense in the space of continuous functions. In other words,
for any continuous function, we can always find a piecewise linear function to estimate it with
arbitrary small distance.

This section uses continuously differentiable loss to evaluate the performance of neural networks.
Continuous differentiability is defined as follows.
Definition 1 (Continuously differentiable). We call a function f : Rn → R continuously differen-
tiable with respect to the variable x if: (1) the function f is differentiable with respect to x; and (2)
the gradient∇xf(x) of the function f is continuous with respect to the variable x.

3.2 MAIN RESULT

The theorem in this section relies on the following assumptions.
Assumption 1. The training data cannot be fit by a linear model.
Assumption 2. All data points are distinct.
Assumption 3. All hidden layers are wider than the output layer.
Assumption 4. For the piece-wise linear activations, there exists some turning point that the sum
of the slops on the two sides does not equal to 0.

To our best knowledge, our assumptions are the least restrictive compared with the relevant works in
the literature. These assumptions are respectively justified as follows: (1) most real-world datasets
are extremely complex and cannot be simply fit using linear models; (2) it is easy to guarantee
that the data points are distinct by employing data cleansing methods; (3) for regression and many
classification tasks, the width of output layer is limited and narrower than the hidden layers; and (4)
this assumption is invalid only for activations like f(x) = a|x|.
Based on these four assumptions, we can prove the following theorem.
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Theorem 1. Neural networks with arbitrary depth and arbitrary piecewise linear activations (ex-
cluding linear functions) have infinitely many spurious local minima under arbitrary continuously
differentiable loss whose derivative can equal 0 only when the prediction and label are the same.

In practice, most loss functions are continuously differentiable and the derivative can equal 0 only
when the prediction and label are the same, such as squared loss and cross-entropy loss (see Ap-
pendix A.1, Lemmas 2 and 3). Squared loss is a standard loss for regression and is defined as the L2

norm of the difference between the ground-truth label and the prediction as follows.

l2

(
Yi, Ŷi

)
=

1

2

∥∥∥Yi − Ŷi∥∥∥2
F
. (5)

Meanwhile, cross-entropy loss is used as a standard loss in multiclass classification, which is defined
as follows. Here, we treat the softmax function as a part of the loss function.

lce(Yi, Ŷi) = −
dY∑
j=1

Yi,j log

(
Ŷi,j∑dY
k=1 Ŷi,k

)
. (6)

One can also remove Assumption 4, if Assumption 3 is replaced by the following assumption, which
is mildly more restrictive (see a detailed proof in pp. 34–37).

Assumption 5. The dimensions of the layers satisfy that:

d1 ≥ dY + 2,

di ≥ dY + 1, i = 2, . . . , L− 1.

Our result demonstrates that introducing nonlinearities into activations substantially reshapes the
loss surface: they bring infinitely many spurious local minima into the loss surface. This result
highlights the substantial difference from linear neural networks that all local minima of linear neural
networks are equally good, and therefore, they are all global minima (Kawaguchi, 2016; Baldi &
Hornik, 1989; Lu & Kawaguchi, 2017; Freeman & Bruna, 2017; Zhou & Liang, 2018; Laurent &
von Brecht, 2018; Yun et al., 2018).

Some works have noticed the existence of spurious local minima on the loss surfaces of nonlin-
ear neural networks, which however has a limited applicable domain (Choromanska et al., 2015;
Swirszcz et al., 2016; Safran & Shamir, 2018; Yun et al., 2019b). A notable work by Yun et al.
(2019b) proves that one-hidden-layer neural networks with two-piece linear (ReLU-like) activations
for one-dimensional regression have infinitely many spurious local minima under squared loss. This
work first constructs a series of local minima and then prove they are spurious. This idea inspires
some of this work. However, our work makes significant and non-trivial development that extends
the conditions to arbitrary depth, piecewise linear activations excluding linear functions, and contin-
uously differentiable loss.

3.3 PROOF SKELETON

This section presents the skeleton of the proof. Theorem 1 is proved in three stages. We first prove
a simplified version of Theorem 1 and then extend the conditions in the last two stages. The proof is
partially inspired by Yun et al. (2019b) but the proof in this paper has made nontrivial development
and the results are significantly extended.

Yun et al. (2019b) and our paper both employ the following strategy: (a) construct a series of local
minima based on a linear classifier; and (b) construct a new point with smaller empirical risk and
thereby we prove that the constructed local minima are spurious. However, due to the differences in
the loss function and the output dimensions, the exact constructions of local minima are substantially
different.

Our extensions from Yun et al. (2019b) are three-fold: (1) From one hidden layer to arbitrary depth:
To prove that networks with an arbitrary depth have infinite spurious local minima, we develop a
novel strategy that employs transformation operations to force data flow through the same linear
parts of the activations, in order to construct the spurious local minima; (2) From squared loss to
arbitrary differentiable loss: Yun et al. (2019b) calculate the analytic formations of derivatives of

5



Published as a conference paper at ICLR 2020

the loss to construct the local minima and then prove they are spurious. This technique cannot
be transplanted to the case of arbitrary differentiable loss functions, because we cannot assume
the analytic formation. To prove that the loss surface under an arbitrary differentiable loss has an
infinite number of spurious local minima, we employ a new proof technique based on Taylor series
and a new separation lemma; and (3) From one-dimensional output to arbitrary-dimensional output:
To prove the loss surface of a neural network with an arbitrary-dimensional output has an infinite
number of spurious local minima, we need to deal with the calculus of functions whose domain
and codomain are a matrix space and a vector space, respectively. By contrast, when the output
dimension is one, the codomain is only the space of real numbers. Therefore, the extension of the
output dimension significantly mounts the difficulty of the whole proof.

Stage (1): Neural networks with one hidden layer and two-piece linear activations.

We first prove that nonlinear neural networks with one hidden layer and two-piece linear activation
functions (ReLU-like activations) have spurious local minima. The proof in this stage further follows
a two-step strategy:

(a) We first construct local minima of the empirical risk R̂ (see Appendix A.2, Lemma 4). These
local minimizers are constructed based on a linear neural network which has the same network size
(dimension of weight matrices) and evaluated under the same loss. The design of the hidden layer
guarantees that the components of the output Ỹ (1) in the hidden layer before the activation are all
positive. The activation is thus effectively reduced to a linear function. Therefore, the local geometry
around the local minima with respect to the weights W is similar to those of linear neural networks.
Further, the design of the output layer guarantees that its output Ŷ is the same as the linear neural
network. This construction helps to utilize the results of linear neural networks to solve the problems
in nonlinear neural networks.

(b) We then prove that all the constructed local minima in Step (a) are spurious (see Appendix A.2,
Theorem 4). Specifically, we assumed by Assumption 1 that the dataset cannot be fit by a linear
model. Therefore, the gradient ∇Ŷ R̂ of the empirical risk R̂ with respect to the prediction Ŷ is
not zero. Suppose the i-th row of the gradient ∇Ŷ R̂ is not zero. Then, we use Taylor series and a
preparation lemma (see Appendix A.5, Lemma 7) to construct another point in the parameter space
that has smaller empirical risk. Therefore, we prove that the constructed local minima are spurious.
Furthermore, the constructions involve some parameters that are randomly picked from a continuous
interval. Thus, we constructed infinitely many spurious local minima.

Stage (2) - Neural networks with arbitrary hidden layers and two-piece linear activations.

We extend the condition in Stage (1) to any neural network with arbitrary depth and two-piece linear
activations. The proof in this stage follows the same two-step strategy but has different implemen-
tations:

(a) We first construct a series of local minima of the empirical risk R̂ (see Appendix A.3, Lemma
5). The construction guarantees that every component of the output Ỹ (i) in each layer before the
activations is positive, which secure all the input examples flow through the same part of the acti-
vations. Thereby, the nonlinear activations are reduced to linear functions. Also, our construction
guarantees that the output Ŷ of the network is the same as a linear network with the same weight
matrix dimensions.

(b) We then prove that the constructed local minima are spurious (see Appendix A.3, Theorem
5). The idea is to find a point in the parameter space that has the same empirical risk R̂ with the
constructed point in Stage (1), Step (b).

Stage (3) - Neural networks with arbitrary hidden layer and piecewise linear activations.

We further extend the conditions in Stage (2) to any neural network with arbitrary depth and arbitrary
piecewise linear activations. We continue to adapt the two-step strategy in this stage:

(a) We first construct a local minimizer of the empirical risk R̂ based on the results in Stages (1) and
(2) (see Appendix A.4, Lemma 6). This construction is based on Stage (2), Step (a). The difference
of the construction in this stage is that every linear part in activations can be a finite interval. The
constructed weight matrices use several uniform scaling and translation operations to the outputs
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of hidden layers in order to guarantee that all the input training sample points flow through the
same linear parts of the activations. We thereby reduce the nonlinear activations to linear functions,
effectively. Also, our construction guarantees that the output Ŷ of the neural network equals to that
of the corresponding linear neural network.

(b) We then prove that the constructed local minima are spurious (see Appendix A.4). We use the
same strategy in Stage (2), Step (b). Some adaptations are implemented for the new conditions.

4 A BIG PICTURE OF THE LOSS SURFACE

This section draws a big picture for the loss surfaces of neural networks. Based on a recent result
by Soudry & Hoffer (2018), we present four profound properties of the loss surface that collectively
characterize how the nonlinearities in activations shape the loss surface.

4.1 PRELIMINARIES

The discussions in this section use the following concepts.

Definition 2 (Open ball and open set). The open ball in H centered at x ∈ H and of radius r > 0
is defined by B(h, r) = {x : ‖x − h‖ < r}. A subset A ⊂ H of a space H is called a open set, if
for every point h ∈ A, there exists a positive real r > 0, such that the open ball B(h, r) with center
h and radius r is in the subset A: B(h, r) ⊂ A.

Definition 3 (Interior point and interior). For a subset A ⊂ H of a spaceH, a point h ∈ A is called
an interior point of A, if there exists a positive real r > 0, such that the open ball B(h, r) with
center h and radius r is in the subset A: B(h, r) ⊂ A. The set of all the interior points of the set A
is called the interior of the set A.

Definition 4 (Limit point, closure, and boundary). For a subset A ⊂ H of a spaceH, a point h ∈ A
is called a limit point, if for every r > 0, the open ball B(h, r) with center h and radius r contains
some point of A: B(h, r)∩A 6= ∅. The closure Ā of the set A consists of the union of the set A and
all its limit points. The boundary ∂A is defined as the set of points which are in the closure of set A
but not in the interior of set A.

Definition 5 (Multilinear). A function f : X1×X2 → Y is called multilinear if for arbitrary x11, x
2
1 ∈

X , x12, x
2
2 ∈ X2, and constants λ1, λ2, µ1, and µ2, we have

f(λ1x
1
1+λ2x

2
1, µ1x

1
2+µ2x

2
2) = λ1µ1f(x11, x

1
2)+λ1µ2f(x11, x

2
2)+λ2µ1f(x21, x

1
2)+λ2µ2f(x21, x

2
2).

Remark. The definition of “multilinear” implies that the domain of any multilinear function f is a
connective and convex set, such as the smooth and multilinear cells below.

Definition 6 (Equivalence class, and quotient space). Suppose X is a linear space. [x] =
{v ∈ X : v ∼ x} is an equivalence class, if there is an equivalent relation ∼ on [x], such that
for any a, b, c ∈ [x], we have: (1) reflexivity: a ∼ a; (2) symmetry: if a ∼ b, b ∼ a; and (3)
transitivity: if a ∼ b and b ∼ c, a ∼ c. The quotient space and quotient map are defined to be
X/ ∼= {{v ∈ X : v ∼ x} : x ∈ X} and x→ [x], respectively.

4.2 MAIN RESULTS

In this section, the loss surface is defined under convex loss with respect to the prediction Ŷ of the
neural network. Convex loss covers many popular loss functions in practice, such as the squared
loss for the regression tasks and many others based on norms. The triangle inequality of the norms
secures the convexity of the corresponding loss functions. The convexity of the squared loss is
checked in the appendix (see Appendix B, Lemma 8).

We now present four propositions to express the loss surfaces of nonlinear neural networks. These
propositions give four major properties of the loss surface that collectively draw a big picture for the
loss surface.

We first recall a lemma by Soudry & Hoffer (2018). It proves that the loss surfaces of neural
networks have smooth and multilinear partitions.
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Lemma 1 (Smooth and multilinear partition; cf. Soudry & Hoffer (2018)). The loss surfaces of
neural networks of arbitrary depth with piecewise linear functions excluding linear functions are
partitioned into multiple smooth and multilinear open cells, while the boundaries are nondifferen-
tiable.

Based on the smooth and multilinear partition, we prove four propositions as follows.
Theorem 2 (Analogous convexity). For one-hidden-layer neural networks with two-piece linear
activation for regression under convex loss, within every cell, all local minima are equally good,
and also, they are all global minima in the cell.
Theorem 3 (Equivalence classes of local minimum valleys). Suppose all conditions of Theorem 2
hold. Assume the loss function is strictly convex. Then, all local minima in a cell are concentrated
as a local minimum valley: they are connected with each other by a continuous path and have the
same empirical risk. Additionally, all local minima in a cell constitute an equivalence class.
Corollary 1 (Quotient space of local minimum valleys). Suppose all conditions of Theorem 3 hold.
There might exist some “parallel” local minimum valleys in the equivalence class of a local mini-
mum valley. They do not appear because of the constraints from the cell boundaries. If we ignore
such constraints, all equivalence classes of local minima valleys constitute a quotient space.
Corollary 2 (Linear collapse). The partitioned loss surface collapses to one single smooth and
multilinear cell, when all activations are linear.

4.3 DISCUSSIONS AND PROOF TECHNIQUES

The four propositions collectively characterize how the nonlinearities in activations shape the loss
surfaces of neural networks. This section discusses the results and the structure of the proofs. A
detailed proof is omitted here and given in Appendix B.

Smooth and multilinear partition. Intuitively, the nonlinearities in the piecewise linear activation
functions partition the surface into multiple smooth and multilinear cells. Zhou & Liang (2018);
Soudry & Hoffer (2018) highlight the partition of the loss surface. We restate it here to make the
picture self-contained. A similar but also markedly different notions recently proposed by Hanin
& Rolnick (2019) demonstrate that the input data space is partitioned into multiple linear regions,
while our work focuses on the partition in the parameter space.

Every local minimum is globally minimal within a cell. In convex optimization, convexity guar-
antees that all the local minima are global minima. This theorem proves that the local minima within
a cell are equally good, and also, they are all global minima in the cell. This result is not surpris-
ing provided the excellent training performance of deep learning algorithms. However, the proof is
technically non-trivial.

Soudry & Hoffer (2018) proved that the local minima in a cell are the same. However, there would
be some point near the boundary has a smaller empirical risk and is not locally minimal. Unfortu-
nately, the proof by Soudry & Hoffer (2018) cannot exclude this possibility. By contrast, our proof
completely solves this problem. Furthermore, our proof holds for any convex loss, including squared
loss and cross-entropy loss, but Soudry & Hoffer (2018) only stands for squared loss.

It is challenging to prove, because the proof techniques for the case of linear networks cannot be
transplanted here. Technically, linear networks can be expressed by the product of a sequence of
weight matrices, which guarantees good geometrical properties. Specifically, the effect of every
linear activation function is just equivalently multiplying a real constant to the output. However, the
loss surface within a cell of a nonlinear neural network does not have this property. Below is the
skeleton of our proof.

We first prove that the empirical risk R̂ is a convex function within every cell with respect to a
variable Ŵ which is calculated from the weights W . Therefore, all local minima of the empirical
risk R̂ with respect to Ŵ are also globally optimal in the cell. Every cell corresponds to a specific
series of linear parts of the activations. Therefore, in any fixed cell, the activation hs−,s+ can be
expressed by the slopes of the corresponding linear parts as the following equations,

R̂(W1,W2) =
1

n

n∑
i=1

l (yi,W2h(W1xi)) =
1

n

n∑
i=1

l (yi,W2diag (A·,i)W1xi) , (7)
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where A·,i is the i-th column of matrix

A =

 h
′
s−,s+((W1)1,·x1) · · · h′s−,s+((W1)1,·xn)

...
. . .

...
h′s−,s+((W1)d1,·x1) · · · h′s−,s+((W1)d1,·xn)

 .
Matrix A is constituted by collecting the slopes of the activation h at every point (W1)i,·xj .

Different elements of the matrix A can be multiplied either one of {s−, s+}. Therefore, we cannot
use a single constant to express the effect of this activation, and thus, even within the cell, a nonlinear
network cannot be expressed as the product of a sequence of weight matrices. This difference
ensures that the proofs of deep linear neural networks cannot be transplanted here.

Then, we prove that (see p. 40)

W2diag (A·,i)W1xi = AT·,idiag(W2)W1xi. (8)

Applying eq. (8) to eq. (7), the empirical risk R̂ equals to a formulation similar to the linear neural
networks,

R̂ =
1

n

n∑
i=1

l
(
yi −AT·,idiag(W2)W1xi

)
. (9)

Afterwards, define Ŵ1 = diag(W2)W1 and then straighten the matrix Ŵ1 to a vector Ŵ ,

Ŵ =
(
(Ŵ1)1,· · · · (Ŵ1)d1,·

)
,

Define Q : (W1,W2) 7→ Ŵ , and also define,

X̂ = (A·,1 ⊗ x1 · · · A·,n ⊗ xn) .

We can prove the following equations (see p. 41),(
AT·,1Ŵ1x1 · · · AT·,nŴ1xn

)
=Ŵ X̂.

Applying eq. (9), the empirical risk is transferred to a convex function as follows,

R̂ =
1

n

n∑
i=1

l
(
yi, (A·,i)

T
Ŵ1xi

)
=

1

n

n∑
i=1

l(yi, Ŵ X̂i).

We then prove that the local optimality of the empirical risk R̂ is maintained when the weightsW are
mapped to the variable Ŵ . Specifically, the local minima of the empirical risk R̂ with respect to the
weight W are also the local minima with respect to the variable Ŵ . The maintenance of optimality
is not surprising but the proof is technically non-trivial (see a detailed proof in pp. 42-43).

Equivalence classes and quotient space of local minimum valleys. The constructed mappingQ is
a quotient map. Under the setting in the previous property, all local minima in a cell is an equivalence
class; they are concentrated as a local minimum valley. However, there might exist some “parallel”
local minimum valley in the equivalence class, which do not appear because of the constraints from
the cell boundaries. Further for neural networks of arbitrary depth, we also constructed a local
minimum valley (the spurious local minima constructed in Section 3). This result explains the
property of mode connectivity that the minima found by gradient-based methods are connected by a
path in the parameter space with almost constant empirical risk, which is proposed in two empirical
works (Garipov et al., 2018; Draxler et al., 2018). A recent theoretical work (Kuditipudi et al., 2019)
proves that dropout stability and noise stability guarantee the mode connectivity.

Linear collapse. Our theories also cover the case of linear neural networks. Linear neural networks
do not have any nonlinearity in their activations. Correspondingly, the loss surface does not have
any non-differentiable boundaries. In our theories, when there is no nonlinearity in the activations,
the partitioned loss surface collapses to a single smooth, multilinear cell. All local minima wherein
are equally good, and also, they are all global minima as follows. This result unites the existing
results on linear neural networks (Kawaguchi, 2016; Baldi & Hornik, 1989; Lu & Kawaguchi, 2017;
Freeman & Bruna, 2017; Zhou & Liang, 2018; Laurent & von Brecht, 2018; Yun et al., 2018).
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5 CONCLUSION AND FUTURE DIRECTIONS

This paper reports that the nonlinearities in activations substantially shape the loss surfaces of neural
networks. First, we prove that neural networks have infinitely many spurious local minima which are
in contrast to the circumstance of linear neural networks. This result stands for any neural network
with arbitrary hidden layers and arbitrary piecewise linear activations (excluding linear functions)
under many popular loss functions in practice (e.g., squared loss and cross-entropy loss). This result
significantly extends the conditions of the relevant results and has the least restrictive assumptions
that cover most practical circumstances: (1) the training data is not linearly separable; (2) the training
sample points are distinct; (3) all hidden layers are wider than the output layer; and (4) there exists
some turning point in the piece-wise linear activation that the sum of the slops on the two sides does
not equal to 0. Second, based on a recent result that the loss surface has a smooth and multilinear
partition, we draw a big picture of the loss surface from the following aspects: (1) local minima in
any cell are equally good, and also, they are all global minima in the cell; (2) all local minima in
one cell constitute an equivalence class and are concentrated as a local minimum valley; and (3) the
loss surface collapses to one single cell when all activations are linear functions, which explains the
results of linear neural networks. The first and second properties are rigorously proved for any one-
hidden-layer nonlinear neural networks with two-piece linear (ReLU-like) activations for regression
tasks under convex/strictly convex loss without any other assumption.

Theoretically understanding deep learning is of vital importance to both academia and industry. A
major barrier recognized by the whole community is that deep neural networks’ loss surfaces are
extremely non-convex and even non-smooth. Such non-convexity and non-smoothness make the
analysis of the optimization and generalization properties prohibitively difficult. A natural idea is to
bypass the geometrical properties and then approach a theoretical explanation. We argue that such
“intimidating” geometrical properties are exactly the major factors that shape the properties of deep
neural networks, and also the key to explaining deep learning. We propose to explore the magic
of deep learning from the geometrical structures of its loss surface. Future directions towards fully
understanding deep learning are summarized as follows,

• Investigate the (potential) equivalence classes and quotient space of local minimum
valleys for deep neural networks. This paper suggests a degenerate nature of the large
amounts of local minima: all the local minima within one cell constitute an equivalence
class. We construct a quotient map for one-hidden-layer neural networks with two-piece
activations for regression. Whether deep neural networks have similar properties remains
an open problem. Understanding the quotient space would be a major step of understanding
the approximation, optimization, and generalization of deep learning.

• Explore the sophisticated geometry of local minimum valleys. The quotient space of
local minima suggests a strategy that treats every local minimum valley as a whole. How-
ever, the sophisticated local geometrical properties around the local minimum valleys are
still premature, such as the sharpness/flatness of the local minima, the potential categoriza-
tion of the local minimum valley according to their performance, and the volumes of the
local minima valleys from different categories.

• Tackle the optimization and generalization problems of deep learning. Empirical re-
sults have overwhelmingly suggested that deep learning has excellent optimization and
generalization capabilities, which is, however, beyond the current theoretical understand-
ing: (1) one can employ stochastic convex optimization methods (such as SGD) to min-
imize the extremely non-convex and non-smooth loss function in deep learning, which
is expected to be NP-hard but practically solved by computationally cheap optimization
methods; and (2) heavily-parametrized neural networks can generalize well in many tasks,
which is beyond the expectation of most current theoretical frameworks based on hypoth-
esis complexity and the variants. The sophisticated geometrical expression, if fortunately,
we possess in the future, would be a compelling push to tackle the generalization and opti-
mization muses of deep learning.
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A PROOF OF THEOREM 1

This appendix gives a detailed proof of Theorem 1 omitted from the main text. It follows the skeleton
presented in Section 3.3.

A.1 SQUARED LOSS AND CROSS-ENTROPY LOSS

We first check whether squared loss and cross-entropy loss are covered by the requirements of
Theorem 1.

Lemma 2. The squared loss (defined by eq. 5) is continuously differentiable with respect to the
prediction of the model, whose gradient of loss equal to zero when the prediction and the label are
different.

Proof. Apparently, the squared loss is differentiable with respect to Ŷ . Specifically, the gradient
with respect to Ŷ is as follows,

∇Ŷ
∥∥∥Y − Ŷ ∥∥∥2 = 2

(
Y − Ŷ

)
,

which is continuous with respect to Ŷ .

Also, when the prediction Ŷ does not equals to the label Y , we have

∇Ŷ
∥∥∥Y − Ŷ ∥∥∥2 6= 0.

The proof is completed.

Lemma 3. The cross-entropy loss eq. (6) is continuously differentiable with respect to the prediction
of the model, whose gradient of loss equal to zero when the prediction and the label are different.
Also, we assume that the ground-truth label is a one-hot vector.

Proof. For any i ∈ [1 : n], the cross-entropy loss is differentiable with respect to Ŷi. The j-th
component of the gradient with respect to the prediction Ŷi is as follows,

∂

(
−

dY∑
k=1

Yk,i log

(
eŶk,i∑dY

k=1 e
Ŷk,i

))
∂Ŷj,i

=

(
dY∑
k=1

Yk,i

)
eŶj,i

dY∑
k=1

eŶk,i

− Yj,i. (10)

which is continuous with respect to Ŷi. So, the cross-entropy loss is continuously differentiable with
respect to Ŷi.

Additionally, if the gradient (eq. (10)) is zero, we have the following equations,(
dY∑
k=1

Yk,i

)
eŶj,i − Yj,i

dY∑
k=1

eŶk,i = 0, j = 1, 2, · · · , n.

Rewrite it into the matrix form, we have

dY∑
k=1

Yk,i − Y1,i −Y1,i · · · −Y1,i

−Y2,i
dY∑
k=1

Yk,i − Y2,i · · · −Y2,i
...

...
. . .

...

−YdY ,i · · · −YdY ,i
dY∑
i=1

Yk,i − YdY ,i




eŶ1,i

eŶ2,i

...
eŶdY ,i

 = 0.
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Since
dY∑
k=1

Yk,i = 1, we can easily check the rank of the left matrix is dY − 1. So the dimension of

the solution space is one. Meanwhile, we have

dY∑
k=1

Yk,i − Y1,i −Y1,i · · · −Y1,i

−Y2,i
dY∑
k=1

Yk,i − Y2,i · · · −Y2,i
...

...
. . .

...

−YdY ,i · · · −YdY ,i
dY∑
i=1

Yk,i − YdY ,i




Y1,i
Y2,i

...
YdY ,i

 = 0.

Therefore, 0 6= eŶk,i = λYk,i, for some λ ∈ R, which contradicts to the assumption that some of
the components of Y is 0 (Yi,· is a one-hot vector).

The proof is completed.

A.2 STAGE (1)

In Stage (1), we prove that deep neural networks with one hidden layer, two-piece linear activation
hs−,s+ , and multi-dimensional outputs have infinite spurious local minima.

This stage is organized as follows: (a) we construct a local minimizer by Lemma 4; and (b) we prove
that the local minimizer is spurious in Theorem 4 by constructing a set of parameters with smaller
empirical risk.

Without loss of generality, we assume that s+ 6= 0. Otherwise, suppose that s+ = 0. From the
definition of ReLU-like activation (eq. (4)), we have s− 6= 0. Since

hs−,s+(x) = h−s+,−s−(−x),

the output of the neural network with parameters
{

[Wi]
L
i=1 , [bi]

L
i=1

}
and activation hs−,s+ equals

to that of the neural network with parameters
{

[W ′i ]
L
i=1 , [b

′
i]
L
i=1

}
and activation h−s+,−s− where

W ′i = −Wi, b′i = −bi, i = 1, 2, · · · , L− 1 and W ′L = WL, b′L = bL. Since
{

[Wi]
L
i=1 , [bi]

L
i=1

}
→{

[W ′i ]
L
i=1 , [b

′
i]
L
i=1

}
is an one-to-one map, it is equivalent to consider either the two networks, with

h−s+,−s−(x) has non-zero slope when x > 0.

Step (a). Construct local minima of the loss surface.
Lemma 4. Suppose that W̃ is a local minimizer of

f(W )
4
=

1

n

n∑
i=1

l

(
Yi,W

[
xi
1

])
, (11)

Under Assumption 3, any one-hidden-layer neural network has a local minimum at

Ŵ1 =

[ [
W̃
]
·,[1:dX ]

0(d1−dY )×dX

]
, b̂1 =

[ [
W̃
]
·,dX+1

− η1dY
−η1d1−dY

]
, (12)

and
Ŵ2 =

[
1
s+
IdY 0dY ×(d1−dY )

]
, b̂2 = η1dY , (13)

where Ŵ1 and b̂1 are respectively the weight matrix and the bias of the first layer, Ŵ2 and b̂2 are
respectively the weight matrix and the bias of the second layer, and η is a negative constant with
absolute value sufficiently large such that

W̃ X̃ − η1dY 1Tn > 0, (14)
where > is element-wise.

Also, the loss in this lemma is continuously differentiable loss whose gradient does not equals to 0
when the prediction is not the same as the ground-truth label.
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Proof. We show that the empirical risk is higher in the neiborhood of
{[
Ŵi

]2
i=1

,
[
b̂i

]2
i=1

}
, in order

to prove that
{[
Ŵi

]2
i=1

,
[
b̂i

]2
i=1

}
is a local minimizer.

The output of the first layer before the activation is

Ỹ (1) = Ŵ1X + b̂11
T
n =

[
ŴX − η1dY 1Tn
−η1d1−dY 1Tn

]
.

Because η is a negative constant with absolute value sufficiently large such that eq. (27)) holds,
the output above is positive (element-wise), the output of the neural network with parameters
{Ŵ1, Ŵ2, b̂1, b̂2} is

Ŷ =Ŵ2hs−,s+

(
Ŵ1X + b̂11

T
n

)
+ b̂21

T
n

=s+Ŵ2

(
Ŵ1X + b̂11

T
n

)
+ b̂21

T
n

=s+

[
1
s+
IdY 0dY ×(d1−dY )

] [
ŴX − η1dY 1Tn
−η1d1−dY 1Tn

]
+ η1dY 1

T
n

=W̃ X̃,

where X̃ is defined as

X̃ =

[
X
1Tn

]
. (15)

Therefore, the empirical risk R̂ in terms of parameters {Ŵ1, Ŵ2, b̂1, b̂2} is

R̂
(
Ŵ1, Ŵ2, b̂1, b̂2

)
=

1

n

n∑
i=1

l

(
Yi,
(
W̃ X̃

)
·,i

)
=

1

n

n∑
i=1

l

(
Yi, W̃

[
xi
1

])
= f(W̃ ).

Then, we introduce a sufficiently small disturbance
{

[δWi]
2
i=1 , [δbi]

2
i=1

}
into the parameters{[

Ŵi

]2
i=1

,
[
b̂i

]2
i=1

}
. When the disturbance is sufficiently small, all components of the output

of the first layer remain positive. Therefore, the output after the disturbance is

Ŷ

([
Ŵi + δWi

]2
i=1

,
[
b̂i + δbi

]2
i=1

)
=
(
Ŵ2 + δW2

)
hs−,s+

((
Ŵ1 + δW1

)
X +

(
b̂1 + δb1

)
1Tn

)
+
(
b̂2 + δb2

)
1Tn

(∗)
=
(
Ŵ2 + δW2

)
s+

((
Ŵ1 + δW1

)
X +

(
b̂1 + δb1

)
1Tn

)
+
(
b̂2 + δb2

)
1Tn

=s+δW2

((
Ŵ1 + δW1

)
X +

(
b̂1 + δb1

)
1Tn

)
+ s+Ŵ2δW1X + s+Ŵ2δb11

T
n + δb21

T
n

+ Ŵ2s+(Ŵ1X + b̂11
T
n ) + b̂21

T
n

=
(
s+δW2

(
Ŵ1 + δW1

)
+ s+Ŵ2δW1

)
X +

(
s+Ŵ2δb1 + δb2 + s+δW2

(
b̂1 + δb1

))
1Tn

+ Ŵ2hs−,s+(Ŵ1X + b̂11
T
n ) + b̂21

T
n

=(W̃ + δ)

[
X
1Tn

]
,

where eq. (∗) is because all components of
(
Ŵ1 + δW1

)
X + (b′1 + δb1)1Tn are positive, and δ is

defined as the following matrix

δ =
[
s+

(
Ŵ2δW1 + δW2Ŵ1 + δW2δW1

)
s+Ŵ2δb1 + δb2 + s+δW2

(
b̂1 + δb1

)]
.
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Therefore, the empirical risk R̂ with respect to
{[
Ŵi + δWi

]2
i=1

,
[
b̂i + δbi

]2
i=1

}
is

R̂
([
Ŵi + δWi

]2
i=1

,
[
b̂i + δbi

]2
i=1

)
=

1

n

n∑
i=1

l

(
Yi,
((
W̃ + δ

)
X̃
)
·,i

)

=
1

n

n∑
i=1

l

(
Yi,
(
W̃ + δ

)[
xi
1

])
= f(W̃ + δ).

δ approaches zero when the disturbances {δW1, δW2, δb1, δb2} approach zero (element-wise). Since
Ŵ is the local minimizer of f(W ), we have

R̂
([
Ŵi

]2
i=1

,
[
b̂i

]2
i=1

)
= f(Ŵ ) ≤ f(Ŵ + δ) = R̂

([
Ŵi + δWi

]2
i=1

,
[
b̂i + δbi

]2
i=1

)
. (16)

Because the disturbances {δW1, δW2, δb1, δb2} are arbitrary, eq. (16) demonstrates that{[
Ŵi

]2
i=1

,
[
b̂i

]2
i=1

}
is a local minimizer.

The proof is completed.

Step (b). Prove the constructed local minima are spurious.
Theorem 4. Under the same conditions of Lemma 4 and Assumptions 1, 2, and 4, the constructed
spurious local minima in Lemma 4 are spurious.

Proof. The minimizer W̃ is the solution of the following equation

∇W f(W ) = 0.

Specifically, we have

∂f
(
W̃
)

∂Wi,j
= 0, i ∈ {1, · · · , dY }, j ∈ {1, · · · , dX},

Applying the definition of f(W ) (eq. (11)),

∂f
(
W̃
)

∂Wk,j
=

n∑
i=1

∇Ŷi
l

(
Yi, W̃

[
xi
1

])
Ek,j

[
xi
1

]
=

n∑
i=1

(
∇Ŷi

l

(
Yi, W̃

[
xi
1

]))
k

([
xi
1

])
j

,

where Ŷi = W̃

[
xi
1

]
,∇Ŷi

l

(
Yi, W̃

[
xi
1

])
∈ R1×dY . Since k, j are arbitrary in {1, · · · , dY } and

{1, · · · , dX}, respectively, we have

V
[
XT 1n

]
= 0, (17)

where

V =

[(
∇Ŷ1

l

(
Y1, W̃

[
x1
1

]))T
· · ·

(
∇Ŷn

l

(
Yn, W̃

[
xn
1

]))T]
.

We then define Ỹ = W̃ X̃ . Applying Assumption 1, we have

Ỹ − Y =
(
W̃ X̃ − Y

)
6= 0,

Thus, there exists some k-th row of Ỹ − Y that does not equal to 0.

18
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We can rearrange the rows of W̃ and Y simultaneously, while W̃ is maintained as the local mini-
mizer of f(W ) and f(W̃ ) invariant1. Without loss of generality, we assume k = 1 (k is the index of
the row). Set u = V1,· and vi = Ỹ1,i in Lemma 7. There exists a non-empty separation I = [1 : l′]
and J = [l′ + 1 : n] of S = {1, 2, · · · , n} and a vector β ∈ RdX , such that

(1.1) for any positive constant α small enough, and i ∈ I , j ∈ J , Ỹ1,i − αβTxi < Ỹ1,j − αβTxj ;
(1.2)

∑
i∈I V1,i 6= 0.

Define

η1 = Ỹ1,l′ − αβTxl′ +
1

2

(
min

i∈{l′+1,...,n}

(
Ỹ1,i − αβTxi

)
−
(
Ỹ1,l′ − αβTxl′

))
.

Applying (1.1), for any i ∈ I

Ỹ1,i − αβTxi − η1

=
(
Ỹ1,i − αβTxi − Ỹ1,l′ + αβTxl′

)
− 1

2

(
min

i∈{l′+1,...,n}

(
Ỹ1,i − αβTxi

)
−
(
Ỹ1,l′ − αβTxl′

))
<0,

while for any j ∈ J ,

Ỹ1,j − αβTxj − η1 > 0

=
(
Ỹ1,j − αβTxi − Ỹ1,l′ + αβTxl′

)
− 1

2

(
min

i∈{l′+1,...,n}

(
Ỹ1,i − αβTxi

)
−
(
Ỹ1,l′ − αβTxl′

))
≥1

2

(
min

i∈{l′+1,...,n}

(
Ỹ1,i − αβTxi

)
−
(
Ỹ1,l′ − αβTxl′

))
>0.

Define γ ∈ R which satisfies

|γ| =


1

2
min

i∈{l′+1,...,st+1}
αβT (xl − xi), l′ < st+1

α, l′ = st+1

,

where st+1 is defined in Lemma 7.

We argue that ∣∣∣∣12
(

min
i∈{l′+1,...,n}

(
Ỹ1,i − αβTxi

)
−
(
Ỹ1,l′ − αβTxl′

))∣∣∣∣− |γ| > 0. (18)

When l′ = st+1, eq. (58) stands. Also,

lim
α→0+

γ = 0,

lim
α→0+

(
min

i∈{l′+1,...,n}

(
Ỹ1,i − αβTxi

)
−
(
Ỹ1,l′ − αβTxl′

))
= min
i∈{l′+1,...,n}

Ỹ1,i − Ỹ1,l′ > 0.

Therefore, we get eq. (18) when α is small enough.

When l′ < st+1, eq. (57) stands. Therefore,

|γ| = 1

2

∣∣∣∣12
(

min
i∈{l′+1,...,n}

(
Ỹ1,i − αβTxi

)
−
(
Ỹ1,l′ − αβTxl′

))∣∣∣∣ ,
which apparently leads to eq. (18).

1f is also the function in term of Y .

19



Published as a conference paper at ICLR 2020

Therefore, for any i ∈ I , we have that

Ỹ1,i − αβTxi − η1 + |γ|

≤ − 1

2

(
min

i∈{l′+1,...,n}

(
Ỹ1,i − αβTxi

)
−
(
Ỹ1,l′ − αβTxl′

))
+ |γ|

<0,

while for any j ∈ J ,

Ỹ1,j − αβTxj − η1 − |γ|

≥1

2

(
min

i∈{l′+1,...,n}

(
Ỹ1,i − αβTxi

)
−
(
Ỹ1,l′ − αβTxl′

))
− |γ|

>0.

Furthermore, define ηi (2 ≤ i ≤ dY ) as negative reals with absolute value sufficiently large, such
that for any i ∈ [2 : dY ] and any j ∈ [1 : n],

Ỹi,j − ηi > 0.

Now we construct a point in the parameter space whose empirical risk is smaller than the proposed
local minimum in Lemma 4 as follows

W̃1 =



W̃1,[1:dX ] − αβT
−W̃1,[1:dX ] + αβT

W̃2,[1:dX ]

...
W̃dY ,[1:dX ]

0(d1−dY −1)×dX


, (19)

b̃1 =



W̃1,[dX+1] − η1 + γ

−W̃1,[dX+1] + η1 + γ

W̃2,[dX+1] − η2
...

W̃dY ,[dX+1] − ηdY
0(d1−dY −1)×1


, (20)

W̃2 =



1
s++s−

− 1
s++s−

0 0 · · · 0 0 · · · 0

0 0 1
s+

· · · 0
...

...
...

...
...

... 1
s+

· · · 0
. . .

...
...

...
...

. . .
...

...
...

0 0 0 0 · · · 1
s+

0 · · · 0


, (21)

and

b̃2 =


η1
η2
...

ηdY

 , (22)

where W̃i and b̃i are the weight matrix and the bias of the i-th layer, respectively.
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After some calculations, the network output of the first layer before the activation in terms of{[
W̃i

]2
i=1

,
[
b̃i

]2
i=1

}
is

Ỹ (1) = W̃1X + b̃11
T
n =



W̃1,·X̃ − αβTX − η11Tn + γ1Tn
−W̃1,·X̃ + αβTX + η11

T
n + γ1Tn

W̃2,·X̃ − η21Tn
...

W̃dY ,·X̃ − ηdY 1Tn
0(d1−dY −1)×n


.

Therefore, the output of the whole neural network is

Ŷ = W̃2hs−,s+

(
W̃1X + b̃11

T
n

)
+ b̃21

T
n

= W̃2hs−,s+





W̃1,·X̃ − αβTX − η11Tn + γ1Tn
−W̃1,·X̃ + αβTX + η11

T
n + γ1Tn

W̃2,·X̃ − η21Tn
...

W̃dY ,·X̃ − ηdY 1Tn
0(d1−dY −1)×n




+ b̃21

T
n .

Specifically, if j ≤ l′,(
Ỹ (1)

([
W̃i

]2
i=1

,
[
b̃i

]2
i=1

))
1,j

=W̃1,·

[
xj
1

]
− αβTxj − η1 + γ

=Ỹ1,j − αβTxj − η1 + γ < 0,(
Ỹ (1)

([
W̃i

]2
i=1

,
[
b̃i

]2
i=1

))
2,j

=− W̃1,·

[
xj
1

]
+ αβTxj + η1 + γ

=− Ỹ1,j + αβTxj + η1 + γ > 0.

Therefore, (1, j)-th component of Ŷ
([
W̃i

]2
i=1

,
[
b̃i

]2
i=1

)
is(

Ŷ

([
W̃i

]2
i=1

,
[
b̃i

]2
i=1

))
1,j

=
(

1
s++s−

,− 1
s++s−

, 0, · · · , 0
)
hs−,s+





W̃1,·X − αβTX − η11Tn + γ1Tn
−W̃1,·X + αβTX + η11

T
n + γ1Tn

W̃2,·X − η21Tn
...

W̃dY ,·X − ηdY 1Tn
0d1−dY −11

T
n




·,j

+ η1

=
1

s+ + s−
hs−,s+(Ỹ1,j − αβTxj − η1 + γ)− 1

s+ + s−
hs−,s+(−Ỹ1,j + αβTxj + η1 + γ)

+ η1

=
s−

s+ + s−
(Ỹ1,j − αβTxj − η1 + γ)− s+

s+ + s−
(−Ỹ1,j + αβTxj + η1 + γ)

+ η1

=Ỹ1,j − αβTxj +
s− − s+
s+ + s−

γ; (23)
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Similarly, when j > l′, the (1, j)-th component is(
Ŷ

([
W̃i

]2
i=1

,
[
b̃i

]2
i=1

))
1,j

=
s+

s+ + s−
(Ỹ1,j − αβTxj − η1 + γ)− s−

s+ + s−
(−Ỹ1,j + αβTxj + η1 + γ) + η1

=Ỹ1,j − αβTxj +
s+ − s−
s+ + s−

γ, (24)

and (
Ŷ

([
W̃i

]2
i=1

,
[
b̃i

]2
i=1

))
i,j

=
s+
s+

(Ỹi,j − ηi) + ηi = Ỹi,j , i ≥ 2. (25)

Thus, the empirical risk of the neural network with parameters
{[
W̃i

]2
i=1

,
[
b̃i

]2
i=1

}
is

R̂
([
W̃i

]2
i=1

,
[
b̃i

]2
i=1

)
=

1

n

n∑
i=1

l
(
Yi, W̃2

(
W̃1xi + b̃11

T
n

)
+ b̃21

T
n

)
=

1

n

n∑
i=1

(
l

(
Yi, W̃

[
xi
1

])
+∇Ŷi

l

(
Yi, W̃

[
xi
1

])(
W̃2

(
W̃1xi + b̃11

T
n

)
+ b̃21

T
n − W̃

[
xi
1

]))

+

n∑
i=1

o

(∥∥∥∥W̃2

(
W̃1xi + b̃11

T
n

)
+ b̃21

T
n − W̃

[
xi
1

]∥∥∥∥) . (26)

Applying eqs. (23), (24), and (25), we have

n∑
i=1

(
W̃2

(
W̃1xi + b̃1

)
+ b̃2 − W̃

[
xi
1

])T
∇Ŷi

l

(
Yi, W̃

[
xi
1

])T
(∗)
=

l′∑
i=1

V1,i(−αβTxi +
s+ − s−
s+ + s−

γ) +

n∑
i=l′+1

V1,i(−αβTxi −
s+ − s−
s+ + s−

γ)

=2γ

l′∑
i=1

s+ − s−
s+ + s−

V1,i,

where eq. (∗) is because

(
W̃2

(
W̃1xi + b̃1

)
+ b̃2 − W̃

[
xi
1

])
j

=


− αβTxj +

s− − s+
s+ + s−

γ, j = 1, i ≤ l′

− αβTxj −
s− − s+
s+ + s−

γ, j = 1, i > l′

0, j ≥ 2

.

Furthermore, note that α = O(γ) (from the definition of γ). We have

n∑
i=1

o

(∥∥∥∥W̃2

(
W̃1xi + b̃1

)
+ b̃2 − Ŵ

[
xi
1

]∥∥∥∥)

=

n∑
i=1

o

√√√√ n∑
j=1

(
W̃2

(
W̃1xi + b̃1

)
+ b̃2 − W̃

[
xi
1

])2

j


=o(γ).
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Let α be sufficiently small while sgn(γ) = −sgn

(
l′∑
i=1

s+−s−
s++s−

V1,i

)
. We have

n∑
i=1

l
(
Yi, W̃2

(
W̃1xi + b̃1

)
+ b̃2

)
−

n∑
i=1

l

(
Yi, Ŵ

[
xi
1

])

=2γ

l′∑
i=1

s+ − s−
s+ + s−

V1,i + o(γ)

(∗∗)
< 0,

where inequality (∗∗) comes from (1.2) (see p. 18).

From Lemma 4, there exists a local minimizer
{[
Ŵi

]2
i=1

,
[
b̂i

]2
i=1

}
with empirical risk that equals

to f(W̃ ). Meanwhile, we just construct a point in the parameter space with empirical risk smaller
than f(W̃ ).

Therefore,
{[
Ŵi

]2
i=1

,
[
b̂i

]2
i=1

}
is a spurious local minimum.

The proof is completed.

A.3 STAGE (2)

Stage (2) proves that neural networks with arbitrary hidden layers and two-piece linear activation
hs−,s+ have spurious local minima. Here, we still assume s+ 6= 0. We have justified this assumption
in Stage (1).

This stage is organized similarly with Stage (1): (a) Lemma 5 constructs a local minimum; and (b)
Theorem 5 proves the minimum is spurious.

Step (a). Construct local minima of the loss surface.
Lemma 5. Suppose that all the conditions of Lemma 4 hold, while the neural network has L − 1
hidden layers. Then, this network has a local minimum at

Ŵ ′1 =

[ [
W̃
]
·,[1:dX ]

0(d1−dY )×dX

]
, b̂′1 =

[ [
W̃
]
·,dX+1

− η1dY
−η1d1−dY

]
,

Ŵ ′i =
1

s+

dY∑
j=1

Ej,j +
1

s+

di∑
j=dY +1

Ej,(dY +1), b̂
′
i = 0 (i = 2, 3, ..., L− 1),

and
Ŵ ′L =

[
1
s+
IdY 0dY ×(dL−1−dY )

]
, b̂′L = η1dY ,

where Ŵ ′i and b̂′i are the weight matrix and the bias of the i-th layer, respectively, and η is a negative
constant with absolute value sufficiently large such that

W̃ X̃ − η1dY 1Tn > 0, (27)

where > is element-wise.

Proof. Recall the discussion in Lemma 4 that all components of Ŵ1X + b̂11
T
n are positive. Specif-

ically,

Ŵ1X + b̂11
T
n =

 Ỹ − η1dY 1Tn
−η1d1−dY 1Tn

 ,
where Ỹ is defined in Lemma 4.
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Similar to the discussions in Lemma 4, when the parameters equal to
{[
Ŵ ′i

]L
i=1

,
[
b̂′i

]L
i=1

}
, the

output of the first layer before the activation function is

Ỹ (1) = Ŵ ′1X + b̂′11
T
n =

 Ỹ − η1dY 1Tn
−η1d1−dY 1Tn

 ,
and

Ỹ − η1dY 1Tn > 0, (28)

−η1d1−dY 1Tn > 0. (29)
Here > is defined element-wise.

After the activation function, the output of the first layer is

Y (1) = hs−,s+(Ŵ ′1X + b̂′11
T
n ) = s+(Ŵ ′1X + b̂′11

T
n ) = s+

 Ỹ − η1dY 1Tn
−η1d1−dY 1Tn

 .
We prove by induction that for all i ∈ [1 : L− 1] that

Ỹ (i) > 0 , element-wise, (30)

Y (i) = s+

Ỹ − η1dY 1Tn
−η1di−dY 1Tn

 . (31)

Suppose that for 1 ≤ k ≤ L− 2, Ỹ (k) is positive (element-wise) and

Y (k) = s+

 Ỹ − η1dY 1Tn
−η1dk−dY 1Tn

 .
Then the output of the (k + 1)-th layer before the activation is

Ỹ (k+1) = Ŵ ′k+1Y
(k) + b̂′k+11

T
n

=
1

s+

 dY∑
j=1

Ej,j +

dk+1∑
j=dY +1

Ej,(dY +1)

 s+

 Ỹ − η1dY 1Tn
−η1dk−dY 1Tn


=

 Ỹ − η1dY 1Tn

−η1dk+1−dY 1
T
n

 .
Applying eqs. (28) and (29), we have

Ỹ (k+1) =

 Ỹ − η1dY 1Tn

−η1dk+1−dY 1
T
n

 > 0,

where > is defined element-wise. Therefore,

Y (k+1) = hs−,s+

(
Ỹ (k+1)

)
= s+Ỹ

(k+1) = s+

 Ỹ − η1dY 1Tn

−η1dk+1−dY 1
T
n

 .
We thereby prove eqs. (30) and (31).

Therefore, Y (L) can be calculated as
Ŷ = Y (L) = Ŵ ′LY

(L−1) + b̂′L1
T
n

=
1

s+

[
IdY 0dY ×(dL−1−dY )

]
s+

Ỹ − η1dY 1Tn
−η1di−dY 1Tn

+ η1dY 1
T
n

= Ỹ . (32)
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Then, we show the empirical risk is higher around
{[
Ŵ ′i

]L
i=1

,
[
b̂′i

]L
i=1

}
in order to prove that{[

Ŵ ′i

]L
i=1

,
[
b̂′i

]L
i=1

}
is a local minimizer.

Let
{[
Ŵ ′i + δ′Wi

]L
i=1

,
[
b̂′i + δ′bi

]L
i=1

}
be point in the parameter space which is close enough to the

point
{[
Ŵ ′i

]L
i=1

,
[
b̂′i

]L
i=1

}
. Since the disturbances δ′Wi and δ′bi are both close to 0 (element-wise),

all components of Ỹ (i)

([
Ŵ ′i + δ′Wi

]L
i=1

,
[
b̂′i + δ′bi

]L
i=1

)
remains positive. Therefore, the output

of the neural network in terms of parameters
{[
Ŵ ′i + δ′Wi

]L
i=1

,
[
b̂′i + δ′bi

]L
i=1

}
is

Ŷ

([
Ŵ ′i + δ′Wi

]L
i=1

,
[
b̂′i + δ′bi

]L
i=1

)
=(Ŵ ′L + δ′WL)hs−,s+

(
. . . hs−,s+

((
Ŵ ′1 + δ′W1

)
X +

(
b̂′1 + δ′b1

)
1Tn

)
. . .
)

+
(
b̂′L + δ′bL

)
1Tn

=(Ŵ ′L + δ′WL)s+

(
. . . s+

((
Ŵ ′1 + δ′W1

)
X +

(
b̂′1 + δ′b1

)
1Tn

)
. . .
)

+
(
b̂′L + δ′bL

)
1Tn

=M1X +M21Tn ,

where M1 and M2 can be obtained from
{[
Ŵ ′i

]L
i=1

,
[
b̂′i

]L
i=1

}
and

{
[δ′Wi]

L
i=1 , [δ

′
bi]
L
i=1

}
through

several multiplication and summation operations2.

Rewrite the output as

M1X +M21Tn = [M1 M2]

[
X
1Tn

]
.

Therefore, the empirical risk R̂ before and after the disturbance can be expressed as f(W̃ ) and
f ([M1 M2]), respectively.

When the disturbances
{

[δ′Wi]
L
i=1 , [δ

′
bi]
L
i=1

}
approach 0 (element-wise), [M1 M2] approaches W̃ .

Therefore, when
{

[δ′Wi]
L
i=1 , [δ

′
bi]
L
i=1

}
are all small enough, we have

R̂
([
Ŵ ′i + δ′Wi

]L
i=1

,
[
b̂′i + δ′bi

]L
i=1

)
=f([M1 M2])

≥f(W̃ )

=R̂
([
Ŵ ′i

]L
i=1

,
[
b̂′i

]L
i=1

)
. (33)

Since
{[
Ŵ ′i + δ′Wi

]L
i=1

,
[
b̂′i + δ′bi

]L
i=1

}
are arbitrary within a sufficiently small neighbour of{[

Ŵ ′i

]L
i=1

,
[
b̂′i

]L
i=1

}
, eq. (33) yields that

{[
Ŵ ′i

]2
i=1

,
[
b̂′i

]2
i=1

}
is a local minimizer.

Step (b). Prove the constructed local minima are spurious.
2Since the exact form of M1 and M2 are not needed, we omit the exact formulations here.
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Theorem 5. Under the same conditions of Lemma 5 and Assumptions 1, 2, and 4, the constructed
spurious local minima in Lemma 5 are spurious.

Proof. We first construct the weight matrix and bias of the i-th layer as follows,

W̃ ′1 = W̃1, b̃
′
1 = b̃1,

W̃ ′2 =

[
W̃2

0(d2−dY )×d1

]
, b̃′2 = λ1d2 +

[
b̃2

0(d2−dY )×1

]
,

W̃ ′i =
1

s+

dY∑
i=1

Ei,i, b̃
′
i = 0 (i = 3, 4, ..., L− 1),

and

W̃ ′L =
1

s+

dY∑
i=1

Ei,i, b̃
′
L = −λ1dY ,

where W̃1, W̃2, b̃1 and b̃2 are defined by eqs. (19), (20), (21), and (22), respectively, and λ is a
sufficiently large positive real such that

Ŷ

([
W̃i

]2
i=1

,
[
b̃i

]2
i=1

)
+ λ1d21

T
n > 0, (34)

where > is defined element-wise.

We argue that
{[
W̃ ′i

]L
i=1

,
[
b̃′i

]L
i=1

}
corresponds to a smaller empirical risk than f(W̃ ) which is

defined in Lemma 4.

First, Theorem 4 has proved that the point
{
W̃1, W̃2, b̃1, b̃2

}
corresponds to a smaller empirical risk

than f(W̃ ).

We prove by induction that for any i ∈ {3, 4, ..., L− 1},

Ỹ (i)

([
W̃ ′i

]L
i=1

,
[
b̃′i

]L
i=1

)
≥ 0 , element-wise, (35)

Y (i)

([
W̃ ′i

]L
i=1

,
[
b̃′i

]L
i=1

)
= s+

Ŷ
([
W̃i

]2
i=1

,
[
b̃i

]2
i=1

)
+ λ1dY 1

T
n

0(di−dY )×n

 . (36)

Apparently the output of the first layer before the activation is

Ỹ (1)

([
W̃ ′i

]L
i=1

,
[
b̃′i

]L
i=1

)
= W̃ ′1X + b̃′11

T
n = W̃1X + b̃11

T
n = Ỹ (1)

([
W̃i

]2
i=1

,
[
b̃i

]2
i=1

)
.

Therefore, the output of the first layer after the activation is

Y (1)

([
W̃ ′i

]L
i=1

,
[
b̃′i

]L
i=1

)
=hs−,s+

(
Ỹ (1)

([
W̃ ′i

]L
i=1

,
[
b̃′i

]L
i=1

))
=hs−,s+

(
Ỹ (1)

([
W̃i

]L
i=1

,
[
b̃i

]L
i=1

))
=Y (1)

([
W̃i

]2
i=1

,
[
b̃i

]2
i=1

)
.
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Thus, the output of the second layer before the activation is

Ỹ (2)

([
W̃ ′i

]L
i=1

,
[
b̃′i

]L
i=1

)
=W̃ ′2Y

(1)

([
W̃ ′i

]L
i=1

,
[
b̃′i

]L
i=1

)
+ b̃′21

T
n

=

[
W̃2

0(d2−dY )×d1

]
Y (1)

([
W̃ ′i

]L
i=1

,
[
b̃′i

]L
i=1

)
+

[
b̃2

0(d2−dY )×1

]
1Tn

+ λ1d21
T
n

=

Ŷ
([
W̃i

]2
i=1

,
[
b̃i

]2
i=1

)
+ λ1dY 1

T
n

λ1d2−dY 1
T
n

 .
Applying the definition of λ (eq. (34)),

Ỹ (2)

([
W̃ ′i

]L
i=1

,
[
b̃′i

]L
i=1

)
> 0 , element-wise. (37)

Therefore, the output of the second layer after the activation is

Y (2)

([
W̃ ′i

]L
i=1

,
[
b̃′i

]L
i=1

)
= hs−,s+

(
Ỹ (2)

([
W̃ ′i

]L
i=1

,
[
b̃′i

]L
i=1

))

= s+

Ŷ
([
W̃i

]2
i=1

,
[
b̃i

]2
i=1

)
+ λ1dY 1

T
n

λ1d2−dY 1
T
n

 .

Meanwhile, the output of the third layer before the activation is Ỹ (3)

([
W̃ ′i

]L
i=1

,
[
b̃′i

]L
i=1

)
can be

calculated based on Y (2)

([
W̃ ′i

]L
i=1

,
[
b̃′i

]L
i=1

)
:

Ỹ (3)

([
W̃ ′i

]L
i=1

,
[
b̃′i

]L
i=1

)
= W̃ ′3Y

(2)

([
W̃ ′i

]L
i=1

,
[
b̃′i

]L
i=1

)
+ b̃′31

T
n

=
1

s+

(
dY∑
i=1

Ei,i

)
s+

Ŷ
([
W̃i

]2
i=1

,
[
b̃i

]2
i=1

)
+ λ1dY 1

T
n

λ1d2−dY 1
T
n



=

Ŷ
([
W̃i

]2
i=1

,
[
b̃i

]2
i=1

)
+ λ1dY 1

T
n

0(d3−dY )×n

 .
Applying eq. (37),

Ỹ (3)

([
W̃ ′i

]L
i=1

,
[
b̃′i

]L
i=1

)
≥ 0 , element-wise. (38)

Therefore, the output of the third layer after the activation is

Y (3)

([
W̃ ′i

]L
i=1

,
[
b̃′i

]L
i=1

)
= hs−,s+

(
Ỹ (3)

([
W̃ ′i

]L
i=1

,
[
b̃′i

]L
i=1

))
= s+

(
Ỹ (3)

([
W̃ ′i

]L
i=1

,
[
b̃′i

]L
i=1

))

= s+

Ŷ
([
W̃i

]2
i=1

,
[
b̃i

]2
i=1

)
+ λ1dY 1

T
n

0(d3−dY )×n

 .
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Suppose eqs. (35) and (36) hold for k (3 ≤ k ≤ L− 2), when k + 1,

Ỹ (k+1)

([
W̃ ′i

]L
i=1

,
[
b̃′i

]L
i=1

)
= W̃ ′k+1Y

(k)

([
W̃ ′i

]2
i=1

,
[
b̃′i

]2
i=1

)
+ b̃′k+11

T
n

=
1

s+

(
dY∑
i=1

Ei,i

)
s+

Ŷ
([
W̃i

]2
i=1

,
[
b̃i

]2
i=1

)
+ λ1dY 1

T
n

0(dk−dY )×n



=

Ŷ
([
W̃i

]2
i=1

,
[
b̃i

]2
i=1

)
+ λ1dY 1

T
n

0(dk+1−dY )×n

 .
Applying eq. (38),

Ỹ (k+1)

([
W̃ ′i

]L
i=1

,
[
b̃′i

]L
i=1

)
≥ 0 , element-wise. (39)

Therefore, the output of the (k + 1)-th layer after the activation is

Y (k+1)

([
W̃ ′i

]L
i=1

,
[
b̃′i

]L
i=1

)
=hs−,s+

(
Ỹ (k+1)

([
W̃ ′i

]L
i=1

,
[
b̃′i

]L
i=1

))
=s+Ỹ

(k+1)

([
W̃ ′i

]L
i=1

,
[
b̃′i

]L
i=1

)

=s+

Ŷ
([
W̃i

]2
i=1

,
[
b̃i

]2
i=1

)
+ λ1dY 1

T
n

0(dk+1−dY )×n

 .
Therefore, eqs. (35) and (36) hold for any i ∈ {3, 4, ..., L− 1}.
Finally, the output of the network is

Ŷ

([
W̃ ′i

]L
i=1

,
[
b̃′i

]L
i=1

)
=Y (L)

([
W̃ ′i

]L
i=1

,
[
b̃′i

]L
i=1

)
=W̃ ′LY

(L−1)
([
W̃ ′i

]L
i=1

,
[
b̃′i

]L
i=1

)
+ b̃′L1

T
n

=

(
1

s+

dY∑
i=1

Ei,i

)
s+

Ŷ
([
W̃i

]2
i=1

,
[
b̃i

]2
i=1

)
+ λ1dY 1

T
n

0(dL−1−dY )×n


− λ1dY 1Tn

=Ŷ

([
W̃i

]2
i=1

,
[
b̃i

]2
i=1

)
.

Applying Theorem 4, we have

R̂
([
W̃ ′i

]L
i=1

,
[
W̃ ′i

]L
i=1

)
= R̂

([
W̃i

]2
i=1

,
[
b̃i

]2
i=1

)
< f(W̃ ).

The proof is completed.

A.4 STAGE (3)

Finally, we prove Theorem 1.

This stage also follows the two-step strategy.

Step (a). Construct local minima of the loss surface.
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Lemma 6. Suppose t is a non-differentiable point for the piece-wise linear activation function h and
σ is a constant such that the activation h is differentiable in the intervals (t − σ, t) and (t, t + σ).
Assume that M is a sufficiently large positive real such that

1

M

∥∥∥Ŵ ′1X + b̂′11
T
n

∥∥∥
F
< σ. (40)

Let αi be any positive real such that

α1 = 1

0 < αi < 1, i = 2, · · · , L− 1. (41)

Then, under Assumption 3, any neural network with piecewise linear activations and L − 1 hidden
layers has local minima at

Ŵ ′′1 =
1

M
Ŵ ′1, b̂

′′
1 =

1

M
b̂′1 + t1d1 ,

Ŵ ′′i = αiŴ
′
i , b̂
′′
i = −αiŴ ′ih(t)1di−1 + t1di +

Πi
j=2αj

M
b̂′i, (i = 2, 3, ..., L− 1),

and
Ŵ ′′L =

1

ΠL
j=2αj

MŴ ′L, b̂
′′
L = − M∏L−1

j=2 αj
Ŵ ′Lh(t)1dL−1

+ b̂′L

where
{[
Ŵ ′i

]L
i=1

,
[
b̂′i

]L
i=1

}
is the local minimizer constructed in Lemma 5. Also, the loss is con-

tinuously differentiable, whose derivative with respect to the prediction Ŷi may equal to 0 only when
the prediction Ŷi and label Yi are the same.

Proof. Define s− = lim
θ→0−

h′(θ) and s+ = lim
θ→0+

h′(θ).

We then prove by induction that for all i ∈ [1 : L−1], all components of the i-th layer output before

the activation Ỹ (i)

([
Ŵ ′′i

]L
i=1

,
[
b̂′′i

]L
i=1

)
are in interval (t, t+ σ), and

Y (i)

([
Ŵ ′′i

]L
i=1

,
[
b̂′′i

]L
i=1

)
= h(t)1di1

T
n +

Πi
j=1αj

M
Y (i)

([
Ŵ ′i

]L
i=1

,
[
b̂′i

]L
i=1

)
.

The first layer output before the activation is,

Ỹ (1)

([
Ŵ ′′i

]L
i=1

,
[
b̂′′i

]L
i=1

)
= Ŵ ′′1 X + b̂′′11

T
n =

1

M
Ŵ ′1X +

1

M
b̂′11

T
n + t1d11

T
n . (42)

We proved in Lemma 5 that Ŵ ′1X + b̂′11
T
n is positive (element-wise). Since the Frobenius norm of

a matrix is no smaller than any component’s absolute value, applying eq. (40), we have that for all
i ∈ [1, d1] and j ∈ [1 : n],

0 <
1

M

(
Ŵ ′1X + b̂′11

T
n

)
ij
< σ. (43)

Therefore,
(

1
M

(
Ŵ ′1X + b̂′11

T
n

)
ij

+ t

)
∈ (t, t+ σ). So,

Y (1)

([
Ŵ ′′i

]L
i=1

,
[
b̂′′i

]L
i=1

)
=h

(
Ỹ (1)

([
Ŵ ′′i

]L
i=1

,
[
b̂′′i

]L
i=1

))
(∗)
=hs−,s+

(
1

M
Ŵ ′1X +

1

M
b̂′11

T
n

)
+ h(t)1d11

T
n

=
1

M
Y (1)

([
Ŵ ′i

]L
i=1

,
[
b̂′i

]L
i=1

)
+ h(t)1d11

T
n ,

where eq.(∗) is because for any x ∈ (t− σ, t+ σ),

h(x) = h(t) + hs−,s+(x− t). (44)
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Suppose the above argument holds for k (1 ≤ k ≤ L− 2). Then

Ỹ (k+1)

([
Ŵ ′′i

]L
i=1

,
[
b̂′′i

]L
i=1

)
=Ŵ ′′k+1Y

(k)

([
Ŵ ′′i

]L
i=1

,
[
b̂′′i

]L
i=1

)
+ b̂′′k+11

T
n

=(−αk+1Ŵ
′
k+1h(t)1dk+1

+ t1dk+1
+

Πk+1
i=1 αi
M

b̂′k+1)1Tn + αk+1Ŵ
′
k+1Y

(k)

([
Ŵ ′′i

]L
i=1

,
[
b̂′′i

]L
i=1

)
=αk+1Ŵ

′
k+1

(
h(t)1dk1

T
n +

Πk
i=1αi
M

Y (k)

([
Ŵ ′i

]L
i=1

,
[
b̂′i

]L
i=1

))
+

(
−αk+1Ŵ

′
k+1h(t)1dk + t1dk+1

+
Πk+1
i=1 αi
M

b̂′k+1

)
1Tn

=
Πk+1
i=1 αi
M

Ŵ ′k+1Y
(k)

([
Ŵ ′i

]L
i=1

,
[
b̂′i

]L
i=1

)
+

Πk+1
i=1 αi
M

b̂′k+11
T
n + t1dk+1

1Tn

=t1dk+1
1Tn +

Πk+1
i=1 αi
M

Ỹ (k+1)

([
Ŵ ′i

]L
i=1

,
[
b̂′i

]L
i=1

)
.

Lemma 5 has proved that all components of Ỹ (k+1)

([
Ŵ ′i

]L
i=1

,
[
b̂′i

]L
i=1

)
are contained in

Ỹ (1)

([
Ŵ ′i

]L
i=1

,
[
b̂′i

]L
i=1

)
. Combining

t1d11
T
n < t1d11

T
n +

1

M
Ỹ (1)

([
Ŵ ′i

]L
i=1

,
[
b̂′i

]L
i=1

)
< (t+ σ)1d11

T
n ,

we have

t1dk+1
1Tn < t1dk+1

1Tn +
Πk+1
i=1 αi
M

Ỹ (k+1)

([
Ŵ ′i

]L
i=1

,
[
b̂′i

]L
i=1

)
(∗)
< (t+ σ)1dk+1

1Tn .

Here < are all element-wise, and inequality (∗) comes from the property of αi (eq. (41)).

Furthermore, the (k + 1)-th layer output after the activation is

Y (k+1)

([
Ŵ ′′i

]L
i=1

,
[
b̂′′i

]L
i=1

)
=h

(
Ỹ (k+1)

([
Ŵ ′′i

]L
i=1

,
[
b̂′′i

]L
i=1

))
=h

(
t1dk+1

1Tn +
1

M
Ỹ (k+1)

([
Ŵ ′i

]L
i=1

,
[
b̂′i

]L
i=1

))
(∗)
=h(t)1dk+1

1Tn + hs−,s+

(
Πk+1
i=1 αi
M

Ỹ (k+1)

([
Ŵ ′i

]L
i=1

,
[
b̂′i

]L
i=1

))

=h(t)1dk+1
1Tn +

Πk+1
i=1 αi
M

hs−,s+

(
Ỹ (k+1)

([
Ŵ ′i

]L
i=1

,
[
b̂′i

]L
i=1

))
=h(t)1dk+1

1Tn +
Πk+1
i=1 αi
M

Y (k+1)

([
Ŵ ′i

]L
i=1

,
[
b̂′i

]L
i=1

)
,

where eq. (∗) is because of eq. (44). The above argument is proved for any index k ∈ {1, . . . , L−1}.
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Therefore, the output of the network is

Y (L)

([
Ŵ ′′i

]L
i=1

,
[
b̂′′i

]L
i=1

)
=Ŵ ′′LY

(L−1)
([
Ŵ ′′i

]L
i=1

,
[
b̂′′i

]L
i=1

)
+ b̂′′L1

T
n

=
M

ΠL−1
i=1 αi

Ŵ ′L

(
h(t)1dL−1

1Tn +
ΠL−1
i=1 αi
M

Y (L−1)
([
Ŵ ′i

]L
i=1

,
[
b̂′i

]L
i=1

))

+

(
− M

ΠL−1
i=1 αi

Ŵ ′Lh(t)1dL−1
+ b̂′L

)
1Tn

=Ŵ ′LY
(L−1)

([
Ŵ ′i

]L
i=1

,
[
b̂′i

]L
i=1

)
+ b̂′L1

T
n

=Y (L)

([
Ŵ ′i

]L
i=1

,
[
b̂′i

]L
i=1

)
.

Therefore,

R̂
([
Ŵ ′′i

]L
i=1

,
[
b̂′′i

]L
i=1

)
= R̂

([
Ŵ ′i

]L
i=1

,
[
b̂′i

]L
i=1

)
= f(W̃ ).

We then introduce some small disturbances
{

[δ′′Wi]
L
i=1 , [δ

′′
bi]
L
i=1

}
into

{[
Ŵ ′′i

]L
i=1

,
[
b̂′′i

]L
i=1

}
in

order to check the local optimality.

Since all comonents of Y (i) are in interval (t, t+σ), the activations in every hidden layers is realized
at linear parts. Therefore, the output of network is

Ŷ

([
Ŵ ′′i + δ′′Wi

]L
i=1

,
[
b̂′′i + δ′′bi

]L
i=1

)
=
(
Ŵ ′′L + δ′′WL

)
h
(
· · ·h

((
Ŵ ′′1 + δ′′W1

)
X +

(
b̂′′1 + δ′′b1

)
1Tn

)
· · ·
)

+
(
b̂′′L + δ′′bL

)
1Tn

=
(
Ŵ ′′L + δ′′WL

)
s+

(
· · · s+

((
Ŵ ′′1 + δ′′W1

)
X +

(
b̂′′1 + δ′′b1

)
1Tn

)
+ f(t)1d11

T
n · · ·

)
+ f(t)1dL1

T
n +

(
b̂′′L + δ′′bL

)
1Tn

=M1X +M21
T
n

= [M1 M2]

[
X
1Tn

]
.

Similar to Lemma 5, [M1 M2] approaches W̃ as disturbances
{

[δWi]
L
i=1 , [δbi]

L
i=1

}
approach 0

(element-wise). Combining that W̃ is a local minimizer of f(W ), we have

R̂
([
Ŵ ′′i + δ′′Wi

]L
i=1

,
[
b̂′′i + δ′′bi

]L
i=1

)
= f ([M1 M2]) ≥ f(W̃ ) = R̂

([
Ŵ ′′i

]L
i=1

,
[
b̂′′i

]L
i=1

)
.

The proof is completed.

Step (b). Prove the constructed local minima are spurious.

Proof of Theorem 1. Without loss of generality, we assume that all activations are the same.

Let t be a non-differentiable point of the piece-wise linear activation function h with
s− = lim

θ→0−
h′(θ),

s+ = lim
θ→0+

h′(θ).
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Let σ be a constant such that h is linear in interval (t− σ, t) and interval (t, t+ σ).

Then construct that

W̃ ′′1 =
1

M
W̃ ′1, b̃

′′
1 =

1

M
b̃′1 + t1d1 ,

W̃ ′′2 =
1

M̃
W̃ ′2, b̃

′′
2 = t1d2 −

1

M̃
h(t)W̃ ′21d2 +

1

MM̃
b̃′2,

W̃ ′′i = W̃ ′i , b̃
′′
i = −W̃ ′ih(t)1di−1 + t1di +

1

MM̃
b̃′i, (i = 3, 4, ..., L− 1)

and
W̃ ′′L = MM̃W̃ ′L, b̃

′′
L = b̃′L −MM̃W̃ ′Lh(t)1L−1,

where
{[
W̃ ′i

]L
i=1

,
[
b̃′i

]L
i=1

}
are constructed in Theorem 5, M is a large enough positive real such

that
1

M

∥∥∥W̃ ′1X + b̃′11
T
n

∥∥∥
F
< σ, (45)

and M̃ a large enough positive real such that

1

M̃

∥∥∥∥ 1

M
Ỹ (2)

([
W̃ ′i

]L
i=1

,
[
b̃′i

]L
i=1

)∥∥∥∥
F

< σ. (46)

Then, we prove by induction that for any i ∈ [2 : L − 1], all components of

Ỹ (i)

([
W̃ ′′i

]L
i=1

,
[
b̃′′i

]L
i=1

)
are in interval (t, t+ δ), and

Y (i)

([
W̃ ′′i

]L
i=1

,
[
b̃′′i

]L
i=1

)
= h(t)1di1

T
n +

1

M̃M
Y (i)

([
W̃ ′i

]L
i=1

,
[
b̃′i

]L
i=1

)
.

First,

Ỹ (1)

([
W̃ ′′i

]L
i=1

,
[
b̃′′i

]L
i=1

)
= W̃ ′′1 X + b̃′′11

T
n =

1

M
(W̃ ′1X + b̃′11

T
n ) + t1Td11

T
n . (47)

For any i ∈ [1 : d1] and j ∈ [1 : n], eq. (45) implies∣∣∣∣∣
(

1

M
(W̃ ′1X + b̃′11

T
n )

)
ij

∣∣∣∣∣ ≤ 1

M

∥∥∥W̃ ′1X + b̃′11
T
n

∥∥∥
F
< σ.

Thus, (
1

M
(W̃ ′1X + b̃′11

T
n ) + t1Td11

T
n

)
ij

∈ (t− σ, t+ σ). (48)

Therefore, the output of the first layer after the activation is

Y (1)

([
W̃ ′′i

]L
i=1

,
[
b̃′′i

]L
i=1

)
= h

(
Ỹ (1)

([
W̃ ′′i

]L
i=1

,
[
b̃′′i

]L
i=1

))
= h

(
1

M
(W̃ ′1X + b̃′11

T
n ) + t1d11

T
n

)
(∗)
= h(t)1d11

T
n + hs−,s+

(
1

M

(
W̃ ′1X + b̃′1

))
= h(t)1d11

T
n +

1

M
hs−,s+

((
W̃ ′1X + b̃′1

))
= h(t)1d11

T
n +

1

M
Y (1)

([
W̃ ′i

]L
i=1

,
[
b̃′i

]L
i=1

)
,
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where eq. (∗) is from eq. (44) for any x ∈ (t− δ, t+ δ).

Also,

Ỹ (2)

([
W̃ ′′i

]L
i=1

,
[
b̃′′i

]L
i=1

)
=W̃ ′′2 Y

(1)

([
W̃ ′′i

]L
i=1

,
[
b̃′′i

]L
i=1

)
+ b̃′′21

T
n

=
1

M̃

(
W̃ ′2

)(
h(t)1d11

T
n +

1

M
Y (1)

([
W̃ ′i

]L
i=1

,
[
b̃′i

]L
i=1

))
+ t1d21

T
n −

1

M̃
h(t)W̃ ′21d11

T
n +

1

MM̃
b̃′21

T
n

=
1

M̃M
W̃ ′2Y

(1)

([
W̃ ′i

]L
i=1

,
[
b̃′i

]L
i=1

)
+

1

MM̃
b̃′21

T
n + t1d21

T
n

=
1

MM̃
Ỹ (2)

([
W̃ ′i

]L
i=1

,
[
b̃′i

]L
i=1

)
+ t1d21

T
n .

Recall in Theorem 5 we prove all components of Ỹ (2)

([
W̃ ′i

]L
i=1

,
[
b̃′i

]L
i=1

)
are positive. Combin-

ing the definition of M̃ (eq. (46)), we have

t1d21
T
n <Ỹ

(2)

([
W̃ ′′i

]L
i=1

,
[
b̃′′i

]L
i=1

)
=

1

M̃M
Ỹ (2)

([
W̃ ′i

]L
i=1

,
[
b̃′i

]L
i=1

)
+ t1d21

T
n

<(t+ σ)1d21
T
n .

Therefore,

Y (2)

([
W̃ ′′i

]L
i=1

,
[
b̃′′i

]L
i=1

)
=h

(
Ỹ (2)

([
W̃ ′′i

]L
i=1

,
[
b̃′′i

]L
i=1

))
=h

(
1

M̃M
Y (2)

([
W̃ ′i

]L
i=1

,
[
b̃′i

]L
i=1

)
+ t1d21

T
n

)
=h(t)1d21

T
n + hs−,s+

(
1

M̃M
Ỹ (2)

([
W̃ ′i

]L
i=1

,
[
b̃′i

]L
i=1

))
=h(t)1d21

T
n +

1

M̃M
hs−,s+

(
Ỹ (2)

([
W̃ ′i

]L
i=1

,
[
b̃′i

]L
i=1

))
=h(t)1d21

T
n +

1

M̃M
Y (2)

([
W̃ ′i

]L
i=1

,
[
b̃′i

]L
i=1

)
.

Suppose the above argument holds for k-th layer.

The output of (k + 1)-th layer before the activation is

Ỹ (k+1)

([
W̃ ′′i

]L
i=1

,
[
b̃′′i

]L
i=1

)
=W̃ ′′k+1Y

(k)

([
W̃ ′′i

]L
i=1

,
[
b̃′′i

]L
i=1

)
+ b̃′′k+11

T
n

=W̃ ′k+1

(
h(t)1dk1

T
n +

1

M̃M
Y (k)

([
W̃ ′i

]L
i=1

,
[
b̃′i

]L
i=1

))
+

(
−W̃ ′k+1h(t)1dk + t1dk+1

+
1

MM̃
b̃′k+1

)
1Tn

=
1

MM̃

(
W̃ ′k+1Y

(k)

([
W̃ ′i

]L
i=1

,
[
b̃′i

]L
i=1

)
+ b̃′k+11

T
n

)
+ t1dk+1

1Tn

=
1

MM̃
Ỹ (k+1)

([
W̃ ′i

]L
i=1

,
[
b̃′i

]L
i=1

)
+ t1dk+1

1Tn .
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Recall proved in Theorem 5 that all components of Ỹ (k+1)

([
W̃ ′i

]L
i=1

,
[
b̃′i

]L
i=1

)
except those that

are 0 are contained in Ỹ (k)

([
W̃ ′i

]L
i=1

,
[
b̃′i

]L
i=1

)
. We have

t1dk+11T
n
<

1

MM̃
Ỹ (k+1)

([
W̃ ′i

]L
i=1

,
[
b̃′i

]L
i=1

)
+ t1dk+1

1Tn < (t+ σ)1dk+11T
n
.

Therefore,

Y (k+1)

([
W̃ ′′i

]L
i=1

,
[
b̃′′i

]L
i=1

)
= h

(
Ỹ (k)

([
W̃ ′′i

]L
i=1

,
[
b̃′′i

]L
i=1

))
= h

(
1

MM̃
Ỹ (k+1)

([
W̃ ′i

]L
i=1

,
[
b̃′i

]L
i=1

)
+ t1dk+1

1Tn

)
= h(t)1dk+1

1Tn +
1

MM̃
Y (k+1)

([
W̃ ′i

]L
i=1

,
[
b̃′i

]L
i=1

)
.

Thus, the argument holds for any k ∈ {2, . . . , L− 1}.
So,

Y (L)

([
W̃ ′′i

]L
i=1

,
[
b̃′′i

]L
i=1

)
=W̃ ′′LY

(L−1)
([
W̃ ′′i

]L
i=1

,
[
b̃′′i

]L
i=1

)
+ b̃′′L

=MM̃W̃ ′L

(
h(t)1dL−1

1Tn +
1

MM̃
Y (L−1)

([
W̃ ′i

]L
i=1

,
[
b̃′i

]L
i=1

))
+ b̃′L1

T
n −MM̃W̃ ′Lh(t)1dL−1

1Tn

=Y (L)

([
W̃ ′i

]L
i=1

,
[
b̃′i

]L
i=1

)
.

Therefore,

R̂
([
W̃ ′′i

]L
i=1

,
[
b̃′′i

]L
i=1

)
= R̂

([
W̃ ′i

]L
i=1

,
[
b̃′i

]L
i=1

)
. (49)

From eq. (49) and Theorem 5, we have

R̂
([
W̃ ′′i

]L
i=1

,
[
b̃′′i

]L
i=1

)
< f

(
W̃
)
,

which completes the proof of local minimizer.

Furthermore, the parameter M used in Lemma 6 (not those in this proof) is arbitrary in a continuous
interval (cf. eq. (40)), we have actually constructed infinite spurious local minima.

Theorem 1 relies on Assumption 4. We can further remove it by replacing Assumption 3 by a mildly
more restrictive variant Assumption 5.

Corollary 3. Suppose that Assumptions 1, 2, and 5 hold. Neural networks with arbitrary depth and
arbitrary piecewise linear activations (excluding linear functions) have infinitely many spurious
local minima under arbitrary continuously differentiable loss whose derivative can equal 0 only
when the prediction and label are the same.

Proof. The proof is delivered by modifications of Theorem 4 in Stage 1 of Theorem 1’s proof. We
only need to prove the corollary under the assumption that s− + s+ = 0.

Let the local minimizer constructed in Lemma 4 be
{[
Ŵi

]2
i=1

,
[
b̂i

]2
i=1

}
. Then, we construct a

point in the parameter space whose empirical risk is smaller as follows:
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W̃1 =



W̃1,[1:dX ] − αβT
W̃1,[1:dX ]

−W̃1,[1:dX ] + αβT

W̃2,[1:dX ]

...
W̃dY ,[1:dX ]

0(d1−dY −2)×dX


,

b̃1 =



W̃1,[dX+1] − η1 + γ

W̃1,[dX+1] − η
−W̃1,[dX+1] + η1 + γ

W̃2,[dX+1] − η2
...

W̃dY ,[dX+1] − ηdY
0(d1−dY −2)×1


,

W̃2 =



1
2s+

1
s+

− 1
2s+

0 0 · · · 0 0 · · · 0

0 0 0 1
s+

0 · · · 0 0 · · · 0

0 0 0 0 1
s+

· · · 0 0 · · · 0
...

...
...

...
...

. . .
...

...
. . .

...
0 0 0 0 0 · · · 1

s+
0 · · · 0

 ,

and

b̃2 =


η
η2
...

ηdY

 ,

where α, β, and ηi are defined the same as those in Theorem 4, and η is defined by eq. (27).

Then, the output of the first layer is

Y (1)

([
W̃i

]2
i=1

,
[
b̃i

]2
i=1

)
=hs−,s+

(
W̃1X + b̃11

T
n

)

=hs−,s+





W̃1,·X − αβTX − η11Tn + γ1Tn
W̃1,·X − η1Tn

−W̃1,·X + αβTX + η11
T
n + γ1Tn

W̃2,·X − η21Tn
...

W̃dY ,·X − ηdY 1Tn
0d1−dY −21

T
n




.
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Further, the output of the whole network is

Ŷ

([
W̃i

]2
i=1

,
[
b̃i

]2
i=1

)

=W̃2hs−,s+





W̃1,·X − αβTX − η11Tn + γ1Tn
W̃1,·X − η1Tn

−W̃1,·X + αβTX + η11
T
n + γ1Tn

W̃2,·X − η21Tn
...

W̃dY ,·X − ηdY 1Tn
0d1−dY −21

T
n




+ b̃21

T
n

=W̃2hs−,s+





W̃1,·X − αβTX − η11Tn + γ1Tn
W̃1,·X − η1Tn

−W̃1,·X + αβTX + η11
T
n + γ1Tn

W̃2,·X − η21Tn
...

W̃dY ,·X − ηdY 1Tn
0d1−dY −21

T
n




+


η
η2
...

ηdY

1Tn .

Therefore, if j ≤ l′, the (1, j)-th component of Ŷ
([
W̃i

]2
i=1

,
[
b̃i

]2
i=1

)
is

(
W̃2

)
1
Ỹ (1)

([
W̃i

]2
i=1

,
[
b̃i

]2
i=1

)
j

=
1

2s+

(
s−

(
Ỹ1,j − αβTxj − η1 + γ

)
+ 2s+

(
Ỹ1,j − η

)
− s+

(
−Ỹ1j + αβTxj + η1 + γ

))
+ η

=
1

2s+

(
−s+

(
Ỹ1,j − αβTxj − η1 + γ

)
+ 2s+

(
Ỹ1,j − η

)
− s+

(
−Ỹ1j + αβTxj + η1 + γ

))
+ η

=
1

2s+

(
2s+Ỹ1,j − 2s+η − 2s+γ

)
+ η

=Ỹ1,j − γ.

Otherwise (j > l′), the (1, j)-th component of Ŷ
([
W̃i

]2
i=1

,
[
b̃i

]2
i=1

)
is

(
W̃2

)
1
Ỹ (1)

([
W̃i

]2
i=1

,
[
b̃i

]2
i=1

)
j

=
1

2s+

(
s+

(
Ỹ1,j − αβTxj − η1 + γ

)
+ 2s+

(
Ỹ1,j − η

)
− s−

(
−Ỹ1j + αβTxj + η1 + γ

))
+ η

=
1

2s+

(
s+

(
Ỹ1,j − αβTxj − η1 + γ

)
+ 2s+

(
Ỹ1,j − η

)
+ s+

(
−Ỹ1j + αβTxj + η1 + γ

))
+ η

=
1

2s+

(
2s+Ỹ1,j − 2s+η + 2s+γ

)
+ η

=Ỹ1,j + γ,

and the (i, j)-th (i > 1) component of Ŷ
([
W̃i

]2
i=1

,
[
b̃i

]2
i=1

)
is Ỹi,j .
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Therefore, we have(
W̃2

(
W̃1xi + b̃1

)
+ b̃2 − W̃

[
xi
1

])
j

=


− γ, j = 1, i ≤ l;
γ, j = 1, i > l;

0, j ≥ 2.

Then, similar to Theorem 4, we have

R̂
([
W̃i

]L
i=1

,
[
b̃i

]L
i=1

)
− R̂

([
Ŵi

]L
i=1

,
[
b̂i

]L
i=1

)
=

1

n

n∑
i=1

l
(
Yi, W̃2

(
W̃1xi + b̃1

)
+ b̃2

)
− 1

n

n∑
i=1

l

(
Yi, Ŵ

[
xi
1

])

=
1

n

n∑
i=1

∇Ŷi
l

(
Yi, W̃

[
xi
1

])(
W̃2

(
W̃1xi + b̃11

T
n

)
+ b̃21

T
n − W̃

[
xi
1

])

+

n∑
i=1

o

(∥∥∥∥W̃2

(
W̃1xi + b̃11

T
n

)
+ b̃21

T
n − W̃

[
xi
1

]∥∥∥∥)

=− 2

n

l′∑
i=1

V1,iγ + o(γ),

where V and l′ are also defined the same as those in Theorem 4.

When γ is sufficiently small and sgn(γ) = sgn
(∑l′

i=1 V1,i

)
, we have that

R̂
(([

W̃i

]2
i=1

,
[
b̃i

]2
i=1

))
< f(W̃ ).

This complete the proof of Corollary 3.

A.5 A PREPARATION LEMMA

We now prove the preparation lemma used above.

Lemma 7. Suppose u = (u1 · · ·un) ∈ R1×n which satisfies u 6= 0 and

n∑
i=1

ui = 0, (50)

while {x1,...,xn} is a set of vector ⊂ Rm×1. Suppose index set S = {1, 2, · · · , n}. Then for any
series of real number {v1, · · · , vn}, there exists a non-empty separation I , J of S, which satisfies
I ∪ J = S, I ∩ J = ∅ and both I and J are not empty, a vector β ∈ Rm×1,such that,

(1.1) for any sufficiently small positive real α, i ∈ I , and j ∈ J , we have vi−αβTxi < vj−αβTxj;
(1.2)

∑
i∈I ui 6= 0.

Proof. If there exists a non-empty separation I and J of the index set S, such that when β = 0,
(1.1) and (1.2) hold, the lemma is apparently correct.

Otherwise, suppose that there is no non-empty separation I and J of the index set S such that (1.1)
and (1.2) hold simultaneously when β = 0.

Some number vi in the sequence (v1, v2, · · · , vn) are probably equal to each other. We rerarrange
the sequence by the increasing order as follows,

v1 = v2 = · · · = vs1 < vs1+1 = · · · = vs2 < · · · < vsk−1+1 = · · · = vsk = vn, (51)

where sk = n.

37



Published as a conference paper at ICLR 2020

Then, for any j ∈ {1, 2, · · · , k − 1}, we argue that
sj∑
i=1

ui = 0.

Otherwise, suppose there exists a sj , such that
sj∑
i=1

ui 6= 0.

Let I = {1, 2, ..., sj} and J = {sj + 1, ..., n}. Then, when β = 0, we have

vi − αβTxi = vi < vj = vj − αβTxj ,

and ∑
i∈I

ui =

sj∑
i=1

ui 6= 0,

which are exactly the arguments (1.1) and (1.2). Thereby we construct a contrary example. There-
fore, for any j ∈ {1, 2, · · · , k − 1}, we have

sj∑
i=1

ui = 0.

Since we assume that u 6= 0, there exists an index t ∈ {1, . . . , k−1}, such that there exists an index
i ∈ {st + 1, ..., st+1} that ui 6= 0.

Let l ∈ {st + 1, ..., st+1} is the index such that xl has the largest norm while ul 6= 0:

l = arg max
j∈{st+1,...,st+1}, uj 6=0

‖xj‖ . (52)

We further rearrange the sequence (vst+1, ..., vst+1
) such that there is an index l′ ∈ {st +

1, . . . , st+1},
‖xl′‖ = max

j∈{st+1,...,st+1}, uj 6=0
‖xj‖ ,

and

∀i ∈ {st + 1, ..., l′}, 〈xl′ , xi〉 ≥ ‖xl′‖2 ; (53)

∀i ∈ {l′ + 1, · · · , st+1}, 〈xl′ , xi〉 < ‖xl′‖2 . (54)

It is worth noting that it is probably l′ = st+1, but it is a trivial case that would not influence the
result of this lemma.

Let I = {1, ..., l′}, J = {l′ + 1, ..., n}, and β = xl′ . We prove (1.1) and (1.2) as follows.

Proof of argument (1.1).

We argue that for any i ∈ I , vi − αβTxi ≤ vl′ − αβTxl′ and for any j ∈ J , vj − αβTxj >
vl′ − αβTxl′ .
There are three situations:

(A) i ∈ {1, . . . , st} and j ∈ {st+1 + 1, · · · , n}. Applying eq. (51), for any i ∈ {1, . . . , st} and
j ∈ {st+1 + 1, · · · , n}, we have that vi < vl′ and vj > vl′ . Therefore, when α is sufficiently small,
we have the following inequalities,

vi − αβTxi < vl′ − αβTxl′ ,
vj − αβTxj > vl′ − αβTxl′ .

(B) i ∈ {st + 1, · · · , l′}. Applying eq. (53) and because of α > 0, we have

−α〈β, xi〉 ≤ −α ‖β‖2 = −α〈β, xl′〉.
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Since vi = vl′ , it further leads to

vi − αβTxi ≤ vl′ − αβTxl′ .

(C) j ∈ {l′ + 1, · · · , st+1}. Similarly, applying eq. (54) and because of α > 0, we have

−α〈β, xj〉 > −α ‖β‖2 = −α〈β, xl′〉.

Since vj = vl′ , it further leads to

vj − αβTxj > vl′ − αβTxl′ ,

which is exactly the argument (1.1).

Proof of argument (1.2).

We argue that for any i ∈ {st + 1, · · · , l′ − 1}, ui = 0. Otherwise, suppose there exists an i ∈
{st + 1, · · · , l′ − 1} such that ui 6= 0. From eq. (52), we have ‖xi‖ ≤ ‖xl′‖. Therefore,

〈xl′ , xi〉 ≤ ‖xl′‖‖xi‖ ≤ ‖xl′‖2,

where the first inequality strictly holds if the vector xl′ and xi have the same direction, while the
second inequlity strictly holds when xi and xl′ have the same norm. Because xl′ 6= xi, we have the
following inequality,

〈xl′ , xi〉 < ‖xl′‖2,
which contradicts to eq. (53), i.e.,

〈xl′ , xi〉 ≥ ‖xl′‖2, ∀i ∈ {st + 1, · · · , l′}.

Therefore, ∑
i∈I

ui =

st∑
i=1

ui +

l′−1∑
i=st+1

ui + ul′ = ul′ 6= 0,

which is exactly the argument (1.2).

The proof is completed.

Remark. For any i ∈ {l′ + 1, ..., st+1}, we have(
vi − αβTxi

)
−
(
vl′ − αβTxl′

)
= αβT (xl′ − xi), (55)

while for any j ∈ {st+1 + 1, ..., n}, we have(
vj − αβTxj

)
−
(
vl′ − αβTxl′

)
= vj − vl′ + αβT (xl′ − xj). (56)

Because vj > vl′ , when the real number α is sufficiently small, we have

αβT (xl′ − xi) < vj − vl′ + αβT (xl′ − xj).

Applying eqs. (55) and (56), we have(
vi − αβTxi

)
−
(
vl′ − αβTxl′

)
<
(
vj − αβTxj

)
−
(
vl′ − αβTxl′

)
.

Therefore, if l′ < st+1, we have

min
i∈{l′+1,...,n}

(
vi − αβTxi

)
−
(
vl′ − αβTxl′

)
= min
i∈{l′+1,...,st+1}

αβT (xl′ − xi); (57)

while if l′ = st+1,

min
i∈{l′+1,...,n}

(
vi − αβTxi

)
−
(
vl′ − αβTxl′

)
= min
i∈{l′+1,...,n}

vi − vl + αβT (xl′ − xi). (58)

Eqs. (57) and (58) make senses because l′ < n. Otherwise, from Lemma 7 we have
∑n
i=1 ui 6= 0,

which contradicts to the assumption.
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B PROOFS OF THEOREM 2, THEOREM 3, COROLLARY 1, AND COROLLARY 2

This appendix gives the proofs of Theorem 2, Theorem 3, Corollary 1, and Corollary 2 omitted from
Section 4.

B.1 SQUARED LOSS

We first check that the squared loss is strictly convex, which is even restrictive than “convex”.

Lemma 8. The empirical risk R̂ under squared loss (defined by eq. (5)) is strictly convex with
respect to the prediction Ŷ .

Proof. The second derivative of the empirical risk R̂ under squared loss with respect to the predic-
tion Ŷ is

∂2lce(Y, Ŷ )

∂Ŷ 2
=
∂2(y − Ŷ )2

∂Ŷ 2
= 2 > 0.

Therefore, the empirical risk R̂ under squared loss is strictly convex with respect to prediction
Ŷ .

B.2 SMOOTH AND MULTILINEAR PARTITION.

If the activations are all linear functions, the neural networks is reduced to a multilinear model. The
loss surface is apparently smooth and multilinear. The nonlinearity in the activations largely reshape
the landscape of the loss surface. Specifically, if the input data flows through the linear parts of every
activation functions, the output falls in a smooth and multilinear region in the loss surface. When
some parameter changes by a sufficiently small swift, the data flow may not move out of the linear
parts of the activations. This fact guarantees that each smooth and multilinear regions expands to an
open cell. Meanwhile, every nonlinear point in the activations is non-differentiable. If the input data
flows through these nonlinear points, the corresponding empirical risk is not smooth with respect to
the parameters. Therefore, the nonlinear points in activations correspond to the non-differentiable
boundaries between cells on the loss surface.

B.3 EVERY LOCAL MINIMUM IS GLOBALLY MINIMAL WITHIN A CELL.

Proof of Theorem 2. In every cell, the input sample points flows through the same linear parts of the
activations no matter what values the parameters are.

(1) We first proves that the empirical risk R̂ equals to a convex function with respect to a variable
Ŵ that is calculated from the parameters W .

Suppose (W1,W2) is a local minimum within a cell. We argue that
n∑
i=1

l (yi,W2diag (A·,i)W1xi) =

n∑
i=1

l
(
yi, A

T
·,idiag(W2)W1xi

)
, (59)

where A·,i is the i-th column of the following matrix

A =

 h
′
s−,s+((W1)1,·x1) · · · h′s−,s+((W1)1,·xn)

...
. . .

...
h′s−,s+((W1)d1,·x1) · · · h′s−,s+((W1)d1,·xn)

 . (60)

The left-hand side (LHS) is as follows,

LHS =

n∑
i=1

l (yi,W2diag (A·,i)W1xi)

=

n∑
i=1

l (yi, [(W2)1,1A1,i · · · (W2)1,d1Ad1,i]W1xi) .
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Meanwhile, the right-hand side (RHS) is as follows,

RHS =

n∑
i=1

l
(
yi, A

T
·,idiag(W2)W1xi

)
,

=

n∑
i=1

l (yi, [(W2)1,1A1,i · · · (W2)1,d1Ad1,i]W1xi) .

Apparently, LHS = RHS. Thereby, we proved eq. (59).

Afterwards, we define
Ŵ1 = diag(W2)W1, (61)

and then straighten the matrix Ŵ1 to a vector Ŵ ,

Ŵ =
(
(Ŵ1)1,· · · · (Ŵ1)d1,·

)
, (62)

Also define
X̂ = (A·,1 ⊗ x1 · · · A·,n ⊗ xn) . (63)

Then, we can prove that the following equations,(
AT·,1Ŵ1x1 · · · AT·,nŴ1xn

)
=
(
(Ŵ1)1,· · · · (Ŵ1)d1,·

)
(A·,1 ⊗ x1 · · · A·,n ⊗ xn)

=Ŵ X̂. (64)

Applying eq. (64), the empirical risk is transferred to a convex function as follows,

R̂(W1,W2) =
1

n

n∑
i=1

l
(
yi, (A·,i)

T diag(W2)W1xi

)
=

1

n

n∑
i=1

l
(
yi, (A·,i)

T
Ŵ1xi

)
=

1

n

n∑
i=1

l
(
yi, Ŵ X̂i

)
. (65)

We can see that the empirical risk is rearranged as a convex function in terms of Ŵ which unite the
two weight matrices W1 and W2 and the activation h are together as Ŵ .

Applying eqs. (61) and (62), we have

Ŵ = [(W2)1(W1)1,· · · · (W2)d1(W1)d1,·] .

(2) We then prove that the local minima (including global minima) of the empirical risk R̂ with
respect to the parameter W is also local minima with respect to the corresponding variable Ŵ .

We first prove that for any i ∈ [1 : d1d2], we have

eiX̂∇ = 0,

where∇ is defined as follows,

∇ =
[
∇(Ŵ X̂)

1

l
(
Y1,
(
Ŵ X̂

)
1

)
· · · ∇(Ŵ X̂)

n

l
(
Yn,
(
Ŵ X̂

)
n

)]T
.

To see this, we divide i into two cases: (W2)i 6= 0 and (W2)i = 0.

Case 1: (W2)i 6= 0.

The local minimizer of the empirical risk R̂ with respect to the parameter W satisfies the following
equation,

∂R̂
∂(W1)i,j

= 0.
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Therefore,

0 =
∂R̂

∂(W1)i,j

=

∂

(
n∑
k=1

l

(
Y·,k,

(
Ŵ X̂

)
·,k

))
∂(W1)i,j

=
n∑
k=1

[ 0 · · · 0 (W2)i 0 · · · 0 ] X̂k∇(Ŵ X̂)·,k
l

(
Y·,k,

(
Ŵ X̂

)
·,k

)
,︸ ︷︷ ︸

dX(i−1)+j−1
︸ ︷︷ ︸

dXd1−dX(i−1)−j

(66)

where (W2) is a vector and (W2)i is its i-th component.

Then, divid the both hand sides of eq. (66) with (W2)i, we can get the following equation,

(edX(i−1)+jX̂)∇ = 0.

Case 2: (W2)i = 0. Suppose u1 ∈ Rd0 is a unitary vector, u2 ∈ R is a real number, and ε is a
small enough positive constant. Then, define a disturbance of W1 and W2 as follows,

∆W1 = [ 0 · · · 0 εu1 0 · · · 0 ] ,︸ ︷︷ ︸
dX(i−1)

︸ ︷︷ ︸
d1dX−dX i

∆W2 =
[

0 · · · 0 ε2u2 0 · · · 0
]
.︸ ︷︷ ︸

i−1
︸ ︷︷ ︸
d1−i

When ε is sufficiently small, ∆W1 and ∆W2 are also sufficiently small. Since (W1,W2) is a local
minimum, we have

1

n

n∑
k=1

l
(
Yk,
((
Ŵ + ∆

)
X̂
)
k

)
=R̂(W1 + ∆W1,W2 + ∆W2)

≥R̂(W1,W2)

=
1

n

n∑
k=1

l
(
Yk,
(
Ŵ X̂

)
k

)
, (67)

where ∆ is defined as follows,

∆ = [(W2 + ∆W2)1(W1 + ∆W1)1 · · · (W2 + ∆W2)d1(W1 + ∆W1)d1 ]

− [(W2)1(W1)1 · · · (W2)d1(W1)d1 ]

(∗)
=
[

0 · · · 0 ε2u2 (εu1 + (W1)i) 0 · · · 0
]
.︸ ︷︷ ︸

dX(i−1)
︸ ︷︷ ︸
d1dX−dX i

(68)

Here, eq. (∗) comes from (W2)i = 0. Rearrange eq. (67) and apply the Taylor’s Theorem, we can
get that

∆ · X̂∇+ O
(
‖∆ · X̂‖2

)
≥ 0.
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Applying eq. (68), we have[
0 · · · 0 ε2u2 (εu1 + (W1)i) 0 · · · 0

]
X̂∇︸ ︷︷ ︸

dX(i−1)
︸ ︷︷ ︸
dXd1−idX

+ε4O
(
‖ [ 0 · · · 0 u2 (εu1 + (W1)i) 0 · · · 0 ] X̂‖2

)
︸ ︷︷ ︸
dX(i−1)

︸ ︷︷ ︸
dXd1−idX

(∗∗)
=
[

0 · · · 0 ε3u2u1 0 · · · 0
]
X̂∇︸ ︷︷ ︸

dX(i−1)
︸ ︷︷ ︸
dXd1−idX

+ε4O
(
‖ [ 0 · · · 0 u2 (εu1 + (W1)i) 0 · · · 0 ] X̂‖2

)
︸ ︷︷ ︸
dX(i−1)

︸ ︷︷ ︸
dXd1−idX

= ε3 [ 0 · · · 0 u2u1 0 · · · 0 ] X̂∇+ o(ε3)︸ ︷︷ ︸
dX(i−1)

︸ ︷︷ ︸
dXd1−idX

(69)

≥ 0 . (70)

Here, eq. (∗∗) can be obtained from follows. Because W2 is a local minimizer, for any component
(W2)i of W2,

∂
(∑n

k=1 l
(
Yk,
(
Ŵ X̂

)
k

))
∂(W2)i

=0,

which leads to

[ 0 · · · 0 (W1)i 0 · · · 0 ] X̂∇ = 0.︸ ︷︷ ︸
dX(i−1)

︸ ︷︷ ︸
dXd1−idX

When ε approaches 0, eq. (69) leads to the following inequality,

[ 0 · · · 0 u2u1 0 · · · 0 ] X̂∇ ≥ 0.︸ ︷︷ ︸
dX(i−1)

︸ ︷︷ ︸
dXd1−idX

Since u1 and u2 are arbitrarily picked (while the norms equal 1), the inequality above further leads
to

[ 0 · · · 0 ej 0 · · · 0 ] X̂∇ = 0,︸ ︷︷ ︸
dX(i−1)

︸ ︷︷ ︸
dXd1−idX

(71)

which finishes the proof of the argument.

Therefore, for any i and j, we have proven that

ed0(i−1)+jX̂∇ = 0,

which demonstrates that
X̂∇ = 0,

which means Ŵ is also a local minimizer of the empirical risk R̂,

R̂(W ) =

n∑
i=1

l(Yi,WX̂i). (72)

(3) Applying the property of convex function, Ŵ is a global minimizer of the empirical risk R̂,
which leads to (W1,W2) is a global minimum inside this cell.

The proof is completed.
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B.4 EQUIVALENCE CLASSES OF LOCAL MINIMUM VALLEYS IN CELLS.

Proof of Theorem 3 and Corollary 1. In the proof of Theorem 2, we constructed a map Q:
(W1,W2) → Ŵ . Further, in any fixed cell, the represented hypothesis of a neural network is
uniquely determined by Ŵ .

We first prove that all local minima in a cell are concentrated as a local minimum valley.

Since the loss function l is strictly convex, the empirical risk has one unique local minimum (which
is also a global minimum) with respect to Ŵ in every cell, if there exists some local minimum in
the cell. Meanwhile, we have proved that all local minima with respect to (W1,W2) are also local
minima with respect to the corresponding Ŵ . Therefore, all local minima with respect to (W1,W2)

correspond one unique Ŵ . Within a cell, when W1 expands by a positive real factor α to W ′1 and
W2 shrinks by the same positive real factor α to W ′2, we have Q(W1,W2) = Q(W ′1,W

′
2), i.e., the

Ŵ remains invariant.

Further, we argue that all local minima in a cell are connected with each other by a continuous path,
on which the empirical risk is invariant. For every local minima pair (W1,W2) and (W ′1,W

′
2), we

have
diag(W2)W1 = diag(W ′2)W ′1. (73)

Since h′s−,s+(W1X) = h′s−,s+(W ′1X) (element-wise), for every i ∈ [1, d1],

sgn ((W2)i) = sgn ((W ′2)i) .

Therefore, a continuous path from (W1,W2) to (W ′1,W
′
2) can be constructed by finite moves, each

of which expands a component of W2 by a real constant α and then shrinks the corresponding line
of W1 by the same constant α.

We then prove that all local minima in a cell constitute an equivalence class.

Define an operation ∼R as follows,

(W 1
1 ,W

1
2 ) ∼R (W 2

1 ,W
2
2 ),

if
Q(W 1

1 ,W
1
2 ) = Q(W 2

1 ,W
2
2 ).

We then argue that ∼R is an equivalence relation. The three properties of equivalence relations are
checked as follows.

(1) Reflexivity:

For any (W1,W2), we have
Q(W1,W2) = Q(W1,W2).

Therefore,
(W1,W2) ∼R (W1,W2).

(2) Symmetry:

For any pair (W 1
1 ,W

1
2 ) and (W 2

1 ,W
2
2 ), Suppose that

(W 1
1 ,W

1
2 ) ∼R (W 2

1 ,W
2
2 ).

Thus,
Q(W 1

1 ,W
1
2 ) = Q(W 2

1 ,W
2
2 ).

Apparently,
Q(W 2

1 ,W
2
2 ) = Q(W 1

1 ,W
1
2 ).

Therefore,
Q(W 2

1 ,W
2
2 ) ∼R Q(W 1

1 ,W
1
2 ).

(3) Transitivity:
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For any (W 1
1 ,W

1
2 ), (W 2

1 ,W
2
2 ), and (W 3

1 ,W
3
2 ), suppose that

(W 1
1 ,W

1
2 ) ∼R (W 2

1 ,W
2
2 ),

(W 2
1 ,W

2
2 ) ∼R (W 3

1 ,W
3
2 ).

Then,

Q(W 1
1 ,W

1
2 ) = Q(W 2

1 ,W
2
2 ),

Q(W 2
1 ,W

2
2 ) = Q(W 3

1 ,W
3
2 ).

Apparently,
Q(W 1

1 ,W
1
2 ) = Q(W 2

1 ,W
2
2 ) = Q(W 3

1 ,W
3
2 ).

Therefore,
(W 1

1 ,W
1
2 ) ∼R (W 3

1 ,W
3
2 ).

We then prove the mapping Q is the quotient map.

Define a map as follows,

T : (W1,W2)→ (diag(W2)W1,11×d1).

We then define an operator ⊕ as,

(W 1
1 ,W

1
2 )⊕ (W 2

1 ,W
2
2 ) = T (W 1

1 ,W
1
2 ) + T (W 2

1 ,W
2
2 ),

the inverse of (W1,W2) is defined to be (−W1,W2) and the zero element is defined to be (0,11×d1).

Obviously, the following is a linear mapping:

Q : ((Rd1×dX ,R1×d1),⊕)→ (R1×dXd1 ,+).

For any pair (W 1
1 ,W

1
2 ) and (W 2

1 ,W
2
2 ), we have

(W 1
1 ,W

1
2 ) ∼R (W 2

1 ,W
2
2 ),

if and only if
(W 1

1 ,W
1
2 )⊕ (−W 2

1 ,W
2
2 ) ∈ Ker(Q).

Therefore, the quotient space (Rd1×dX ,R1×d1)/Ker(Q) is a definition of the equivalence relation
∼R.

The proof is completed.

B.5 LINEAR COLLAPSE.

When there is no nonlinearities in the activations, there is apparently no non-differentiable regions
on the loss surface. In other words, the loss surface is a single smooth and multilinear cell.
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