
Under review as a conference paper at ICLR 2020

FAST MACHINE LEARNING WITH
BYZANTINE WORKERS AND SERVERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Machine Learning (ML) solutions are nowadays distributed and are prone to various
types of component failures, which can be encompassed in so-called Byzantine
behavior. This paper introduces LIUBEI, a Byzantine-resilient ML algorithm
that does not trust any individual component in the network (neither workers
nor servers), nor does it induce additional communication rounds (on average),
compared to standard non-Byzantine resilient algorithms. LIUBEI builds upon
gradient aggregation rules (GARs) to tolerate a minority of Byzantine workers.
Besides, LIUBEI replicates the parameter server on multiple machines instead of
trusting it. We introduce a novel filtering mechanism that enables workers to filter
out replies from Byzantine server replicas without requiring communication with
all servers. Such a filtering mechanism is based on network synchrony, Lipschitz
continuity of the loss function, and the GAR used to aggregate workers’ gradients.
We also introduce a protocol, scatter/gather, to bound drifts between models on
correct servers with a small number of communication messages. We theoretically
prove that LIUBEI achieves Byzantine resilience to both servers and workers and
guarantees convergence. We build LIUBEI using TensorFlow, and we show that
LIUBEI tolerates Byzantine behavior with an accuracy loss of around 5% and
around 24% convergence overhead compared to vanilla TensorFlow. We moreover
show that the throughput gain of LIUBEI compared to another state–of–the–art
Byzantine–resilient ML algorithm (that assumes network asynchrony) is 70%.

1 INTRODUCTION

Scaling Machine Learning (ML) algorithms with existing datasets and models (21) calls for dis-
tributed solutions (25; 27; 12). The standard distribution approach nowadays is the parameter server
architecture (26). Such an architecture employs two types of machines: workers and parameter
servers. Typically, workers perform the model update computation, following today’s standard
workhorse algorithm for ML: stochastic gradient descent (SGD). The parameter server updates the
model in each iteration after aggregating gradients from workers. Based on this, the typical iteration
execution includes two communication rounds: workers pull a model from the server, which in turn
then pulls gradients from workers.
However, such a solution is prone to a various amount of failures of the distributed system components.
Centralizing the parameter server in one machine makes it prone to a crash failure that can then stop
the entire learning procedure. Various kinds of failures, including software bugs, hardware defects,
or even hacked machines, can lead to corrupted gradients, diverging the learning process (6; 35).
Such behavior can be abstracted in the most general form of failures, namely Byzantine failures (23),
modeling the very fact that a machine in the system behaves arbitrarily. Given the increasing use of
ML in mission-critical applications (17; 30), tolerating such failures is crucial.
Byzantine ML solutions so far mostly focused on Byzantine workers, ignoring the possibility of
Byzantine servers. Typically, a statistically-robust gradient aggregation rule (GAR) is employed by
the parameter server to aggregate gradients received from workers, rather than using the vulnerable
averaging of gradients. Such a GAR e.g., Krum (8), Median (34) is statistically proven to guarantee
convergence of the learning processes even in the presence of a minority of Byzantine workers, under
some assumptions on the correct workers.

1

Under review as a conference paper at ICLR 2020

GuanYu (15) is, so far, the only proposal that solves the total1 Byzantine ML problem. GuanYu
uses a GAR, e.g., Bulyan (16) for aggregating workers’ gradients and Median (34) for aggregating
models received from servers. Since it uses a GAR (i.e., Median) for aggregating models, it requires
workers to communicate with a majority of servers in each iteration. Moreover, GuanYu assumes
network asynchrony, namely that there is no bound on communication delays. But this comes with a
cost: First, it requires three communication rounds, instead of two in the vanilla case, and it requires
an assumption on the maximum distance between parameter vectors, i.e., models at correct servers,
which might be hard to obtain in certain cases. Also, GuanYu requires a large number of compute
nodes and server replicas to work, as one cannot differentiate between a Byzantine machine and a
slow one in such network (18).
Having a synchronous network is common in practice for many distributed environments (19; 36)
as practitioners can usually predict a conservative upper bound on the network delays. Assuming
network synchrony allows tolerating Byzantine failures using the standard solutions of state machine
replication (SMR), e.g., (22). But SMR in the ML context raises a few concerns: First, SMR requires
multiple communication rounds per iteration for agreement on the current state of the model and the
updating step. Given the typical sizes of models nowadays, the overhead of communication rounds is
big enough to hide the effectiveness of distributing the learning task (19; 20). Second, SMR requires
replicated workers that use the same data batch (11). This reveals problematic in the case of using
private data that cannot be shared with others (32).
In this paper, we present LIUBEI, a total Byzantine–tolerant ML algorithm that does not trust any
individual component, while almost not adding any communication overhead, compared to standard
non–Byzantine deployments. LIUBEI introduces a novel mechanism that filters out replies from
Byzantine servers without requiring to communicate with all servers. Moreover, LIUBEI introduces a
novel protocol to reduce the number of communication rounds. Essentially, LIUBEI operates in two
phases: scatter and gather. In the scatter phase, servers work independently and do not communicate
with each other. In the gather phase, correct servers communicate to bring their view of models back
close to each other. The number of gather steps is usually very small and hence, their overhead is
insignificant. We prove that LIUBEI tolerates Byzantine failures and guarantees learning convergence.
LIUBEI uses a GAR to aggregate workers’ gradients and hence, tolerates Byzantine gradients.
Tolerating Byzantine servers relies on our filtering technique and the scatter/gather protocol; both
assume network synchrony. In each iteration in the scatter phase, each worker pulls the updated
model from only one server and then uses two filters to check the legitimacy of such a model: the
Lipschitz filter and the models filter. On the one hand, the Lipschitz filter checks the growth of the
model with respect to its gradient. A Lipschitz value is computed for a received model, which is then
compared to Lipschitz values of other correct models. On the other hand, the models filter bounds
the difference between models in two consecutive rounds. Based on the guarantees given by the used
GAR, a worker can speculatively compute an updated model that should be close to the received
model. Bounding the difference between both models allows workers to suspect whether a received
model is Byzantine or not. After T scatter iterations, LIUBEI does one gather step with the goal of
bringing the models on correct servers back close to each other. Hence, LIUBEI does not require an
assumption on the maximum distance between two correct models, as in GuanYu (15).
We implement LIUBEI over TensorFlow to show its performance on typical workloads. We show that
LIUBEI can tolerate both Byzantine servers and workers while guaranteeing convergence. We also
show that LIUBEI can achieve the same performance as GuanYu, with 5% accuracy loss compared
to vanilla TensorFlow. We quantify LIUBEI overhead, compared to vanilla TensorFlow, to around
24% and with a throughput gain of 70% compared to GuanYu. Our source code is available (4). The
passphrase for decrypting the code is: <JFZ2a+}QcDfDw4uM]LSWSrtt$x;}7 Rj.y3KfmF .

2 MODEL AND ASSUMPTIONS

2.1 BYZANTINE MACHINE LEARNING

The Byzantine problem was first introduced in the context of distributed services (23) in which a
minority of the distributed system components could behave arbitrarily. Such a behavior could be the
result of software bugs, hardware defects, message omissions, or even hacked machines. Similarly,
the Byzantine failure in a distributed ML system occurs when one of the components in such a

1We use the term total Byzantine resilience to denote resilience against both workers and parameter servers.

2

Under review as a conference paper at ICLR 2020

system behaves arbitrarily, i.e., not following the algorithm. For example, a Byzantine machine can
send a biased estimate of a gradient to another machine, which leads to a corrupted learning model
accordingly or even learning divergence (6). Byzantine failures also abstract the data poisoning
problem (7), which happens when a machine owns maliciously labeled data (i.e., misleading data);
this may result in learning a corrupted model especially–crafted by the adversary. If the learning is
centralized in one machine (as with the standard parameter server architecture (26)), things can go
worse if such a machine is Byzantine as in this case, the adversary (which hacked such a machine)
can write whatever it wants to the final model, making the learning process almost useless. Such
behavior should be tolerated as ML is nowadays used in mission–critical applications.

2.2 SYSTEM MODEL

Parameter
Server

Worker

Network

Byzantine

Figure 1: A setup with 7 workers (3 are Byzantine)
and 4 servers (1 is Byzantine). Byzantine machines
form together a single adversarial entity, where
they communicate over their own covert network.

We consider the standard parameter server archi-
tecture (26), where a logically centralized server
holds the learning parameters, and workers do
the gradient computation task. In each learn-
ing step, workers pull the latest version of the
learning model from the parameter server and
then, towards the end of the iteration, the param-
eter server aggregates the gradients computed
by workers and updates the model. We assume
synchronous training: both the parameter server
and workers synchronize their iteration num-
ber. We also assume a synchronous communica-
tion model and therefore, we assume an upper
bound on communication and computation de-
lays. Thus, all machines expect a response from
other machines within this bound, and non–responding machines can be safely flagged crashing.
Unlike most of the existing work in Byzantine ML literature, we do not assume a trusted parameter
server. We replicate the parameter server on nps machines, among which up to fps machines could
be Byzantine, i.e., behave arbitrarily, with nps ≥ 3fps + 1. In addition, we assume that up to fw out
of nw workers could be also Byzantine with nw ≥ 2fw + 1. Figure 1 depicts such a setup.
The goal of the Byzantine nodes, be they workers or servers, is to impair the learning, by making it
converge to a state different from the one that would have been obtained if no adversary had stymied
the learning process. Byzantine nodes can cooperate to achieve this goal. We assume these nodes
have unbounded computation power and arbitrarily fast communication channels (covert network
in Figure 1). We also assume these nodes have access to the full training dataset and can overhear
gradients sent by the correct workers. We assume that honest nodes can authenticate the source of a
message so as to prevent spoofing and Sybil attacks (10).
We follow the usual assumptions in the Byzantine ML literature (11; 8; 16) (see supplementary
material, Section 3.1). We assume that the training data is identically and independently distributed
(iid) on workers (24) so that they can compute, at step t ∈ N, an unbiased estimate (gt) of the true
gradient∇L (θ) (where θ represents the learning model of size d) with a sufficiently low variance.

3 LIUBEI

In this section, we describe LIUBEI algorithm. First, we describe how we tolerate Byzantine workers
and servers, explaining our filtering technique and providing an intuition on why it works. Then, we
present the training loop of both servers and workers.

3.1 TOTAL BYZANTINE RESILIENCE

Byzantine workers. Tolerating Byzantine workers is well-studied in the ML literature. Usually,
the parameter server uses a statistically robust gradient aggregation rule (GAR), e.g., (34; 16) that
ensures having a correct gradient despite the presence of a minority of Byzantine gradients. LIUBEI
can use any existing synchronous GAR that follows the robustness definition of (8), which is also
formally given in the supplementary material, Section 1.1. We choose MDA (31) for our algorithm
as it gives practical resilience guarantees (supplementary material, Section 4) with a reasonable
overhead as confirmed in our evaluation (Section 4). MDA requires nw ≥ 2fw + 1.

3

Under review as a conference paper at ICLR 2020

Byzantine servers. Tolerating Byzantine servers using robust aggregation requires communication
with all servers in each round, which results in a big communication overhead. We follow another
route: We let each worker pull only one model from any of the server replicas and then checks if the
pulled model is suspicious or not. A worker does this check by applying two filters on the pulled
model (the Lipschitz filter and the models filter), which we describe below. If the model is suspicious,
the worker discards it and pulls a new model from another parameter server. Thus, the maximum
number of models that can be pulled by a worker in one iteration is fps + 1.
Lipschitz filter. Based on the standard Lipschitz continuity of the loss function assumption (9; 8),
previous work uses empirical estimations for the Lipschitz coefficient to filter out gradients (from
Byzantine workers) in asynchronous learning (14). We use a similar idea, yet to filter out models (on
the workers’ side) from Byzantine servers. The filter works as follows: Assume a worker j that owns
a model θ(j)t and a gradient it computed g(j)t based on that model at some iteration t. A correct server
i should include g(j)t while updating its model θ(i)t , given network synchrony. The worker then does
two steps in parallel: (1) estimates the updated model locally based on its own gradient: θ(j(l))t+1 and (2)
pulls a model θ(i)t+1 from a parameter server i. If server i is correct then, the growth of the pulled model
θ
(i)
t+1 (with respect to gradients) should be close to that of the estimated local model θ(j(l))t+1 , based on

the guarantees given by the used GAR. Such a growth rate is encapsulated in the Lipschitz coefficient.
If the pulled model is correct then, the worker expects that the Lipschitz coefficient computed based
on that model is close to those of the other correct models received before by the worker. Concretely, a
worker computes an empirical estimation of the Lipschitz coefficient k =

∥∥∥g(j)t+1 − g
(j)
t

∥∥∥/∥∥∥θ(j(l))t+1 − θ
(j)
t

∥∥∥
and then, ensures that it follows the condition k ≤ Kp , quantilenps−fps

nps

{K}, where K is the list of

all previous Lipschitz coefficients k (i.e., with tprev < t).
Note that such a filtering technique requires nps > 3fps as Byzantine machines can craft models
with Lipschitz coefficients that are deliberately placed in the first 2fps places of the set K. Hence,
the tradeoff here is between the communication overhead and the required number of parameter
server replicas: one can use robust aggregation of models, which requires only nps > 2fps, yet
requires communicating with all servers in each round. In our design, we strive for reducing the
communication overhead as much as possible, given communication is the bottleneck (36; 19).
Models filter. Although the Lipschitz filter can bound the model growth with respect to gra-
dients, a server can trick this filter by sending a well-crafted model that is arbitrarily far from
the other correct models. To overcome this problem, LIUBEI uses another filter, which we
call models filter, to bound the distance between models in any two successive iterations. We
assume all correct machines initialize models with the same state. Building upon the guar-
antees given by the used GAR, at iteration t, a worker can estimate an upper bound on the
distance between two successive states of a correct model. Mathematically, the distance be-
tween a local estimate of a model θ(j(l))t+1 and a pulled model θ(i)t+1 is upper–bounded as follows:∥∥∥θ(j(l))t+1 − θ

(i)
t+1

∥∥∥ < γT ·(t mod T)

∥∥gT ·(t mod T)

∥∥((3T + 2)(nw − fw)/4fw + 2
(
(t − 1) mod T

))
,

with T = 1/3lγ1, where l is the Lipschitz coefficient and γt is the learning rate at iteration t. Such a
bound is also based on the scatter/gather scheme we are using. The details of deriving this term is in
the supplementary material, Section 3.4.2.

3.2 ALGORITHM

LIUBEI’s algorithm operates in two phases: scatter and gather. One gather step is executed every T
iterations (line 8 to 11 in Algorithms 1 and 2); we call the whole T iterations a scatter step.
Algorithms 1 and 2 depict the training loop applied by workers and servers respectively. As an
initialization step, all machines in the network, be they workers or servers, initialize the model
with the same random values, i.e., using the same seed. Empirical results show that this step is
crucial in achieving high accuracy. Moreover, each worker j chooses some random integer rj with
1 ≤ rj ≤ nps. Then each worker does a backpropagation step to compute its gradient estimate at the
initial model. The subsequent steps t ∈ N work as follows.
The algorithm starts with a scatter step, which includes doing a few iterations. In each iteration, each
parameter server i pulls gradients gt from all workers and aggregates them using MDA, computing
g
(i)
agg. Then, each server uses its own computed g(i)agg to update the model. While parameter servers

4

Under review as a conference paper at ICLR 2020

are doing such computation, each worker j does a speculative step by computing a local view of the
updated model using its local computed gradient and its latest local model.

Algorithm 1 Worker Algorithm

1: Calculate the value of T and a value for seed
2: model← init model(seed)
3: r← random int(1,nps)
4: t← 0
5: grad← model.backprop()
6: repeat
7: local model← apply grad(model,grad)
8: if t mod T = 0 then
9: models← read models()

10: model←MeaMed(models)
11: else
12: i← 0
13: repeat
14: new model← read model(

(r + t+ i) mod nps)
15: new grad← new model.backprop()
16: i← i+ 1
17: until pass filters(new model)
18: model← new model
19: grad← new grad
20: end if
21: t← t+ 1
22: until t > num iterations

Then, each worker j pulls one parameter vector from
server i where, i = (rj+ t+1) mod nps. Such a worker
does a backpropagation step, computing the new gradient
based on the pulled model. Based on this computation
and the local estimate of the updated model, the worker
applies the Lipschitz filter and the models filter to check
the legitimacy of the pulled model. If the model fails to
pass the filters, the worker j pulls a new model from the
parameter server i, where i = (rj+t+2) mod nps. This
process is repeated until a pulled model passes both filters.
To bound the drifts between parameter vectors at correct
servers, every T iterations, a global gather step is executed
on both servers and workers sides: Each server i sends to
all other servers its current view of the model θ(i)t . After
gathering models from all servers, each server i aggre-
gates the received models using Mean Around Median
(MeaMed)(34), computing θ(i(agg))t . Then, each worker j
pulls such models θ(i(agg))t from all servers and aggregates
them using MeaMed, before starting a new scatter step.
The interplay between using MDA to tolerate Byzantine
workers and filters to tolerate Byzantine servers results in
a convergence rate of O(

√
(nw − fw)/nwT

2). The formal
proof of LIUBEI’s Byzantine resilience is provided in the
supplementary material (Section 3).

4 IMPLEMENTATION AND EVALUATION

4.1 IMPLEMENTATION Algorithm 2 Parameter Server Algorithm

1: Calculate the value of T and a value for seed
2: model← init model(seed)
3: t← 0
4: repeat
5: grads← read gradients()
6: grad←MDA(grads)
7: model.update(grad)
8: if t mod T = 0 then
9: model← read models()

10: model←MeaMed(models)
11: end if
12: t← t+ 1
13: until t > num iterations

We use TensorFlow (5), a popular ML framework, as an
underlying system for our implementation of LIUBEI. We
use it only as a local library to compute gradients (on the
workers’ side) and update the model (on the parameter
server side). In this sense, we do not rely on the shared
graph design followed by TensorFlow. Yet, we allow each
machine in the network, be it a server or a worker, to build
its own independent graph. This gives better control over
communication and disallows access of Byzantine machines
to correct machines’ memory (13). Moreover, this modular
design allows LIUBEI to be integrated easily with other ML
frameworks, e.g., PyTorch (28).
As a consequence of our design, we build our own commu-
nication abstractions. We use gRPC for communication and Protocol Buffers for serializing and
deserializing data. Each machine in the network creates a gRPC server that serves requests coming
from other machines. Such a request could be either asking for a gradient (usually from a server) or
asking for an updated model (either from a worker or a server). We parallelize requests to multiple
machines (for example when a server asks for gradients from all workers).

4.2 SETUP

Baselines. We compare LIUBEI to two baselines: TensorFlow (5) and GuanYu (15). The first
baseline shows the performance of training using a non–Byzantine resilient distributed framework
and hence, comparing LIUBEI to it quantifies the cost of Byzantine resilience. GuanYu is (so far) the
only algorithm that tolerates both Byzantine servers and workers. Comparing LIUBEI to GuanYu
highlights the performance gain achieved by our algorithm.

5

Under review as a conference paper at ICLR 2020

Metrics. We use two standard metrics for evaluating LIUBEI: Accuracy and Throughput. Accuracy
denotes the fraction of correct answers a model gives (correct classifications) among all its answers,
using the test set. We show the progress of accuracy with the number of iterations and time.
Throughput measures the number of updates the system, i.e., the parameter server does per second.
Testbed. Our experimental platform is Grid5000 (2). We employ nodes, each having 2 CPUs (Intel
Xeon E5-2630 v4) with 10 cores, 256 GiB RAM and 2×10 Gbps Ethernet. Unless otherwise stated,
we employ 20 compute nodes (workers), out of them (up to) 8 nodes could be Byzantine. In the case
of vanilla TensorFlow deployment, we use only 1 machine as a parameter server. Otherwise, we
employ 4 machines for LIUBEI deployment and 5 machines for GuanYu deployment; these numbers
are to tolerate at most 1 Byzantine server, based on the requirements of each algorithm.

Table 1: Models used to evaluate LIUBEI.

Model # parameters Size (MB)
MNIST CNN 79510 0.3

CifarNet 1756426 6.7
Inception 5602874 21.4
ResNet-50 23539850 89.8

ResNet-200 62697610 239.2

Dataset and Model. We consider the im-
age classification task due to its wide adoption
as a benchmark for distributed ML systems,
e.g., (12). We use MNIST (3) and CIFAR-10 (1)
datasets. MNIST is a dataset of handwritten dig-
its. It has 70,000 28× 28 images in 10 classes.
CIFAR-10 is a widely–used dataset in image
classification (33; 36). It consists of 60,000
32× 32 colour images in 10 classes.
We employ different models with different sizes ranging from simple models like small convolutional
neural network (CNN) for MNIST, training a few thousands of parameters to big models like
ResNet-200 with around 63M parameters. All models are listed in Table 1.

4.3 RESULTS

We show here the key results of the evaluation of LIUBEI. First, we show the progress of accuracy
over training iterations and time (i.e., convergence) and then, we discuss the throughput of LIUBEI
compared to GuanYu (15); both sets of experiments are done in a Byzantine–free environment. Then,
we show the performance of LIUBEI in a Byzantine environment, i.e., under a recent attack. Finally,
we describe the effect of changing the value of T on the filters’ performance and convergence.

0 200 400 600 800 1000 1200 1400
Model Updates

0.1
0.2
0.3
0.4
0.5
0.6
0.7

Ac
cu

ra
cy

TensorFlow
LiuBei (fps = 0, fw = 0)
LiuBei (fps = 1, fw = 8)
GuanYu (fps = 0, fw = 0)
GuanYu (fps = 1, fw = 8)

(a)

0 200 400 600 800 10001200140016001800
Time (s)

0.1
0.2
0.3
0.4
0.5
0.6
0.7

Ac
cu

ra
cy

TensorFlow
LiuBei (fps = 0, fw = 0)
LiuBei (fps = 1, fw = 8)
GuanYu (fps = 0, fw = 0)
GuanYu (fps = 1, fw = 8)

(b)mini-batch size = 250

0 200 400 600 800 1000 1200 1400
Model Updates

0.1
0.2
0.3
0.4
0.5
0.6
0.7

Ac
cu

ra
cy

TensorFlow
LiuBei (fps = 0, fw = 0)
LiuBei (fps = 1, fw = 8)
GuanYu (fps = 0, fw = 0)
GuanYu (fps = 1, fw = 8)

(c)

0 200 400 600 800 1000 1200 1400 1600
Time (s)

0.1
0.2
0.3
0.4
0.5
0.6
0.7

Ac
cu

ra
cy

TensorFlow
LiuBei (fps = 0, fw = 0)
LiuBei (fps = 1, fw = 8)
GuanYu (fps = 0, fw = 0)
GuanYu (fps = 1, fw = 8)

(d)mini-batch size = 100

Figure 2: Convergence in a non-Byzantine environment.

Convergence. Figure 2 shows the convergence of all experimented systems with both time and
training iterations. We experiment with two batch sizes and two values for declared Byzantine servers
and workers (only for the Byzantine–tolerant deployments). Figure 2a shows that all deployments
have almost the same convergence, with a slight loss in final accuracy for the Byzantine–tolerant
deployments, which we quantify to around 5%. Such a loss is emphasized with the smaller batch
size (Figure 2c). This accuracy loss is admitted in previous work (34; 15) and inherits from using

6

Under review as a conference paper at ICLR 2020

statistical methods (basically, GARs) for Byzantine resilience. Such GARs ensure convergence only
to a ball around the optimal solution, i.e., local minimum (8; 16). As LIUBEI builds on these GARs,
we expect it to achieve an accuracy similar to that achieved by such GARs. Moreover, the figures
confirm that using a higher batch size gives a better performance for both LIUBEI and GuanYu.
Figures 2a and 2c show that LIUBEI achieves the same convergence behavior as GuanYu.
The cost of Byzantine resilience is more clear when convergence is observed over time (Figure 2b),
especially with the lower batch size (Figure 2d). Using a bigger batch size helps the Byzantine–
tolerant systems achieve a performance close to vanilla TensorFlow. We quantify the overhead
of LIUBEI compared to vanilla TensorFlow to around 24% and the performance gain of LIUBEI
compared to GuanYu by around 70%. We analyze this overhead with more scenarios later on in the
section. We draw two main observations from these figures: First, unlike with GuanYu, changing the
number of declared Byzantine machines does not affect the progress of accuracy while deploying
LIUBEI. This is because servers and workers in LIUBEI deployments always wait for replies from all
machines, regardless of the number of Byzantine machines (unlike in GuanYu, where the number of
expected replies depends on the number of Byzantine machines). Second, LIUBEI always outperforms
GuanYu, especially with non–zero values for declared Byzantine servers and workers. Such a result
is expected as LIUBEI uses less number of communication rounds and less number of messages
per round compared to GuanYu. Given that distributed ML systems are network–bound (19; 36),
reducing the communication overhead significantly boosts the performance and the scalability of
such systems.

MNIST CifarNet Inception ResNet-50 ResNet-2000.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

Th
ro

ug
hp

ut
 G

ai
n

Figure 3: Throughput gain of LI-
UBEI compared to GuanYu (15).

Throughput. We do the same experiment again, yet with
different state–of–the–art models so as to quantify the through-
put gain of LIUBEI compared to GuanYu. Figure 3 shows the
throughput of LIUBEI divided by the throughput of GuanYu
in each case. For the current version of our implementation,
we use CPUs for computation; we expect that using GPUs
will emphasize more the effectiveness of our LIUBEI protocol
as the communication overhead is generally highlighted more
with GPUs. From this figure, we see that LIUBEI outperforms
GuanYu in all cases, where the performance gain is emphasized
more with large models. This is expected because the main advantage of LIUBEI is to decrease the
number of communication messages, where bigger messages are transmitted with bigger models.

0 200 400 600 800
Model Updates

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

LiuBei (No Attack)
n=18,f=2
n=21,f=3
n=20,f=4
n=20,f=8

(a) The ratio fw
nw

0 200 400 600 800
Model Updates

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

LiuBei (No Attack)
b=100
b=250
b=500
b=2000

(b) Batch size
Figure 4: Convergence in the presence
of Byzantine workers.

Byzantine workers. We study here the performance of
LIUBEI in the presence of Byzantine workers. Simple
misbehavior like message drops, unresponsive machines or
reversed gradients are well-studied and have been shown to
be tolerated by Byzantine–resilient GARs (34; 15), which
LIUBEI also uses. Thus, here we focus on a more recent
attack that is coined as A little is enough attack (6). Such
an attack states that changing each dimension in gradients
of Byzantine machines, even by a very small value, can
trick some of Byzantine–resilient GARs like (8; 16).
We apply this attack to multiple deployments of LIUBEI.
In each scenario, we apply the strongest possible change in
gradients’ coordinates so as to hamper the convergence the
most. We study the effect of this attack on the convergence
of LIUBEI with both the ratio of Byzantine machines to
the total number of machines (Figure 4a) and the batch
size (Figure 4b). We use the deployment with no declared
Byzantine behavior (that is presented in Figure 2a) as a
baseline in this experiment.
Figure 4a shows that the effect of the attack starts to ap-
pear clearly when the number of Byzantine nodes is a
significant fraction (more than 20%) of the total number of nodes. This is intuitive as the attack
tries to increase the variance between the submitted gradients to the parameter servers and hence,
increases the ball (around the local minimum) to which the used GAR converges (see e.g. (8; 16) for
a theoretical analysis of the interplay between the variance and the Byzantine resilience). Stretching

7

Under review as a conference paper at ICLR 2020

the number of Byzantine machines to the maximum allowed (fw = 8) downgrades the accuracy to
around 40% (compared to 67% in “No Attack” case). The main reason for this is that the assumption
on the variance between gradients required by MDA (the used GAR in this deployment) is not satisfied.
We discuss this issue in details in the supplementary material (Section 4).
Increasing the batch size not only improves the accuracy per training iteration but also the robustness
of LIUBEI (by narrowing down the radius of the ball around the convergence point, where the model
will fluctuate as proven in (8; 16)). Figure 4b fixes the ratio of fw to nw to the biggest allowed value
to see the effect of using a bigger batch size on the convergence behavior. This figure confirms that
increasing the batch size increases the robustness of LIUBEI. Moreover, based on our experiments,
setting 25% of nodes to be Byzantine while using a batch size of (up to) 256 does not experimentally
satisfy the assumption on the variance of MDA in this deployment, which leads to a lower accuracy
after convergence (see supplementary material, Section 4).

0 200 400 600 800 1000
Model Updates

0.1
0.2
0.3
0.4
0.5
0.6
0.7

Ac
cu

ra
cy

Reversed
Partial Drop
Random
LIE

Figure 5: Convergence in the presence
of a Byzantine server.

Byzantine servers. Figure 5 shows the performance of
LIUBEI in the presence of 1 Byzantine server out of a total
of 4 servers. We experimented with 4 Byzantine behavior:
1. Reversed, in which the server sends a correct model
multiplied by a negative number, 2. Partial Drop, in which
the server randomly chooses 10% of the weights and set
them to zero (this simulates using unreliable transport
protocol in the communication layer, which was proven
beneficial, e.g., (13)), 3. Random, in which the server
replaces the learned weights by random numbers, and 4.
LIE, an attack inspired from the little is enough attack (6),
in which the server multiplies each of the individual weights by a small number z, where |z − 1| < δ
with δ very close to zero; z = 1.035 in our experiments. Such a figure shows that LIUBEI can
tolerate the experimented Byzantine behavior and that the learning converges to the same accuracy
observed before in Figure 2a. We noted that both filters together do not pass any false positives, i.e.,
the models submitted from the Byzantine server never pass both filters (although could trick one filter
individually).

0 200 400 600 800 1000
Model Updates

0.1
0.2
0.3
0.4
0.5
0.6
0.7

Ac
cu

ra
cy

T=1
T=10
T=50
T=100
T=200
T=333

(a)

0 200 400 600 800 1000 1200
Time (s)

0.1
0.2
0.3
0.4
0.5
0.6
0.7

Ac
cu

ra
cy

T=1
T=10
T=50
T=100
T=200
T=333

(b)
Figure 6: The effect of changing T on
performance.

Effect of changing T . The value of T denotes the number
of iterations done in one scatter step (i.e., before executing
one gather step). Figure 6 shows the effect of changing
the value of T on convergence with both time and model
updates in a Byzantine-free environment. Figure 6a shows
that the value of T almost does not have any effect on
the convergence w.r.t. the model updates. This happens
because models on correct servers almost do not drift from
each other (as all the servers are correct). Interestingly,
Figure 6b shows that using a higher value for T helps
converge faster. This is because increasing T decreases
the communication overhead, achieving faster updates and
higher throughput. However, it is important to note that
as the value of T increases, the expected drifts between
models on correct servers increases, and it becomes easier
for the Byzantine server to trick the workers.
Figure 7 shows the ratio of false negatives (i.e., the number
of falsely-rejected correct models by filters on the workers)
to the total number of submitted models, with different
values for T . Although we declare fps = 1, we do not
employ any Byzantine behavior in this experiment. We observe the number of rejected models on
workers after 500 learning iterations. In general, the ratio of false negatives never exceeds 1% in this
experiment, and it is almost stable with increasing T . Note that 333 is the maximum value allowed
for T in this setup (to follow the safety rules of LIUBEI). With T = 1, the false negatives are always
zero, simply because the filters do not work in this setup (i.e., the gather step is executed in every
iteration). Such a figure shows that our filtering mechanism is effective in not producing many false
negatives and hence, do not waste communication rounds (when a model is rejected, the worker asks
for another model from a different server).

8

Under review as a conference paper at ICLR 2020

5 RELATED WORK

T=1 T=10 T=50 T=100 T=200 T=3330.000

0.002

0.004

0.006

0.008

Fa
lse

 N
eg

at
iv

e
Ra

tio

Figure 7: False negative percentage with
different values of T .

The closest approach to ours is GuanYu (15), which toler-
ates Byzantine workers and servers, considering however
an asynchronous network. GuanYu uses a GAR to toler-
ate Byzantine workers and Median (34) twice in a row in
each iteration at both workers and parameter servers to
tolerate Byzantine servers. We note two limitations in this
work. First, GuanYu’s design induces an overhead both in
computation and communication: the algorithm requires
three communication rounds and applies aggregation rules
three times in each iteration. In addition, it requires more
compute nodes than the vanilla case to tolerate network
asynchrony. Such an overhead limits scalability for large–scale applications that use models with
millions of parameters. Second, for GuanYu to work, the authors assume that the difference between
models on correct parameter servers is always bounded; this cannot be fulfilled in some cases. We
address these two problems by using a new filtering mechanism instead of models aggregation and
by employing a gather step every few iterations accordingly.
Several proposals tolerate only Byzantine workers in synchronous/asynchronous network and syn-
chronous/asynchronous learning, all assuming a single correct parameter server. (34) proposed three
Median-based aggregation rules that can resist both Byzantine and Dimensional attacks. Krum (8)
and Multi-Krum (13) use a distance-based algorithm to filter out the Byzantine inputs and average the
correct ones. Bulyan (16) proposes a meta-algorithm that guarantees a strong Byzantine resilience,
i.e., resist a strong adversary that can fool the aforementioned algorithms. Draco (11) uses coding
schemes and redundant gradient computation for Byzantine resilience, where Detox (29) combines
coding schemes with robust aggregation for better resilience and overhead guarantees. Kardam (14)
uses filtering techniques to filter out Byzantine workers in asynchronous learning setup.

6 CONCLUDING REMARKS

Summary. This paper proposed LIUBEI, a robust Machine Learning (ML) algorithm that does
not trust any individual component in the network almost without adding communication rounds
compared to vanilla distributed ML systems. LIUBEI relies on the server/worker architecture and
assumes network synchrony. LIUBEI introduces a novel filtering mechanism used by workers to
check whether a pulled model (from a parameter server) is suspicious or not, without requiring to
pull models from all servers. LIUBEI also introduces a novel protocol, scatter/gather, to reduce
the communication overhead. We theoretically prove that LIUBEI tolerates Byzantine servers and
workers and ensures convergence. Our experiments with a TensorFlow–based implementation show
that LIUBEI’s overhead, in terms of convergence, is around 24% compared to vanilla TensorFlow,
where its throughput gain is around 70% compared to a state–of–the–art solution that tolerates
Byzantine workers and servers in asynchronous networks.
Open question. The relation between the frequency of applying the gather step and the variance
between models on correct servers is data–dependent and model–dependent. In our analysis, we
provide safety guarantees on this relation that will always ensure Byzantine resilience and convergence.
However, we believe that in some cases applying the gather step more frequently may lead to a
noticeable improvement in the convergence speed as it decreases the variance. The trade-off between
this gain and the overhead of communication (to gather) remains a data-dependent and model-
dependent question that is out of the scope of this work.

REFERENCES

[1] Cifar dataset. https://www.cs.toronto.edu/˜kriz/cifar.html.

[2] Grid5000. https://www.grid5000.fr/.

[3] Mnist dataset. http://yann.lecun.com/exdb/mnist/.

[4] LIUBEI source code. https://github.com/anonconfsubmit/submit-4.

9

https://www.cs.toronto.edu/~kriz/cifar.html
https://www.grid5000.fr/
http://yann.lecun.com/exdb/mnist/
https://github.com/anonconfsubmit/submit-4

Under review as a conference paper at ICLR 2020

[5] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving,
M. Isard, et al. Tensorflow: A system for large-scale machine learning. In OSDI, 2016.

[6] M. Baruch, G. Baruch, and Y. Goldberg. A little is enough: Circumventing defenses for
distributed learning. arXiv preprint arXiv:1902.06156, 2019.

[7] B. Biggio and P. Laskov. Poisoning attacks against support vector machines. In ICML, 2012.

[8] P. Blanchard, E. M. El Mhamdi, R. Guerraoui, and J. Stainer. Machine learning with adversaries:
Byzantine tolerant gradient descent. In Neural Information Processing Systems, pages 118–128,
2017.

[9] L. Bottou. Online learning and stochastic approximations. Online learning in neural networks,
17(9):142, 1998.

[10] M. Castro, B. Liskov, et al. Practical Byzantine fault tolerance. In OSDI, volume 99, pages
173–186, 1999.

[11] L. Chen, H. Wang, Z. Charles, and D. Papailiopoulos. Draco: Byzantine-resilient distributed
training via redundant gradients. In International Conference on Machine Learning, pages
902–911, 2018.

[12] T. M. Chilimbi, Y. Suzue, J. Apacible, and K. Kalyanaraman. Project adam: Building an
efficient and scalable deep learning training system. In OSDI, volume 14, pages 571–582, 2014.

[13] G. Damaskinos, E. M. El Mhamdi, R. Guerraoui, A. Guirguis, and S. Rouault. Aggregathor:
Byzantine machine learning via robust gradient aggregation. In SysML, 2019.

[14] G. Damaskinos, E. M. El Mhamdi, R. Guerraoui, R. Patra, M. Taziki, et al. Asynchronous
byzantine machine learning (the case of sgd). In ICML, pages 1153–1162, 2018.

[15] E.-M. El-Mhamdi, R. Guerraoui, A. Guirguis, and S. Rouault. Sgd: Decentralized byzantine
resilience. arXiv preprint arXiv:1905.03853, 2019.

[16] E. M. El Mhamdi, R. Guerraoui, and S. Rouault. The hidden vulnerability of distributed
learning in Byzantium. In J. Dy and A. Krause, editors, Proceedings of the 35th International
Conference on Machine Learning, volume 80 of Proceedings of Machine Learning Research,
pages 3521–3530, Stockholmsmässan, Stockholm Sweden, 10–15 Jul 2018. PMLR.

[17] A. Esteva, B. Kuprel, R. A. Novoa, J. Ko, S. M. Swetter, H. M. Blau, and S. Thrun.
Dermatologist-level classification of skin cancer with deep neural networks. Nature,
542(7639):115, 2017.

[18] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed consensus with one
faulty process. JACM, 32(2):374–382, 1985.

[19] K. Hsieh, A. Harlap, N. Vijaykumar, D. Konomis, G. R. Ganger, P. B. Gibbons, and O. Mutlu.
Gaia: Geo-distributed machine learning approaching lan speeds. In NSDI, pages 629–647,
2017.

[20] N. Ivkin, D. Rothchild, E. Ullah, V. Braverman, I. Stoica, and R. Arora. Communication-efficient
distributed sgd with sketching. arXiv preprint arXiv:1903.04488, 2019.

[21] L. Kim. How many ads does google serve in a day? http://goo.gl/oIidXO, November 2012.

[22] L. Lamport et al. Paxos made simple. ACM Sigact News, 32(4):18–25, 2001.

[23] L. Lamport, R. Shostak, and M. Pease. The Byzantine generals problem. TOPLAS, 4(3):382–
401, 1982.

[24] S. Lee, J. K. Kim, X. Zheng, Q. Ho, G. A. Gibson, and E. P. Xing. On model parallelization
and scheduling strategies for distributed machine learning. In Advances in neural information
processing systems, pages 2834–2842, 2014.

10

Under review as a conference paper at ICLR 2020

[25] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed, V. Josifovski, J. Long, E. J.
Shekita, and B.-Y. Su. Scaling distributed machine learning with the parameter server. In OSDI,
volume 1, page 3, 2014.

[26] M. Li, L. Zhou, Z. Yang, A. Li, F. Xia, D. G. Andersen, and A. Smola. Parameter server for
distributed machine learning. In Big Learning NIPS Workshop, volume 6, page 2, 2013.

[27] X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman, D. Liu, J. Freeman, D. Tsai,
M. Amde, S. Owen, et al. Mllib: Machine learning in apache spark. JMLR, 17(1):1235–1241,
2016.

[28] A. Paszke, S. Gross, S. Chintala, and G. Chanan. Pytorch. Computer software. Vers. 0.3, 1,
2017.

[29] S. Rajput, H. Wang, Z. Charles, and D. Papailiopoulos. Detox: A redundancy-based framework
for faster and more robust gradient aggregation. arXiv preprint arXiv:1907.12205, 2019.

[30] Q. Rao and J. Frtunikj. Deep learning for self-driving cars: chances and challenges. In 2018
IEEE/ACM 1st International Workshop on Software Engineering for AI in Autonomous Systems
(SEFAIAS), pages 35–38. IEEE, 2018.

[31] P. J. Rousseeuw. Multivariate estimation with high breakdown point. Mathematical statistics
and applications, 8:283–297, 1985.

[32] R. Shokri and V. Shmatikov. Privacy-preserving deep learning. In SIGSAC, pages 1310–1321,
2015.

[33] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout: A simple
way to prevent neural networks from overfitting. JMLR, 15(1):1929–1958, 2014.

[34] C. Xie, O. Koyejo, and I. Gupta. Generalized Byzantine-tolerant sgd. arXiv preprint
arXiv:1802.10116, 2018.

[35] C. Xie, S. Koyejo, and I. Gupta. Fall of empires: Breaking byzantine-tolerant sgd by inner
product manipulation. arXiv preprint arXiv:1903.03936, 2019.

[36] H. Zhang, Z. Zheng, S. Xu, W. Dai, Q. Ho, X. Liang, Z. Hu, J. Wei, P. Xie, and E. P. Xing.
Poseidon: An efficient communication architecture for distributed deep learning on GPU
clusters. In USENIX ATC, pages 181–193, 2017.

11

Fast Machine Learning with
Byzantine Workers and Servers

Supplementary Material

Quick Note

We give here the convergence proof of LiuBei along with its resilience guarantees. LiuBei
addresses the total Byzantine resilience problem in distributed Machine Learning (ML) context
(following the parameter server architecture [8]) where, both workers and servers could behave
arbitrarily. LiuBei assumes the network to be synchronous, i.e., there is an upper bound (not
necessarily known) on the computation and communication delay. LiuBei uses a Byzantine–
resilient gradient aggregation rule (GAR) to tolerate Byzantine workers, which is Minimum–
Diameter Averaging [9] (or in short MDA). Such a GAR can be safely replaced with any other
GAR that gives similar guarantees given by the used GAR such as Krum [2] or Median [11].
The main goal of LiuBei is to reduce communication overhead as much as possible, while
guaranteeing resilience against Byzantine workers and servers. This is mainly achieved by our
novel filtering technique and our scatter/gather protocol.

Note about the name. Lui Bei was the warlord of Guan Yu, the general whose name is given
to the first algorithm to tolerate both Byzantine workers and servers. We show that LiuBei
performs better than GuanYu.

1 Preliminary Material

1.1 Robust aggregation

Robust aggregation of gradients is the key for Byzantine workers’ resilience. To this end, gradi-
ents are processed by a gradient aggregation rule (GAR), which purpose is to ensure that output
of aggregation is as close as possible to the real gradient of the loss function.
In the general theory of stochastic gradient descent (SGD) convergence, a typical validity as-
sumption is that the gradient estimator is unbiased [3]. The role of a GAR is to ensure a relaxed
version of this assumption in order to accommodate for the presence of malicious workers (whose
gradients are potentially biased).
Definition 1 gives such a relaxation, which we adapt from [2, 7] and which was used as a standard
for Byzantine resilience in, e.g. [12, 13, 11].

Definition 1. Let α ≤ 0 < π/2 be any angular value and 0 ≤ f ≤ n with n the total number
of input vectors to the GAR and f the maximum number of Byzantine vectors. Let g be an
unbiased estimate of the true gradient G, i.e., EG = g.
A GAR (which output noted as F) is robust (said to be (α, f)–Byzanitne resilient) if
〈EF , g〉 ≥ (1− sinα). ‖g‖2 > 0

LiuBei uses two GARs: Minimum–Diameter Averaging [7] and Mean Around Median [11].

1

1.2 Minimum–Diameter Averaging (MDA)

MDA is a gradient aggregation rule (GAR) that ensures resilience against a minority of Byzantine
input gradients. Mathematically, this function was introduced in [9] and its Byzantine resilience
proof was given in [7]. MDA satisfies the (α, f) Byzantine resilience guarantees1 introduced
in [2]. Formally, let X be the set of input gradients (all follow the same distribution), out of
them f are Byzantine, and y be the output of the Byzantine resilient GAR. Then, the following
properties hold:

1. E y is in the same half–space as EX .
2. the first 4 statistical moments of y are bounded above by a linear combination of the first

4 statistical moments of x ∼ X .
Such conditions are sufficient to show that the output of this GAR guarantees convergence of
the learning procedure. More formally, these conditions enable the GAR to have a proof that
follows from the global confinement proof of Stochastic Gradient Descent (SGD) [3].
In order to work, MDA assumes the following (as any other GAR):

∃κ∈]1,+∞[, ∀(i, t, θ)∈ [1 .. n−f]×N×Rd, κ 2f

n− f

√
E
(∥∥∥g(i)t − Eg(i)t

∥∥∥2) ≤ ‖∇L (θ)‖ , (1)

where θ is the model state at the training iteration t, n is the total number of input gradients,
f is the maximum number of Byzantine gradients, gt is an unbiased estimate of the gradient at
iteration t, and L is the loss function.
The MDA function works as follows: Consider that the total number of gradients is n and the
maximum number of Byzantine gradients is f with n ≥ 2f + 1. MDA enumerates all subsets of
size n− f from the input gradients and finds the subset with the minimum diameter among all
subsets of this size, i.e., n − f . The diameter of a subset is defined as the maximum distance
between any two elements of this subset. The output of the MDA function is the average of
gradients in such a subset. More formally, the MDA function is defined as follows [7]:

Let (g1 . . . gn) ∈
(
Rd
)n

, and X , { g1 . . . gn } the set containing all the input gradients.

Let R , {Q | Q ⊂ X , |Q| = n− f } the set of all the subsets of X with a cardinality of n− f ,

and let S , arg min
Q∈R

(
max

(gi,gj)∈Q2
(‖gi − gj‖)

)
.

Then, the aggregated gradient is given by MDA (g1 . . . gn) , 1
n−f

∑
g∈S

g.

1.3 Mean Around Median (MeaMed)

The MeaMed function is a fairly intuitive function to remove outliers from an input set. As an
aggregation rule, MeaMed was proven to be (α, f) Byzantine resilient in [11]. Even more than
that, MeaMed can resist dimensional attacks, i.e., dimensional (α, f) Byzantine resilient. In this
paper, we apply MeaMed to models, rather than gradients not only to exclude Byzantine models
but also to bring models on correct servers close to each other.
MeaMed works as follows: For each dimension (in d), MeaMed finds the median value among
all input models and then averages the closest n − f − 1 values to this value, along with the
median value. Formally, the MeaMed function is defined as follows:

Let X be the set of input models of size n, where the maximum number of Byzantine models is
f with n ≥ 2f + 1.
Let the output of MeaMed be ρ, with ρj is the dimension/coordinate j ∈ [1 . . . d] in the output
model.

1Basically, any GAR that satisfies such a form of resilience [2, 7, 11] can be used with LiuBei; MDA is just
an instance.

2

Let mj be the median value of all values in dimension j at all input models θ in X .
Then, ρj , 1

n−f
∑
θj∈Sj

θj , where Sj is the set of closest values to mj in dimension j among all

inputs, including mj , i.e., |Sj | = n− f .

2 LiuBei’s Algorithm

2.1 Notations

Let (nw, nps, fw, fps, d) ∈ N5, each representing:
• nps ≥ 3fps + 1 the total number of parameter servers, among which fps are Byzantine
• nw ≥ 2fw + 1 the total number of workers, among which fw are Byzantine
• d the dimension of the parameter space Rd

Let (without loss of generality):
• [1 .. nps − fps] be indexes of correct parameter servers

[nps − fps + 1 .. nps] be indexes of Byzantine parameter servers
• [1 .. nw − fw] be indexes of correct workers

[nw − fw + 1 .. nw] be indexes of Byzantine workers

Let θ
(i)
t be a notation for the parameter vector (i.e., model) at parameter server i ∈ [1 .. nps − fps]

for step t ∈ N.

Let g
(i)
t be a notation for the gradient estimation at worker i ∈ [1 .. nw − fw] for step t ∈ N.

Let G
(i)
t be a notation for the gradient distribution at worker i ∈ [1 .. nw − fw] for step t ∈ N.

Let L be the loss function we aim to minimize, let ∇L (θ) be the real gradient of the loss function

at θ, and let ∇̂L (θ) be a stochastic estimation of the gradient, following G, of L at θ.
Let γt be the learning rate at the learning iteration t ∈ N with the following specifications:

1. The sequence of learning rates γt is decreasing 2 with t, i.e., if ta > tb then, γta < γtb . Thus,
the initial learning rate γ0 is the largest value among learning rates used in subsequent
steps.

2. The sequence of learning rates γt satisfies
∑

t γt =∞ and
∑

t γt
2 <∞.

2.2 Algorithm

Initialization. Each correct parameter server i and worker j starts (at step t = 0) with the
same parameter vector:

∀i ∈ [1 .. nps − fps] , θ(i)0 , θ0

∀j ∈ [1 .. nw − fw] , θ
(j)
0 , θ0

Each correct worker j generates a random integer rj ∈ [1 .. nps] and does one backpropagation

step to compute g
(j)
0 at the initial model θ0.

Training loop. Each training step t ∈ N, the following sub-steps are executed sequentially
(unless otherwise stated).

1. Each parameter server i pulls gradients gt from all workers and then applies the MDA

function on the received gradients, computing the aggregated gradient g
(i)
agg. Then, each

server uses its own computed g
(i)
agg to update the model as follows: θ

(i)
t+1 = θ

(i)
t − γtg

(i)
agg.

2. While parameter servers are doing step 1, each worker j does a speculative step as follows:

a worker j calculates its local view to the updated model: θ
(j(l))
t+1 = θ

(j)
t − γtg

(j)
t .

2In fact, it is sufficient that the sequence is decreasing only once every T steps, with T = 1
3.l.γ1

where l is the
Lipschitz coefficient of assumption 5 (cf Section 3.1).

3

3. Each worker j pulls one parameter vector θ
(i)
t+1 from server i where, i = (rj+t+1) mod nps.

4. Each worker j does the backpropagation step, computing g
(j)
t+1 at the pulled model θ

(i)
t+1.

5. Each worker j tests the legitimacy of the received model θ
(i)
t+1 using the Lipschitz criterion

(i.e., Lipschitz filter) and the difference on model norms (i.e., models filter) as follows.
First, a worker j calculates k, an empirical estimation of the Lipschitz coefficient, which
is defined as:

k =

∥∥∥g(j)t+1 − g
(j)
t

∥∥∥∥∥∥θ(j(l))t+1 − θ
(j)
t

∥∥∥
Then, the worker tests whether this value k lies in the non-Byzantine quantile of Lipschitz
coefficients: k ≤ Kp , quantilenps−fps

nps

{K} where, K is the list of all previous Lipschitz

coefficients k (i.e., with tprev < t). Second, the worker j computes the distance between

the local and the pulled (from server i) models as follows:
∥∥∥θ(j(l))t+1 − θ

(i)
t+1

∥∥∥ and makes sure

that such a difference is < γT ·(t mod T)

∥∥gT ·(t mod T)

∥∥((3T+2)(nw−fw)
4fw

+2
(
(t−1) mod T

))
,

with T = 1/3lγ1, where l is the Lipschitz coefficient (assumption 5). Such a difference is
instructed by a correct execution of the MDA algorithm. If both conditions are satisfied,

the received model θ
(i)
t+1 is approved and the algorithm continues normally. Otherwise, the

parameter server i is suspected and its model is ignored; worker j continues by repeating
iteration t again from step 3.

6. To bound the drifts between parameter vectors at correct servers, each T = 1/3lγ1 steps, a
global gather step is executed on both servers and workers sides. This step is executed as

follows: Each server i sends to all other servers its current view of the model θ
(i)
t . After

gathering models from all servers, each server i aggregates such models with MeaMed ,

computing θ
(i(agg))
t . Then, each worker j pulls the model θ

(i(agg))
t from all parameter

servers and aggregates the received models using MeaMed . Finally, each worker j uses
the aggregated model to compute the backpropagation step, and the algorithm continues
normally from step 1.

We call steps 1 through 5 scatter step and step 6 gather step. During scatter step(s) servers
do not communicate and hence, their views of the model deviate from each other. The goal of
the gather step is to bring back the models at the correct servers close to each other.

3 LiuBei’s Convergence

In this section, we show that LiuBei guarantees convergence and tolerates Byzantine workers
and servers. We first state the assumptions for LiuBei to work and then dive into the proof,
which is shown step by step: First, we show that the result of execution of MDA on two correct
servers results in models that are close to each other. Then, we show how we bound the distance
between models on correct servers throughout the learning procedure using the scatter/gather
protocol. After that, we explain our novel filtering mechanism and show why they can tolerate
Byzantine servers. Finally, we put everything together to show the convergence of LiuBei.

3.1 Assumptions

1. ∀t ∈ N, g(1)t . . . g
(nw−fw)
t are mutually independent.

4

2. ∃σ′ ∈ R+, ∀ (i, t) ∈ [1 .. nw − fw]× N, E
∥∥∥g(i)t − E g(i)t

∥∥∥ ≤ σ′.
3. L is positive, and 3–times differentiable with continuous derivatives.

4. ∀r ∈ [2 .. 4] , ∃ (Ar, Br) ∈ R2, ∀ (i, t, θ) ∈ [1 .. nw − fw]×N×Rd, E
∥∥∥g(i)t ∥∥∥ ≤ Ar +Br ‖θ‖r.

5. L is Lipschitz continuous, i.e. ∃l > 0, ∀ (x, y) ∈
(
Rd
)2
, ‖∇L (x)−∇L (y)‖ ≤ l ‖x− y‖.

6. ∃D ∈ R, ∀θ ∈ Rd, ‖θ‖2 ≥ D, ∃ (ε, β) ∈ R+ × [0, π/2− γ[,
‖∇L (θ)‖ ≥ ε, 〈θ,∇L (θ)〉 ≥ cos (β) ‖θ‖ ‖∇L (θ)‖.

Assumptions 1 to 5 (i.i.d, bounded variance, differentiability of the loss, bounded statistical
moments, and Lipschitz continuity of the gradient) are the most common ones in classical SGD
analysis [3, 4].
Assumption 6 was first adapted from [3] by [2, 7, 5] to account for Byzantine resilience. It
intuitively says that beyond a certain horizon, the loss function is “steep enough” (lower bounded
gradient) and “convex enough” (lower bounded angle between the gradient and the parameter
vector). The loss function does not need to be convex, but adding regularization terms such
as ‖θ‖2 ensures assumption 6, since close to infinity, the regularization dominates the rest of
the loss function and permits the gradient ∇L(θ) to point to the same half space as θ. The
original assumption of [3] is that 〈θ,∇L (θ)〉 > 0; in [2, 7] it was argued that requiring this
scalar product to be strictly positive is the same as requiring the angle between θ and ∇L (θ)
to be lower bounded by an acute angle (β < π/2).

3.2 Bounded gradient aggregation on correct parameter servers

Consider two correct servers x and z, this section discusses the maximum difference between
aggregated gradients (using MDA) on both servers at any step t ∈ N.

Let (d, fw) ∈ (N− {0})2 and nw ≥ 2fw + 1. Let Hx be the set of indices of correct gradients

received at server x (and the same notation for Hz) and g
(j)
i be the gradient received from worker

i at server j (only for this section).

In the following, we show that:

∃c ∈ R+, ∀
(
g
(j)
i

)
∈
(
Rd
)nw.nps

,∥∥∥MDA
(
g
(x)
1 . . . g(x)nw

)
−MDA

(
g
(z)
1 . . . g(z)nw

)∥∥∥ ≤ c · max
(i,j)∈(Hx∪Hz)2

‖gi − gj‖

Proof. Based on the definition of the MDA function (Section 1.2), let S be the set of the chosen
gradients by the MDA algorithm, i.e., with the minimum diameter among all subsets of size
nw − fw. Then, the aggregated gradient is given by MDA (g1 . . . gnw) , 1

nw−fw
∑
g∈S

g.

Based on this definition, the following holds:

∃ (i, j) ∈ Hx
2, ∀ (y, v) ∈ S2, ‖y − v‖ ≤ ‖gi − gj‖ .

Then, observing that nw − fw > fw =⇒ ∃k ∈ Hx, gk ∈ S. Using the triangle inequality, we

5

have:

‖MDA (g1 . . . gnw)− gk‖ =

∥∥∥∥∥∥
 1

nw − fw

∑
g∈S

g

− gk
∥∥∥∥∥∥

=
1

nw − fw

∥∥∥∥∥∥
∑
g∈S

(g − gk)

∥∥∥∥∥∥
≤ 1

nw − fw

∑
g∈S
‖g − gk‖

≤ 1

nw − fw

∑
g∈S

(
max

(i,j)∈Hx2
‖gi − gj‖

)
≤ max

(i,j)∈Hx2
‖gi − gj‖.

Based on this, we have∥∥∥MDA
(
g
(x)
1 . . . g(x)nw

)
−MDA

(
g
(z)
1 . . . g(z)nw

)∥∥∥
=
∥∥∥MDA

(
g
(x)
1 . . . g(x)nw

)
− gk + gk − gl + gl −MDA

(
g
(z)
1 . . . g(z)nw

)∥∥∥
≤
∥∥∥MDA

(
g
(x)
1 . . . g(x)nw

)
− gk

∥∥∥+ ‖gk − gl‖+
∥∥∥MDA

(
g
(z)
1 . . . g(z)nw

)
− gl

∥∥∥
≤ 3 · max

(i,j)∈(Hx∪Hz)2
‖gi − gj‖

Thus, ∥∥∥MDA
(
g
(x)
1 . . . g(x)nw

)
−MDA

(
g
(z)
1 . . . g(z)nw

)∥∥∥ ≤ 3 · max
(i,j)∈(Hx∪Hz)2

‖gi − gj‖ (2)

In plain text, this equation bounds the difference between aggregated gradients at two different
correct servers, based on the maximum distance between two correct gradients, i.e., aggregated
gradients on different servers will not drift arbitrarily.

3.3 Bounded distance between correct models

To satisfy Equation 1 (the required assumption by MDA, Section 1.2), models at correct pa-
rameter servers should not go arbitrarily far from each other. Thus, a global gather step (step 6
in Section 2.2) is executed once in a while to bring the correct models back close to each other.
Such a gather step is close to the distributed contraction module of [6], which is based on apply-
ing Median on both servers and workers sides (with the difference that the gather step applies
MeaMed instead of Median and does not execute in all iterations).
In this section we quantify the maximum number of iterations that can be executed in one
scatter step before executing one gather step. From another perspective, the goal is to find the
maximum possible distance between correct models that still satisfies the requirement of MDA
on the distance between correct gradients (Equation 1).
Without loss of generality, assume two correct parameter servers x and z starting with the same
initial model θ0. After the first iteration, their updated models are given by:

θ
(x)
1 = θ0 − γ1MDA

(
g
(1)
1 . . . g

(nw)
1

)
x

θ
(z)
1 = θ0 − γ1MDA

(
g
(1)
1 . . . g

(nw)
1

)
z

6

Thus, the difference between them is given by:∥∥∥θ(x)1 − θ
(z)
1

∥∥∥ = γ1

∥∥∥MDA
(
g
(1)
1 . . . g

(nw)
1

)
z
−MDA

(
g
(1)
1 . . . g

(nw)
1

)
x

∥∥∥
In a perfect environment, with no Byzantine workers, this difference is zero, since the input
gradients to the MDA function at both servers are the same (no worker lies about its gradient
estimation), and the MDA function is deterministic (i.e., the output of MDA computation on
both servers is the same). However, a Byzantine worker can send different gradients to different
servers while crafting these gradients carefully to trick the MDA function to include them in
the aggregated gradient (i.e., force MDA to select the malicious gradients in the set S). In this

case,
∥∥∥θ(x)1 − θ

(z)
1

∥∥∥ is not guaranteed to be zero. Based on Equation 2, the difference between

the result of applying MDA in the same iteration is bounded and hence, such a difference can
be given by: ∥∥∥θ(x)1 − θ

(z)
1

∥∥∥ ≤ 3 · γ1 · max
(i,j)∈(Hx∪Hz)2

∥∥∥g(i)1 − g
(j)
1

∥∥∥ (3)

Following the same analysis, the updated models in the second iterations at our subject param-
eter servers are given by:

θ
(x)
2 = θ

(x)
1 − γ2MDA

(
g
(1)
2 . . . g

(nw)
2

)
x

θ
(z)
2 = θ

(z)
1 − γ2MDA

(
g
(1)
2 . . . g

(nw)
2

)
z

Thus, the difference between models now will be:∥∥∥θ(x)2 − θ
(z)
2

∥∥∥ =
∥∥∥(θ(x)1 − γ2MDA

(
g
(1)
2 . . . g

(nw)
2

)
x

)
−
(
θ
(z)
1 − γ2MDA

(
g
(1)
2 . . . g

(nw)
2

)
z

)∥∥∥
≤
∥∥∥θ(x)1 − θ

(z)
1

∥∥∥+ γ2

∥∥∥MDA
(
g
(1)
2 . . . g

(nw)
2

)
x
−MDA

(
g
(1)
2 . . . g

(nw)
2

)
z

∥∥∥
The bound on the first term is given in Equation 3 and that on the second term is given in
Equation 2 and hence, the difference between models in the second iteration is given by:∥∥∥θ(x)2 − θ

(z)
2

∥∥∥ ≤ 3 · γ1 · max
(i,j)∈(Hx∪Hz)2

∥∥∥g(i)1 − g
(j)
1

∥∥∥+ 3 · γ2 · max
(i,j)∈(Hx∪Hz)2

∥∥∥g(i)2 − g
(j)
2

∥∥∥ (4)

By induction, we can write that the difference between models on two correct parameter servers
at iteration τ is given by:∥∥∥θ(x)t − θ

(z)
t

∥∥∥ ≤ τ∑
t=1

3 · γt · max
(i,j)∈(Hx∪Hz)2

∥∥∥g(i)t − g(j)t ∥∥∥ (5)

Since g
(i)
t and g

(j)
t are computed at different workers, they can be computed based on dif-

ferent models θ
(i)
t and θ

(j)
t . Following assumption 5,

∥∥∥g(i)t − g(j)t ∥∥∥ is bounded from above with

l
∥∥∥θ(i)t − θ(j)t ∥∥∥. Noting that the sequence γt is monotonically decreasing with t→∞ (Section 2.1),

Equation 5 can be written as:∥∥∥θ(x)t − θ
(z)
t

∥∥∥ ≤ 3 · γ1 · l
τ∑
t=1

max
(i,j)∈(Hx∪Hz)2

∥∥∥θ(i)t − θ(j)t ∥∥∥
Assuming that the maximum difference between any two correct models is bounded by K, this
difference can be written as: ∥∥∥θ(x)t − θ

(z)
t

∥∥∥ ≤ 3 · γ1 · l · K · τ

7

Now, to ensure the bound on the maximum difference between models, we need the value of∥∥∥θ(x)t − θ
(z)
t

∥∥∥ ≤ K. At this point, the number of steps τ = T should be bounded from above as

follows:

T ≤ 1

3 · γ1 · l
(6)

T here represents the maximum number of iterations that are allowed to happen in the scatter
step i.e., before doing one gather step. Doing more iterations than this number leads to break-
ing the requirement of MDA on the variance between input gradients, leading to breaking its
Byzantine resilience guarantees. Thus, this bound is a safety bound that one should not pass
to guarantee convergence. One can do less number of iterations (than T) during the scatter
phase for a better performance (as we discuss in Section 6 in the main paper). Moreover, this
bound requires that the initial setup satisfies the assumptions of MDA. Having a deployment
that does not follow such assumptions leads to breaking guarantees of our protocol (as we show
in Section 4 in the main paper).

3.4 Byzantine models filtering

This section shows that the filtering mechanism that is applied by workers (step 5 in Section 2.2)
accepts only legitimate models that are received from servers which follow the algorithm, i.e.,
correct servers.
Such a filter is composed of two components: (1) a Lipschitz filter, which bounds the growth of
models with respect to gradients, and (2) a models filter, which bounds the distance between
models in two consecutive iterations. We first discuss the Lipschitz filter then the models filter;
we show that using either of them only does not guarantee Byzantine resilience.

3.4.1 Lipschitz filter

The Lipschitz filter is defined in Step 5, Section 2.2. Roughly speaking, it runs on worker
side, where it computes the Lipschitz coefficient of the pulled model and suspects it if its com-
puted coefficient is far from Lipschitz coefficients of the previous correct models (from previous
iterations).
The Lipschitz filter, by definition, accepts on average nps − fps models each pulled nps models.
Such a bound makes sense given the round robin fashion of pulling models from servers (by
workers) and the existence of (at most) fps Byzantine servers. Based on this filter, each worker
pulls, on average, nps + fps each nps iterations. Due to the presence of fps Byzantine servers,
this is a tight lower bound on the communication between each worker and parameter servers
to pull the updated model. The worst attack an adversary can do is to send a model that passes
the filter (looks like a legitimate model, i.e., very close to a legitimate model) that does not lead
to computing a large enough gradient (i.e., leads to minimal learning progress); in other words:
an attack that drastically slows down progress. For this reason, such a filter requires nps > 3fps.
With this bound, the filter ensures the acceptance of at least fps + 1 models for each pulled
nps models, ensuring a majority of correct accepted models anyway and hence, ensuring the
progress of learning. Moreover, due to the randomness of choosing the value rj and the round
robin fashion of pulling the models, progress is guaranteed in such a step, as correct and useful
models are pulled by other workers, leading to computing correct gradients.
Based on assumption 5 and the round robin fashion of pulling models, a Lipschitz coefficient
that is computed based on a correct model is always bounded between two Lipschitz coefficients
resulting from correct models. Based on this, the global confinement property is satisfied (based
on the properties of models that passes the Lipschitz filter) and hence, we can plug LiuBei in the
confinement proof in [3]. Precisely, given assumptions 4 and 5, and applying [3] (of which these
assumptions are prerequisite), the models accepted by the Lipschitz filter satisfy the following
property:

8

Let r=2,3,4, ∃A′r ≥ 0 and B′r ≥ 0 such that ∀t ≥ 0,E ‖gt‖ ≤ A′r +B′r ‖θt‖
r ,

where θt is the model accepted by the Lipschitz filter at some worker and gt is the gradient
calculated based on such a model.

3.4.2 Models filter

The Lipschitz filter is necessary, yet not sufficient to accept models from a parameter server.
A Byzantine server can craft some model that is arbitrarily far from the correct model, whose
gradient satisfies the Lipschitz filter condition. Thus, it is extremely important to make sure
that the received model is close to the expected, correct model. Such a condition is verified by
the second filter at the worker side, which we call the models filter. Such a filter is based on the
results given in Section 3.3 and the local model estimation on the workers side.
Without loss of generality, consider a correct worker j that pulls models from parameter servers

θ
(i)
t ∀i ∈ [1 .. nps] in a round robin fashion. In each iteration t > 1, the worker computes a local

estimation of the next (to be received) model θ
(j(l))
t based on the latest model it has θ

(j)
t−1 and

its own gradient estimation g
(j)
t−1. The local model estimation is done as follows:

θ
(j(l))
t = θ

(j)
t−1 − γt−1g

(j)
t−1.

Without loss of generality, assume that worker j pulls the model from some server i in iteration

t. If such a server is correct, it computes the new model θ
(i)
t as follows:

θ
(i)
t = θ

(i)
t−1 − γt−1MDA

(
g
(1)
t−1 . . . g

(nw)
t−1

)
.

Thus, the difference between the local model estimation at worker j and the received model
from server i (if it is correct) is given by:∥∥∥θ(j(l))t − θ(i)t

∥∥∥ =
∥∥∥(θ(j)t−1 − γt−1g(j)t−1)− (θ(i)t−1 − γt−1MDA

(
g
(1)
t−1 . . . g

(nw)
t−1

))∥∥∥
≤
∥∥∥θ(j)t−1 − θ(i)t−1∥∥∥+ γt−1

∥∥∥MDA
(
g
(1)
t−1 . . . g

(nw)
t−1

)
− g(j)t−1

∥∥∥
Based on the guarantees given by MDA [7], the following bound holds:∥∥∥MDA

(
g
(1)
t . . . g

(nw)
t

)
− g(j)t

∥∥∥ ≤ nw − fw
2fw

∥∥∥g(j)t ∥∥∥ .
Based on the results of Section 3.3, the maximum distance between two correct models just after

a gather step is 3
4
nw−fw
fw

γ(T ·(t mod T))

∥∥∥g(T ·(t mod T))

∥∥∥T . By induction, we can find the bound

on the value
∥∥∥θ(j(l))t−1 − θ

(i)
t−1

∥∥∥ and hence, we can write:

∥∥∥θ(j(l))t − θ(i)t
∥∥∥ ≤ γ(T ·(t mod T))

∥∥∥g(T ·(t mod T))

∥∥∥(2

(
(t mod T)− 1

)
+

(nw − fw)(3T + 2)

4fw

)
.

(7)

Thus, a received model θ
(i)
t that satisfies Equation 7 is considered passing the models filter.

Such a model is guaranteed to be in the correct cone of models in one scatter step. Note that
such a filter cannot be used alone without the Lipschitz filter. A Byzantine server can craft a
model that satisfies such a filter (i.e., the models filter) while being on the opposite direction of
minimizing the loss function. Such a model then will be caught by the Lipschitz filter.
Combining the Lipschitz filter and the models filter guarantees that the received model at the
worker side is close to the correct one (at the current specific scatter step), representing a
reasonable growth, compared to the latest local model at the worker.

9

3.5 Proof of LiuBei

The algorithm works iteratively in two main phases, which we call scatter and gather phases. In
the scatter phase, each parameter server works on its own local data without communicating with
other servers. Also, workers pull the model from at most fps+1 servers in each iteration, without
requiring to communicate with all other servers. Such a step lasts for T learning iterations. In
the gather phase, parameter servers communicate together to gather their models close to each
other, and workers also gather models from all parameter servers. Such a step is done for only
one learning iteration. Naively, if we do the gather step in all learning iterations, the algorithm
becomes very similar to GuanYu [6] (with even better guarantees due to the network synchrony
assumption), and the proof of convergence can be adapted directly (basically in this case we do
not need the filters). On the other extreme, if the gather step is never executed (i.e., only the
scatter step is executed), the models at different servers will become arbitrarily far form each
other (Section 3.3) and hence, the assumptions of the Byzantine-resilient GAR, i.e., MDA are
violated, leading to (possibly) divergence.
Based on this, the gist of the proof is to show that the maximum distance between models at
correct servers is always small enough to satisfy the assumptions of MDA. Based on this and
the fact that workers do SGD steps during the scatter phase, it is trivial to show that there is
a progress in learning between two gather steps, i.e., the loss function is minimized and hence,
the proof is reduced to the standard proof of SGD convergence [3].
Formally, we show:

lim
t→∞

E
(

max
(x,z)∈[1 .. nps−fps]

∥∥∥θ(x)t − θ
(z)
t

∥∥∥) = 0

lim
t→∞

E
∥∥∥∇L(θ(x)t

)∥∥∥ = 0

Proving these two equalities implies necessarily the convergence of the learning procedure, or
formally:

lim
t→∞

E ‖∇L (θt)‖ = 0

Proof. From Equation 7, we know that the difference between correct models is bounded by∥∥∥gT ·(t mod T)

∥∥∥. Based on our assumptions (Section 3.1), lim
t→∞

∥∥∥gT ·(t mod T)

∥∥∥ = 0.

Therefore, lim
t→∞

max
(x,z)∈[1 .. nps−fps]

∥∥∥θ(x)t − θ
(z)
t

∥∥∥ = 0.

A direct consequence of Section 3.3 is that beyond a certain time tε (with ε > 0 be any positive
real number), the standard deviation of the gradient estimators as well as the drift between
(correct) parameter vectors can be bounded arbitrarily close to each other. More formally, the
following holds (and is a direct consequence of the limits stated above):

∃tε ≥ 0, ∀t ≥ tε,

E
(

max
i∈[1 .. nw−fw]

∥∥∥g(i)t − E g(1)t

∥∥∥) ≤ σ′ + ε

E

(
max

(x,z)∈[1 .. nps−fps]2

∥∥∥θ(x)t − θ
(z)
t

∥∥∥) < ε
l

The first inequality provides the bounded variance guarantee needed to plug LiuBei into the
convergence proof of [2], and the second inequality provides the remaining requirement, i.e.
the bound on the statistical higher moments of the gradient estimator as if there was a single
parameter. More precisely, we have the following, let (x, z) be any two correct parameter servers,
using a triangle inequality, the second inequality above, and assumption 4 (bounded moments)
we have (as given in Section 3.4):

∀t > tε∀r ∈ [2 .. 4] , ∃ (Ar, Br) ∈ R2,

∀ (i, t, θ) ∈ [1 .. nw − fw]× N× Rd, E
∥∥∥g(x)t

∥∥∥ ≤ A′r +B′r

∥∥∥θ(z)t ∥∥∥r
10

where A′r and B′r are positive constants, depending polynomially (at most with degree r, by
using the second inequality above, the triangle inequality and a binomial expansion) on ε, σ
and (Ar, Br) from assumption 4, allowing us to use the convergence proof of [2] (Proposition 2)
regardless of the identity of the (correct) parameter server.

Convergence rate. Using MDA is shown to induce a convergence rate of O(
√

nw−fw
nw

) [7].

We note that if we do the gather step in each iteration (i.e., T = 1), this rate would not change
since the MeaMed function will always choose a correct model to proceed with. Moreover, the
variance between models at the correct parameter servers will be minimum (zero in the case of
absence of Byzantine machines). Gathering the models each 2 iterations (i.e., T = 2) doubles
the distance between models on correct parameter servers (in the worst case). By induction,
doing the gather step after T iterations stretches the difference between correct models by a
factor of T in the worst case. Hence, the slowdown induced by the filtering techniques only is

O(1
T) and the convergence rate of LiuBei is O(

√
nw−fw
nwT 2).

4 Validating the bounded gradients variance assumption

To make progress at every step, any state–of–the–art Byzantine–resilient gradient aggrega-
tion rule (GAR), that is based solely on statistical robustness, requires a bound on the ratio
variance/norm of the correct gradient estimations. Intuitively, not having such a bound would
allow the correct gradients to become indistinguishable from some random noise. This is prob-
lematic, since these Byzantine–resilient GARs [2, 10, 7, 12] rely on techniques analogous to voting
(i.e. median–like techniques in high–dimension): if the correct majority does not agree (appears
“random”), then the Byzantine minority controls the aggregated gradient. For example, not
satisfying these bounds makes the used GARs vulnerable against recently–proposed attacks like
A little is enough attack [1], which we experimented in Section 4.3 in the main paper. Such a
bound is to ensure that, no matter the received Byzantine gradients, the expected value of the
aggregated gradient does lie in the same half–space as the real gradient, leading for every step
taken to more optimal parameters (smaller loss).
Here, we try to understand when this assumed bound on the variance to norm ratio (e.g.,
Equation 1) holds, and when it does not. The most straightforward way to fulfill such an
assumption is to increase the batch size used for training. The question is then what the
minimum batch size (that can be used while satisfying such a bound) is, and whether it is small
enough for the distribution of the training to still make sense.
Methodology. We use the same setup, along with hyper-parameters, used in our evaluation of
LiuBei (Section 4.2). We estimate over the first 100 steps of training the variance to norm ratio
of correct gradient estimations for several batch sizes. We plot the average (line) and standard
deviation (error bar) of these ratios over these 100 steps (Figure 1). We show the bound required
by two Byzantine-resilient GAR: MDA, and Multi–Krum [2]. We find Multi–Krum a very good
example on a widely–used GAR that unfortunately does not seem to provide any practical3

guarantee, due to its unsatisfied assumption4. We also experimented with two values of the
number of declared Byzantine workers: f = 1, 5. Increasing the value of f calls for a tighter
bound on the variance to norm ratio.
Results. Figure 1 depicts the relation between the variance (of gradients) to norm ratio with
the batch size. According to such a figure, Multi–Krum cannot be safely used even with the
largest experimented batch size, i.e., 256. Otherwise, the variance bound assumption such a
GAR builds on is not satisfied and hence, an adversary can break its resilience guarantees [1].
MDA gives a better bound on the variance, which makes it more practical in this sense: typical
batch size of 128 for example can be safely used with f = 1. However, MDA is not safe to

3At least on our academic model and dataset.
4It needs very low variance to norm ratio of correct gradient estimations, e.g. 0.08 for (n, f) = (18, 5).

11

20 21 22 23 24 25 26 27 28
Batch size

0
2
4
6
8

10
12

va
ria

nc
e

no
rm

Real
MDA threshold
Multi-Krum threshold

(a) f = 1

20 21 22 23 24 25 26 27 28
Batch size

0
2
4
6
8

10
12

va
ria

nc
e

no
rm

Real
MDA threshold
Multi-Krum threshold

(b) f = 5

Figure 1: Variance to norm ratio with different batch sizes, compared to the bound/threshold
required by two Byzantine-resilient GARs: MDA and Multi–Krum. To satisfy a GAR assump-
tion/condition, the real variance/norm value should be lower than the GAR bound. For instance,
MDA can be used with batch-size=32 with f = 1, but not with f = 5 (as the real variance/norm
value is higher than the MDA threshold).

use with f = 5 even with the largest experimented batch size (b = 256). This is confirmed in
Section 4.3 in the main paper, where we show that an adversary can use such a vulnerability
(due to the unsatisfied assumption) to reduce the learning accuracy. Having the optimal bound
on variance while guaranteeing Byzantine resilience and convergence remains an open question.

References

[1] Moran Baruch, Gilad Baruch, and Yoav Goldberg. A little is enough: Circumventing
defenses for distributed learning. arXiv preprint arXiv:1902.06156, 2019.

[2] Peva Blanchard, El Mahdi El Mhamdi, Rachid Guerraoui, and Julien Stainer. Machine
learning with adversaries: Byzantine tolerant gradient descent. In Neural Information
Processing Systems, pages 118–128, 2017.

[3] Léon Bottou. Online learning and stochastic approximations. Online learning in neural
networks, 17(9):142, 1998.

[4] Olivier Bousquet and Léon Bottou. The tradeoffs of large scale learning. In Neural Infor-
mation Processing Systems, pages 161–168, 2008.

[5] Georgios Damaskinos, El Mahdi El Mhamdi, Rachid Guerraoui, Rhicheek Patra, Mahsa
Taziki, et al. Asynchronous byzantine machine learning (the case of sgd). In ICML, pages
1153–1162, 2018.

[6] El-Mahdi El-Mhamdi, Rachid Guerraoui, Arsany Guirguis, and Sebastien Rouault. Sgd:
Decentralized byzantine resilience. arXiv preprint arXiv:1905.03853, 2019.

[7] El Mahdi El Mhamdi, Rachid Guerraoui, and Sébastien Rouault. The hidden vulnerability
of distributed learning in Byzantium. In Jennifer Dy and Andreas Krause, editors, Proceed-
ings of the 35th International Conference on Machine Learning, volume 80 of Proceedings
of Machine Learning Research, pages 3521–3530, Stockholmsmässan, Stockholm Sweden,
10–15 Jul 2018. PMLR.

[8] Mu Li, Li Zhou, Zichao Yang, Aaron Li, Fei Xia, David G Andersen, and Alexander Smola.
Parameter server for distributed machine learning. In Big Learning NIPS Workshop, vol-
ume 6, page 2, 2013.

12

[9] Peter J Rousseeuw. Multivariate estimation with high breakdown point. Mathematical
statistics and applications, 8:283–297, 1985.

[10] Lili Su. Defending distributed systems against adversarial attacks: consensus, consensus-
based learning, and statistical learning. PhD thesis, University of Illinois at Urbana-
Champaign, 2017.

[11] Cong Xie, Oluwasanmi Koyejo, and Indranil Gupta. Generalized Byzantine-tolerant sgd.
arXiv preprint arXiv:1802.10116, 2018.

[12] Cong Xie, Oluwasanmi Koyejo, and Indranil Gupta. Phocas: dimensional byzantine-
resilient stochastic gradient descent. arXiv preprint arXiv:1805.09682, 2018.

[13] Cong Xie, Oluwasanmi Koyejo, and Indranil Gupta. Zeno: Byzantine-suspicious stochastic
gradient descent. arXiv preprint arXiv:1805.10032, 2018.

13

	Introduction
	Model and Assumptions
	Byzantine Machine Learning
	System Model

	LiuBei
	Total Byzantine Resilience
	Algorithm

	Implementation and Evaluation
	Implementation
	Setup
	Results

	Related Work
	Concluding Remarks

