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1 ABSTRACT

We provide recovery guarantees for compressible signals that have been corrupted with noise and
extend the framework introduced in Bafna et al. (2018) to defend neural networks against `0, `2,
and `∞-norm attacks. In the case of `0-norm noise, we provide recovery guarantees for Iterative
Hard Thresholding (IHT) and Basis Pursuit (BP). For `2-norm bounded noise, we provide recovery
guarantees for BP, and for the case of `∞-norm bounded noise, we provide recovery guarantees
for a modified version of Dantzig Selector (DS). These guarantees theoretically bolster the defense
framework introduced in Bafna et al. (2018) for defending neural networks against adversarial in-
puts. Finally, we experimentally demonstrate the effectiveness of this defense framework against an
array of `0, `2 and `∞-norm attacks.

2 INTRODUCTION

Signal measurements are often corrupted by noise. The theory of compressive sensing (Candes
et al. (2006)) allows us to retrieve the original signal from a corrupted measurement, under some
structural assumptions on the measurement mechanism and the signal. Let us consider the class of
machine learning problems where the inputs are compressible (i.e., approximately sparse) in some
domain. For instance, images and audio signals are known to be compressible in their frequency
domain and machine learning algorithms have been shown to perform exceedingly well on clas-
sification tasks that take such signals as input (Krizhevsky et al. (2012); Sutskever et al. (2014)).
However, it was found in Szegedy et al. (2013) that neural networks can be easily forced into mak-
ing incorrect predictions by adding adversarial perturbations to their inputs; see also Szegedy et al.
(2014); Goodfellow et al. (2015); Papernot et al. (2016); Carlini & Wagner (2017). Further, the
adversarial perturbations that led to incorrect predictions were shown to be very small (in either `0,
`2, or `∞-norm) and often imperceptible to human beings. For this class of machine learning tasks,
we show how to approximately recover original inputs from adversarial inputs and thus defend the
neural network `0-norm, `2-norm and `∞-norm attacks.

In the case of `0-norm attacks on neural networks, the adversary can perturb a bounded number of
coordinates in the input vector but has no restriction on how much each coordinate is perturbed in
absolute value. In the case of `2-norm attacks, the adversary can perturb as many coordinates of the
input vector as they choose as long as the `2-norm of the perturbation vector is bounded. Finally, in
`∞-norm attacks, the adversary is only constrained by the amount of noise added to each coordinate
of the input vector.

The contribution and structure of this paper is as follows. In Section 3.1, we describe the Compres-
sive Recovery Defense (CRD) framework, a compressive-sensing-based framework for defending
neural networks against adversarial inputs. This is essentially the same framework introduced in
Bafna et al. (2018), though Bafna et al. (2018) considered only `0 attacks. In Section 3.2, we present
the recovery algorithms which are used in the CRD framework to approximately recover original
inputs from adversarial inputs. These algorithms include standard Basis Pursuit (BP), (k, t)-sparse
Iterative Hard Thresholding (IHT) and Dantzig Selector (DS) with an additional constraint. In Sec-
tion 3.3, we state recovery guarantees for the recovery algorithms in the presence of noise bounded
in either `0, `2, or `∞-norm. The guarantees apply to arbitrary `0, `2, and `∞-norm attacks; they
do not require prior knowledge of the adversary’s attack strategy. The recovery guarantees are
proved rigorously in Appendix A. In Section 4, we experimentally demonstrate the performance of
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the CRD framework in defending neural network classifiers on CIFAR-10, MNIST, and Fashion-
MNIST datasets against state-of-the-art `0, `2 and `∞-norm attacks.

Notation. Let x be a vector in CN . Let S ⊆ {1, . . . , N} and S = {1, . . . , N} \ S. The cardinality
of S is |S|. If A ∈ Cm×N is a matrix, then AS ∈ Cm×|S| is the column submatrix of A consisting
of the columns indexed by S. We denote by xS either the sub-vector in CS consisting of the entries
indexed by S or the vector in CN that is formed by starting with x and setting the entries indexed
by S to zero. For example, if x = [4, 5,−9, 1]T and S = {1, 3}, then xS is either [4,−9]T or
[4, 0,−9, 0]T . It will always be clear from context which meaning is intended. Note that, under
the second meaning, xS = x − xS . The support of x, denoted by supp(x), is the set of indices
of the non-zero entries of x, i.e., supp(x) = {i ∈ {1, . . . , N} : xi 6= 0}. The `0-quasinorm of x,
denoted ‖x‖0, is defined to be the number of non-zero entries of x, i.e. ‖x‖0 = card(supp(x)).
We say that x is k-sparse if ‖x‖0 ≤ k. We use xh(k) to denote a k-sparse vector in CN consisting
of the k largest (in absolute value) entries of x with all other entries zero. For example, if x =
[4, 5,−9, 1]T then xh(2) = [0, 5,−9, 0]T . Note that xh(k) may not be uniquely defined. In contexts
where a unique meaning for xh(k) is needed, we can choose xh(k) out of all possible candidates
according to a predefined rule (such as the lexicographic order). We also define xt(k) = x− xh(k).
If x = [x1, x2]

T ∈ C2n with x1, x2 ∈ Cn, and if x1 is k-sparse and x2 is t-sparse, then x is called
(k, t)-sparse. We define xh(k,t) = [(x1)h(k), (x2)h(t)]

T , which is a (k, t)-sparse vector in C2n.

3 THEORY

3.1 COMPRESSIVE RECOVERY DEFENSE (CRD)

Bafna et al. (2018) introduced a framework for defending machine learning classifiers against `0-
attacks. We extend the framework to `2 and `∞ attacks. The defense framework is based on the
theory of compressive sensing, so we call it Compressive Recovery Defense (CRD).

We explain the idea behind the CRD framework in the context of an image classifier. Suppose
x ∈ Cn is a (flattened) image vector we wish to classify. But suppose an adversary perturbs x with
a noise vector e ∈ Cn. We observe y = x + e, while x and e are unknown to us. Let F ∈ Cn×n
be the Discrete Fourier Transform (DFT) matrix. The Fourier coefficients of x are x̂ = Fx. It is
well-known that natural images are approximately sparse in the frequency domain. So we expect
that x̂ is approximately sparse, meaning that x̂t(k) is small for some small k. We can write

y = F−1x̂+ e (1)
If ‖e‖2 ≤ η or ‖e‖∞ ≤ η, with η small (as in a `2 or `∞-attack), then we can use an appropriate
sparse recovery algorithm with y and F−1 as input to compute a good approximation x# to x̂.
Precise error bounds are given in Section 3.3. Then, since F is unitary, F−1x# will be a good
approximation (i.e., reconstruction) of x = F−1x̂. So we can feed F−1x# into the classifier and
expect to get the same classification as we would have for x. For an `0-attack where e is t-sparse,
the approach is only slightly different. We set A = [F−1, I] and write

y = F−1x̂+ e = F−1x̂h(k) + e+ F−1x̂t(k) = A[x̂h(k), e]
T + F−1x̂t(k), (2)

so that [x̂h(k), e]
T is (k, t)-sparse. This structure lets us use a sparse recovery algorithm to compute

a good approximation to x̂, as before. Note that the same idea can be applied with audio signals or
other types of data instead of images. Moreover, the DFT can be replaced by any unitary transfor-
mation F for which x̂ = Fx is approximately sparse. For example, F may be the Cosine Transform,
Sine Transform, Hadamard Transform, or another wavelet transform.

We now describe the training and testing procedure for CRD. For each training image x, we compute
x̂h(k) = (Fx)h(k), and then compute the compressed the image x′ = F−1x̂h(k). We then add both
x and x′ to the training set and train the network in the usual way. Given a (potentially adversarial)
test image y, we first use a sparse recovery algorithm to compute an approximation x# to x̂, then
we compute the reconstructed image y′ = F−1x# and feed it into the network for classification.

3.2 RECOVERY ALGORITHMS

We provide the recovery algorithms used in this section. For `0-attacks, we set A = [F−1, I] as in
(2). Against `2 or `∞-attacks, we take A = F−1 as in (1).
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Algorithm 1: (k, t)-Sparse Iterative Hard Thresholding (IHT)
Procedure: IHT (y,A, k, t, T )
Input: y ∈ Cn, A ∈ Cn×2n, and positive integers k, t, T .
x[0] = 0
for i := 0 to T do

x[i+1] =
(
x[i] +A∗(y −Ax[i])

)
h(k,t)

return x# = x[T+1]

The IHT algorithm above is used to defend against `0-norm attacks. For such attacks, according
to (2), the vector we need to recover is (k, t)-sparse. Thus this IHT is adapted to the structure of
our problem as it uses the thresholding operation h(k,t) that produces (k, t)-sparse vectors. This
structured IHT was first considered in Baraniuk et al. (2010). It gives better theoretical guarantees
and practical performance in our CRD application than the standard IHT, which would instead use
the thresholding operation h(k+t) that produces (k + t)-sparse vectors. For `2 or `∞ attacks, the
recovery error for IHT would (in general) be larger due to the need to include a term for the `2
norm of the tail of the noise vector e. This, in turn, produces worse expected performance of the
recovery defense. Therefore we only use Algorithm 1 for `0-norm attacks. We note that the results
of Theorem 1 allow for values of k and t greater than or equal to Theorem 2.2. of Bafna et al. (2018).

Algorithm 2: Basis Pursuit (BP).
Procedure: BP (y,A, η).
Input: y ∈ Cm, A ∈ Cm×N , and η ≥ 0.
x# = argminz∈CN ‖z‖1 subject to‖Az − y‖2 ≤ η
return x#

We utilize BP for `0 and `2 norm attacks. In the `0 norm case, BP allows us to provide recovery
guarantees for larger values of k and t than IHT. For instance, in the case of MNIST and Fashion-
MNIST, IHT (equation (4) of Theorem 1) allows us to set k = 4 and t = 3, whereas BP (equation
(7) of Theorem 2) allows us to set k = 8 and t = 8.

In the case of `2 norm attacks, BP is applied withA = F−1, a unitary matrix. As unitary matrices are
isometries in `2 norm, BP provides good recovery guarantees for such matrices, and hence against
`2 norm attacks.

Algorithm 3: Modified Dantzig Selector (DS).
Procedure: DS(y,A, η).
Input: y ∈ Cm, A ∈ Cm×N , and η ≥ 0.
x# = argminz∈CN ‖z‖1 subject to ‖A∗(Az − y)‖∞ ≤

√
nη, ‖Az − y‖∞ ≤ η

return x#

We utilize DS for `∞ norm attacks. The standard Dantzig Selector algorithm does not have the
additional constraint ‖Az − y‖∞ ≤ η. Our modified Dantzig Selector includes this constraint for
the following reason. In our application, A = F−1 and we want the reconstruction Ax# = F−1x#

to be close to the original image x, so that they are classified identically. Thus, we want to the search
space for x# to be restricted to those z ∈ CN such that ‖Az−x‖∞ is small. Note, for any z ∈ CN ,
‖Az − x‖∞ ≤ ‖Az − y‖∞ + ‖x − y‖∞. In an `∞-attack, ‖x − y‖∞ = ‖e‖∞ is already small.
Thus it suffices to require ‖Az − y‖∞ is small. We experimentally illustrate the improvement in
reconstruction due to the additional constraint in Section 4.3 (Figure 4, Table 4).

Remarks on Reverse-Engineered Attacks. As observed in Bafna et al. (2018), x[0] in Algorithm 1,
can be initialized randomly to defend against a reverse-engineered attack. In the case of Algorithm
2 and Algorithm 3, the minimization problems can be posed as semi-definite programming prob-
lems. If solved with interior point methods, one can use random initialization of the central path
parameter and add randomness to the stopping criterion. This makes recovery non-deterministic
and consequently non-trivial to create a reverse-engineered attack.

3.3 RECOVERY GUARANTEES

LetF ∈ Cn×n be a unitary matrix and I ∈ Cn×n be the identity matrix. DefineA = [F, I] ∈ Cn×2n

and let y = A[x̂, e]T = Fx̂+ e, where x̂, e ∈ Cn. Let 1 ≤ k, t ≤ n be integers.
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Theorem 1 (`0-norm IHT). Assume |Fij |2 ≤ c
n and e is t-sparse. Let x[T+1] = IHT (y,A, k, t, T )

where x[T+1] =
[
x̂[T+1], e[T+1]

]T ∈ C2n with x̂[T+1], e[T+1] ∈ Cn.

Define ρ :=
√
27
√

ckt
n , τ(1− ρ) :=

√
3

√
1 + 2

√
ckt
n . If 0 < ρ < 1, then:

‖x̂[T+1] − x̂h(k)‖2 ≤ ρ(T+1)
√
‖x̂h(k)‖22 + ‖e‖22 + τ‖x̂t(k)‖2 (3)

Moreover for any 0 < ε < 1 and any T ≥
(

log(1/ε)+log(
√
‖x̂h(k)‖22+‖e‖22)

log(1/ρ)

)
, we get:

‖x̂[T+1] − x̂h(k)‖2 ≤ τ‖x̂t(k)‖2 + ε (4)

Now define ρ := 2
√
2
√

ckt
n , τ(1− ρ) := 2. If 0 < ρ < 1, then:

‖x̂[T+1] − x̂h(k)‖2 ≤ ρ(T+1)‖x̂h(k)‖2 + τ(‖x̂t(k)‖2 + ‖e‖2) (5)

Moreover for any 0 < ε < 1 and any T ≥
(

log(1/ε)+log(‖x̂h(k)‖2)

log(1/ρ)

)
, we get:

‖x̂[T+1] − x̂h(k)‖2 ≤ τ(‖x̂t(k)‖2 + ‖e‖2) + ε (6)

Let us explain how to interpret the recovery guarantees provided by Theorem 1. The inequalities (3),
(4), (5), (6) provide an upper bound on the size of ‖x̂[T+1] − x̂h(k)‖2. Since F is a unitary matrix,
‖x̂[T+1] − x̂h(k)‖2 equals ‖Fx̂[T+1] − Fx̂h(k)‖2, which is the difference between the reconstructed
image Fx̂[T+1] and the compressed image Fx̂h(k) (which is a compressed version of the original
image x). So the inequalities of Theorem 1 tell us how close the reconstructed image must be to
the compressed image, and thus indicates how confident we should be that the classification of the
reconstructed image will agree with the classification of the compressed image. In other words, the
inequalities tell us how likely it is that the CRD scheme using IHT will be able to recover the correct
class of the original image, and thus defend the classifier from the adversarial attack. The presence
of the norm of the tail x̂t(k) in the upper bounds indicates that the CRD scheme should be more
effective when the original image is closer to being perfectly k-sparse in the transformed basis. The
ratio kt/n in the upper bounds (via ρ and τ ) suggests that smaller values of k and t relative to n
(i.e., sparser transformed images x̂ and error vectors e) will lead to the CRD being more effective.
The experiments in Section 4 will demonstrate these phenomena.

Let us compare Theorem 1 to the similar Theorem 2.2 of Bafna et al. (2018). We observe that (3)
and (4) allow larger values of k and t than Theorem 2.2 of Bafna et al. (2018). This is because the
authors of Bafna et al. (2018) prove their results using Theorem 4 of Baraniuk et al. (2010), which
is more restrictive for the values of k and t. We do not use Theorem 4 of Baraniuk et al. (2010).
Instead we use (a modified form of) Theorem 6.18 of Foucart & Rauhut (2017) to get (3) and (4).
Both Theorem 4 of Baraniuk et al. (2010) (used by Bafna et al. (2018)) and Theorem 6.18 of Foucart
& Rauhut (2017) (used by us here) take as input the Restricted Isometry Property (RIP) stated in
Theorem 7. We and Bafna et al. (2018) both essentially prove the same RIP, although the proof
methods are different. We use a standard Gershgorin disc theorem argument to bound eigenvalues,
while Bafna et al. (2018) perform a direct estimation using the triangle inequality and AM-GM
inequality.

We turn now to (5) and (6), which provide recovery guarantees for larger values of k and t than
(3) and (4), at the expense of the extra error term ‖e‖2. Our proof of (5) and (6) is novel. It relies
on explicitly expanding one iteration of IHT in matrix form and using the structure of the resulting
matrix form to bound the approximation error at iteration T in terms of the error at iteration T − 2.
We then use an inductive argument as in Theorem 6.18 of Foucart & Rauhut (2017) to get (5) and
(6).

Next, we consider the recovery error for `0-norm bounded noise with BP instead of IHT. We note
that since Algorithm 2 is not adapted to the (k, t)-sparse structure of vector to be recovered, we
do not expect the guarantees to be particularly strong. However, providing bounds for BP is useful
as there are cases when BP provides recovery guarantees for when recovering a larger number of
coefficients (k) and a larger `0 noise budget (t) than IHT.
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Theorem 2 (`0-norm BP). Assume |Fij |2 ≤ c
n . Define

δk,t =

√
ckt

n
, β =

√
max{k, t}c

n
, θ =

√
k + t

(1− δk,t)
β, τ =

√
1 + δk,t

1− δk,t

If 0 < δk,t < 1 and 0 < θ < 1, then for x# = BP(y,A, ‖x̂t(k)‖2), we have the error bound

‖x̂# − x̂h(k)‖2 ≤
(
2τ
√
k + t

1− θ

(
1 +

β

1− δk,t

)
+ 2τ

)
‖x̂t(k)‖2 (7)

where we write x# = [x̂#, e#]T ∈ C2n with x̂#, e# ∈ Cn.

Note that the recovery error in (7) is O((
√
k + t)‖x̂t(k)‖2), which means that we should not expect

recovery to be close when the attacker has a large `0 noise budget or when x̂ is not sparse. Also
observe that the recovered vector x̂# is not necessarily k-sparse. The recovery error still captures
the difference in the original image Fx̂ and the reconstructed image Fx̂#, where a smaller recovery
error should once again indicate that our classifier would make the correct prediction. Our third
result covers the case when the noise is bounded in `2-norm.
Theorem 3 (`2-norm BP). If ‖e‖2 ≤ η, then for x# = BP(y, F, η), we have the error bound

‖x# − x̂‖1 ≤ 2
(
‖x̂t(k)‖1 + 2

√
kη
)

(8)

‖x# − x̂‖2 ≤
2√
k
‖x̂t(k)‖1 + 6η (9)

Finally, we provide recovery guarantees when the noise is bounded in `∞-norm.
Theorem 4 (`∞-norm DS). If ‖e‖∞ ≤ η, then for x# = DS(y, F, η), we have the error bound

‖x# − x̂‖1 ≤ 2
(
‖x̂t(k)‖1 + 2k

√
nη
)

(10)

‖x# − x̂‖2 ≤
2√
k
‖x̂t(k)‖1 + 6

√
knη (11)

The proofs of Theorem 3 and Theorem 4 are based on standard arguments in compressive sensing
that rely on establishing the so-called robust null space property of the matrix. Note that the results
of Theorem 3 and Theorem 4 also bound the norm difference of the original image Fx̂ and the
reconstructed image Fx̂#, where x̂# has no sparsity guarantees. Next, observe that the results of
Theorem 4 incur a factor of

√
n in the error bounds due to the constraint ‖A∗(Az − y)‖∞ ≤

√
nη

in Algorithm 3 which is required to prove the robust null space property. Finally, we note that the
additional constraint added to Algorithm 3 does not affect the proof of Theorem 4.

3.4 RELATED WORK

The authors of Bafna et al. (2018) introduced the CRD framework which inspired this work. In
fact, Theorem 2.2 of Bafna et al. (2018) also provides an approximation error bound for recovery
via IHT. Note that a hypothesis t = O(n/k) has accidentally been dropped from their Theorem 2.2,
though it appears in their Lemma 3.6. By making the implied constants explicit in the argument of
Bafna et al. (2018), one sees that their Theorem 2.2 is essentially the same as (3) and (4) in Theorem
1 above. For more details, see the proof of Theorem 1 in Appendix A. Note that our recovery error
bounds for IHT in (5) and (6) of Theorem 1 do not have analogs in Bafna et al. (2018). They hold
for larger values of k and t at the expense of the additional error term ‖e‖2.

Other works that provide guarantees include (Hein & Andriushchenko (2017)) and (Cisse et al.
(2017)) where the authors frame the problem as one of regularizing the Lipschitz constant of a
network and give a lower bound on the norm of the perturbation required to change the classifier
decision. The authors of Sinha et al. (2017) use robust optimization to perturb the training data
and provide a training procedure that updates parameters based on worst case perturbations. A
similar approach to (Sinha et al. (2017)) is (Wong & Kolter (2017)) in which the authors use robust
optimization to provide lower bounds on the norm of adversarial perturbations on the training data.
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In Lecuyer et al. (2018), the authors use techniques from Differential Privacy (Dwork et al. (2014))in
order to augment the training procedure of the classifier to improve robustness to adversarial inputs.
Another approach using randomization is Li et al. (2018) in which the authors add i.i.d. Gaussian
noise to the input and provide guarantees of maintaining classifier predictions as long as the `2-norm
of the attack vector is bounded by a function that depends on the output of the classifier.

Most defenses against adversarial inputs do not come with theoretical guarantees. Instead, a large
body of research has focused on finding practical ways to improve robustness to adversarial inputs
by either augmenting the training data (Goodfellow et al. (2015)), using adversarial inputs from
various networks (Tramèr et al. (2017)), or by reducing the dimensionality of the input (Xu et al.
(2017)). For instance, Madry et al. (2017) use robust optimization to make the network robust
to worst case adversarial perturbations on the training data. However, the effectiveness of their
approach is determined by the amount and quality of training data available and its similarity to the
distribution of the test data. An approach similar to ours but without any theoretical guarantees is
(Samangouei et al. (2018)). In this work, the authors use Generative Adversarial Networks (GANs)
to estimate the distribution of the training data and during inference, use a GAN to reconstruct a
non-adversarial input that is most similar to a given test input. We now provide a brief overview on
the field of compressive sensing.

Though some component ideas originated earlier in other fields, the field of compressive sensing
was initiated with the work of Candès et al. (2006) and Donoho et al. (2006) in which the authors
studied the problem of reconstructing sparse signals using only a small number of measurements
with the choice of a random matrix. The reconstruction was performed using `1-minimization (i.e.,
Basis Pursuit) which was shown to produce sparse solutions even in presence of noise; see also
Donoho & Elad (2003; 2006); Donoho & Huo (2001). Some of the earlier work in extending com-
pressive sensing to perform stable recovery with deterministic matrices was done by Candes & Tao
(2005) and Candes et al. (2006), where the authors showed that recovery of sparse vectors could be
performed as long as the measurement matrix satisfied a restricted isometry hypothesis. Blumensath
& Davies (2009) introduced IHT as an algorithm to recover sparse signals which was later modified
in Baraniuk et al. (2010) to reduce the search space as long as the sparsity was structured. The
standard DS algorithm was introduced in Candes et al. (2007) in order to perform stable recovery in
the presence of `∞ noise.

4 EXPERIMENTS

All of our experiments are conducted on CIFAR-10 (Krizhevsky (2009)), MNIST (LeCun), and
Fashion-MNIST (Xiao et al. (2017)) datasets with pixel values of each image normalized to lie in
[0, 1]. Each experiment is conducted on a set of 1000 points sampled uniformly at random from
the test set of the respective dataset. For every experiment, we use the Discrete Cosine Transform
(DCT) and the Inverse Discrete Cosine Transform (IDCT) denoted by the matrices F ∈ Rn×n and
FT ∈ Rn×n respectively. That is, for an adversarial image y ∈ R

√
n×
√
n, such that, y = x+e, we let

x̂ = Fx, and x = FT x̂, where x, x̂ ∈ Rn and e ∈ Rn is the noise vector. For an adversarial image
y ∈ R

√
n×
√
n×c, that contains c channels, we perform recovery on each channel independently by

considering ym = xm + em, where x̂m = Fxm, xm = FT x̂m for m = 1, . . . , c. The value k
denotes the number of largest (in absolute value) DCT coefficients used for reconstruction of each
channel, and the value t denotes the `0 noise budget for each channel. We implement Algorithm 2
and Algorithm 3 using the open source library CVXPY (Diamond & Boyd (2016)).

We now outline the neural network architectures used for experiments in Section 4.1 and 4.2. For
CIFAR-10, we use the network architecture of He et al. (2016) while the network architecture for
MNIST and Fashion-MNIST datasets is provided in Table 5 of the Appendix. We train our networks
using the Adam optimizer for CIFAR-10 and the AdaDelta optimizer for MNIST and Fashion-
MNIST. In both cases, we use a cross-entropy loss function. We train the each neural network
according to the CRD framework stated in Section 3.1. The code to reproduce our experiments is
available here: https://github.com/anonymousiclrcompressive/iclr2020.

6

https://github.com/anonymousiclrcompressive/iclr2020


Under review as a conference paper at ICLR 2020

Orig. Acc. OPA. Acc IHT. Acc.
77.4% 0.0% 71.8%

Table 1: Effectiveness of CRD against OPA. The first column lists the accuracy of the network on
original images and the OPA Acc. column shows the network’s accuracy on adversarial images. The
IHT. Acc. column shows the accuracy of the network on images reconstructed using IHT.

4.1 DEFENSE AGAINST `0-NORM ATTACKS

This section is organized as follows: first we examine CRD against the One Pixel Attack (OPA) (Su
et al. (2019)) for CIFAR-10. We only test the attack on CIFAR-10 as it is most effective against
natural images and does not work well on MNIST or FASHION-MNIST. We note that this attack
satisfies the theoretical constraints for t provided in Theorem 1, hence allowing us to test how well
CRD works within existing guarantees. Once we establish the effectiveness of CRD against OPA,
we then test it against two other `0-norm bounded attacks: Carlini and Wagner (CW) `0-norm attack
(Carlini & Wagner (2017)) and the Jacobian based Saliency Map Attack (JSMA) (Papernot et al.
(2016)).

4.1.1 ONE PIXEL ATTACK

We first resize all CIFAR-10 images to 125 × 125 × 3 while maintaining aspect ratios to ensure
that the data falls under the hypotheses of Theorem 1 even for large values of k. The OPA attack
perturbs exactly one pixel of the image, leading to an `0 noise budget of t = 3 per image. The `0
noise budget of t = 3 per image allows us to use k = 275 per channel. Table 1 shows that OPA is
very effective against natural images and forces the network to mis-classify all previously correctly
classified inputs.

Original OPA IHT-Rec

Figure 1: The original image is shown in the first column, the adversarial image in the second
column, and image reconstructed using IHT is shown in the third column.

We test the performance of CRD in two ways: a) reconstruction quality b) network performance
on reconstructed images. In order to analyse the reconstruction quality of Algorithm 1, we do the
following: for each test image, we use OPA to perturb the image and then use Algorithm 1 to
approximate its largest (in absolute value) k = 275 DCT co-efficients. We then perform the IDCT
on these recovered co-efficients to generate reconstructed images. We illustrate reconstruction on a
randomly selected image from the test set in Figure 1.

Noting that Algorithm 1 leads to high quality reconstruction, we now test whether network accuracy
improves on these reconstructed images. To do so, we feed these reconstructed images as input
to the network and report its accuracy in Table 1. We note that network performance does indeed
improve as network accuracy goes from 0.0% to 71.8% using Algorithm 1. Therefore, we conclude
that CRD provides a substantial improvement in accuracy in against OPA.

4.1.2 CW-`0 ATTACK AND JSMA

Having established the effectiveness of CRD against OPA, we move onto the CW `0-norm attack
and JSMA. We note that even when t is much larger than the hypotheses of Theorem 1 and Theorem
2, we find that Algorithms 1 and 2 are still able to defend the network. We hypothesize that this
maybe related to the behavior of the RIP of a matrix for “most” vectors as opposed to the RIP for all
vectors, and leave a more rigorous analysis for a follow up work.
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Original CW-`0 IHT-Rec BP-Rec JSMA IHT-Rec BP-Rec

Figure 2: Reconstruction quality of images using IHT and BP. The first column shows randomly
selected original images from the test set, while the second and fifth column show the adversarial
images. Reconstructions using IHT are labeled IHT-Rec and using BP are labeled BP-Rec. We show
reconstructions in columns three, four, six, and seven.

Dataset Orig. C&W `0 JSMA
Acc. tavg Acc. IHT Acc. BP Acc. tavg Acc. IHT Acc. BP Acc.

CIFAR-10 84.9% 18 8.7% 83.0% 67.0% 34 2.7% 63.2% 67.3%
MNIST 98.8% 15 0.9% 84.2% 55.9% 17 56.5 % 90.1% 67.4%

F-MNIST 91.8% 16 5.27% 84.1% 71.4% 17 62.6 % 83.3% 72.0%

Table 2: The tavg column lists the average adversarial budget for each attack. The Orig. Acc column
lists the accuracy of the network on original test inputs, the Acc. columns under C&W `0 and
JSMA list network accuracy on adversarial inputs. The IHT Acc. and the BP Acc. columns list the
accuracy of the network on inputs that have been corrected using IHT and BP respectively.

We follow the procedure described in Section 4.1.1 to analyze the quality of reconstructions for
Algorithm 1 and Algorithm 2 in Fig 2. In each case it can be seen that both algorithms provide high
quality reconstructions for values of t that are well outside the hypotheses required by Theorem 1 and
Theorem 2. We report these t values and the improvement in network performance on reconstructed
adversarial images using CRD in Table 2.

4.2 DEFENSE AGAINST `2-NORM ATTACKS

In the case of `2-norm bounded attacks, we use the CW `2-norm attack (Carlini & Wagner (2017))
and the Deepfool attack (Moosavi-Dezfooli et al. (2016)) as they have been shown to be the most
powerful. We note that Theorem 3 does not impose any restrictions on k or t and therefore the
guarantees of equations (8) and (9) are applicable for recovery in all experiments of this section.

Original CW-`2 BP-Rec DF BP-Rec

Figure 3: Reconstruction quality of images using BP. The first columns shows the original images,
while the adversarial images are shown in the second and fourth column. The reconstructions are
shown in columns three and five.

8
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Dataset Orig. C&W `2 Deepfool
Acc. `2avg Acc. BP Acc. `2avg Acc. BP Acc.

CIFAR-10 84.9% 0.12 8.7% 72.3% 0.11 7.7% 71.6%
MNIST 99.17% 1.35 0.9% 92.4% 1.72 1.1 % 90.7%

Fashion-MNIST 90.3% 0.61 5.4% 78.3% 0.63 5.5 % 76.4%

Table 3: The `2avg column lists the average `2-norm of the attack vector. The Orig. Acc column lists
the accuracy of the network on original test inputs, while the Acc. columns under C&W `2 and DF
columns report network accuracy on adversarial inputs. BP Acc. columns lists the accuracy of the
network on inputs reconstructed using BP.

The reconstruction quality is shown in Figure 3. It can be noted that reconstruction using Algorithm
2 is of high quality for all three datasets. In order to check whether this high quality reconstruction
also leads to improved performance in network accuracy, we test each network on reconstructed
images using Algorithm 2. We report the results in Table 3 and note that Algorithm 2 provides a
substantial improvement in network accuracy for each dataset and each attack method used.

4.3 DEFENSE AGAINST `∞-NORM ATTACKS

For `∞-norm bounded attacks, we use the BIM attack (Kurakin et al. (2016)) as it is has been shown
to be very effective and also allows us to control the `∞-norm of the attack vector explicitly. We note
that while the CW `∞-norm attack (Carlini & Wagner (2017)) has the ability to create attack vectors
with `∞-norm less than or equal to BIM, it is computationally expensive and also does not allow
one to pre-specify a value for the `∞-norm of an attack vector. Therefore, we limit our experimental
analysis to the BIM attack. Note that for any attack vector e, ‖e‖2 ≤

√
n‖e‖∞ hence allowing `∞-

norm attacks to create attack vectors with large `2-norm. Therefore, we could expect reconstruction
quality and network accuracy to be lower when compared to `2-norm attacks.

Original With Constraint No Constraint

Figure 4: Comparison of images reconstructed using Algorithm 3 (With Constraint) with images
reconstructed using DS without the additional constraint (No Constraint).

In figure 4, we compare the reconstruction quality of images reconstructed with Algorithm 3 to those
reconstructed using DS without the additional constraint. As can be noted from the figure, images
reconstructed using DS without the additional constraint may not produce meaningful images. This
is also reflected in Table 4, which shows that the accuracy of the network is roughly random on
images reconstructed without the additional constraint.

We show examples of original images, adversarial images, and their reconstructions using Algorithm
3 in Figure 5. Finally, we report the network performance on reconstructed inputs using Algorithm
3 in Table 4 and also compare this to the performance on inputs reconstructed using DS without the
additional constraint. We note that Algorithm 3 provides an increase in network performance against
reconstructed adversarial inputs. However, the improvement in performance is not as substantial as
it was against `0 or `2-norm attacks.

9
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Dataset Orig. BIM
Acc. `∞avg Acc. Modified DS Acc. DS Acc.

CIFAR-10 84.9% 0.015 7.4% 49.4% 17.6%
MNIST 99.17% 0.15 4.9% 74.7% 10%

Fashion-MNIST 90.3% 0.15 5.3% 57.5% 11.1%

Table 4: The `∞avg column lists the `∞-norm of each attack vector, Orig. Acc. and BIM Acc.
columns list the accuracy of the network on the original and adversarial inputs respectively, and the
Modified DS Acc. column lists the accuracy of the network on inputs reconstructed using Algorithm
3. We also show accuracy of the network on images reconstructed with DS (without the additional
constraint) in the DS Acc. column.

Original BIM DS-Rec

Figure 5: Reconstruction quality of images using DS. The first column shows the original images,
while the second columns shows adversarial images and the third columns shows reconstructions
using Algorithm 3 respectively.

5 CONCLUSION

We provided recovery guarantees for corrupted signals in the case of `0-norm, `2-norm, and `∞-
norm bounded noise. We were able to utilize these results in CRD and improve the performance of
neural networks substantially in the case of `0-norm, `2-norm and `∞-norm bounded noise. While
`0-norm attacks don’t always satisfy the constraints required by Theorem 1 and Theorem 2, we
showed that CRD is still able to provide a good defense for values of t much larger than allowed in
the guarantees. The guarantees of Theorem 3 and Theorem 4 were applicable in all experiments and
CRD was shown to improve network performance for all attacks.

10
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A APPENDIX

A.1 RESTRICTED ISOMETRY PROPERTY

We first establish the restricted isometry property for certain structured matrices. First, we give some
definitions.

Definition 5. Let A be a matrix in Cm×N , let M ⊆ CN , and let δ ≥ 0. We say that A satisfies the
M -restricted isometry property (or M-RIP) with constant δ if

(1− δ)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δ)‖x‖22
for all x ∈M .

Definition 6. We define Mk to be the set of all k-sparse vectors in CN and similarly define Mk,t to
be the set of (k, t)-sparse vectors in C2n. In other words, Mk,t is the following subset of C2n:

Mk,t =
{
x = [x1 x2]

T ∈ C2n : x1 ∈ Cn, x2 ∈ Cn, ‖x1‖0 ≤ k, ‖x2‖0 ≤ t
}

We define Sk,t to be the following collection of subsets of {1, . . . , 2n}:

Sk,t = {S1 ∪ S2 : S1 ⊆ {1, . . . , n} , S2 ⊆ {n+ 1, . . . , 2n} , card(S1) ≤ k, card(S2) ≤ t}

Note that Sk,t is the collection of supports of vectors in Mk,t.

Theorem 7. Let A = [F I] ∈ Cn×2n, where F ∈ Cn×n is a unitary matrix with |Fij |2 ≤ c
n and

I ∈ Cn×n is the identity matrix. Then(
1−

√
ckt

n

)
‖x‖22 ≤ ‖Ax‖22 ≤

(
1 +

√
ckt

n

)
‖x‖22 (12)

for all x ∈Mk,t. In other words, A satisfies the Mk,t-RIP property with constant

√
ckt

n
.

Proof. In this proof, ifB denotes an matrix in Cn×n, then λ1(B), . . . , λn(B) denote the eigenvalues
of B ordered so that |λ1(B)| ≤ · · · ≤ |λn(B)|. It suffices to fix an S = S1 ∪ S2 ∈ Sk,t and prove
(12) for all non-zero x ∈ CS .

SinceA∗SAS is normal, there is an orthonormal basis of eigenvectors u1, . . . , uk+t forA∗SAS , where
ui corresponds to the eigenvalue λi(A∗SAS). For any non-zero x ∈ CS , we have x =

∑k+t
i=1 ciui

for some ci ∈ C, so

‖Ax‖22
‖x‖22

=
〈A∗SASx, x〉
〈x, x〉

=

∑k+t
i=1 λi(A

∗
SAS)c

2
i∑k+t

i=1 c
2
i

. (13)

Thus it will suffice to prove that |λi(A∗SAS)− 1| ≤
√

ckt
n for all i. Moreover,

|λi(A∗SAS)− 1| = |λi(A∗SAS − I)| =
√
λi ((A∗SAS − I)∗(A∗SAS − I)) (14)

where the last equality holds because A∗SAS − I is normal. By combining (13) and (14), we see
that (12) will hold upon showing that the eigenvalues of (A∗SAS − I)∗(A∗SAS − I) are bounded by
ckt/n.

So far we have not used the structure ofA, but now we must. Observe that (A∗SAS−I)∗(A∗SAS−I)
is a block diagonal matrix with two diagonal blocks of the formX∗X andXX∗. Therefore the three
matrices (A∗SAS−I)∗(A∗SAS−I),X∗X , andXX∗ have the same non-zero eigenvalues. Moreover,
X is simply the matrix FS1

with those rows not indexed by S2 deleted. The hypotheses on F imply
that the entries of X∗X satisfy |(X∗X)ij | ≤ ct

n . So the Gershgorin disc theorem implies that each
eigenvalue λ of X∗X and (hence) of (A∗SAS − I)∗(A∗SAS − I) satisfies |λ| ≤ ckt

n .
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A.2 ITERATIVE HARD THRESHOLDING

First we present Theorem 8 and then use it to prove Theorem 1.

Theorem 8. Let A ∈ Cn×2n be a matrix. Let 1 ≤ k, t ≤ n be positive integers and suppose δ3 is
a M3k,3t-RIP constant for A and that δ2 is a M2k,2t-RIP constant for A. Let x ∈ C2n, r ∈ Cn,
y = Ax + r, and S ∈ Sk,t. Letting x[T+1] = IHT (y,A, k, t, T ), if δ3 < 1/

√
3, then we have the

approximation error bound

‖x[T+1] − xS‖2 ≤ ρ(T+1)‖x[0] − xS‖2 + τ‖AxS + r‖2

where ρ :=
√
3δ3 < 1 and (1− ρ)τ =

√
3
√
1 + δ2 ≤ 2.18. Thus, the first term on the right goes to

0 as T goes to∞.

Theorem 8 is a modification of Theorem 6.18 of Foucart & Rauhut (2017). More specifically,
Theorem 6.18 of Foucart & Rauhut (2017) considers M3k, M2k, and Sk in place of M3k,3t and
M2k,2t and Sk,t and any dimension N in place of 2n. The proofs are very similar, so we omit the
proof of Theorem 8. We will now prove a lemma that will be required for the proof of Theorem 1.
For the proof of Lemma 9 and Theorem 1, we use the following convention: let A ∈ Cm×N be a
matrix, then, we denote by (A)S , the m×N matrix that is obtained by starting with A and zeroing
out the columns indexed by S. Note that (A)S = A− (A)S .

Lemma 9. Let F ∈ Cn×n be a unitary matrix with |Fij |2 ≤ c
n and let S ⊆ [n] be a index set with

|S| = t. Then for any k-sparse vector z ∈ Cn, we have:

‖(F ∗)SFz‖22 ≤
ktc

n
‖z‖22

Proof of Lemma 9. First note that (F ∗)S ∈ Cn×n contains only t non-zero columns since |S| = t
Therefore, we have |((F ∗)SF )ij | ≤ tc

n since |Fij |2 ≤ c
n . Further, since the non-zero columns of

(F ∗)S are orthogonal to each other, we get ((F ∗)S)∗(F ∗)S = (I)S , where I ∈ Cn×n is the identity
matrix. Using this, we have for any w ∈ Cn,

‖(F ∗)SFw‖22 = 〈(F ∗)SFw, (F ∗)SFw〉 = 〈((F ∗)SF )∗(F ∗)SFw,w〉 = 〈(F ∗)SFw,w〉 = | 〈(F ∗)SFw,w〉 |

Now let V ⊆ [n] be any index set with cardinality k, that is |V | = k and let z ∈ Cn be any vector
supported on V . We then get,

‖(F ∗)SFz‖22 = |〈(F ∗)SFz, z〉| =

∣∣∣∣∣∣
∑
k∈V

z∗k

∑
j∈V

((F ∗)SF )kjzj

∣∣∣∣∣∣ ≤
∑
k∈V

|z∗k|

∑
j∈V
|((F ∗)SF )kj ||zj |


≤
∑
k∈V

|z∗k|

 tc
n

∑
j∈V
|zj |


=
tc

n
‖z‖21 ≤

ktc

n
‖z‖22

where we use the fact that z is k-sparse for the last inequality.

Now we provide the proof for Theorem 1.

Proof of Theorem 1. Theorem 7 implies that the statement of Theorem 8 holds with

δ3 =
√

c·3k·3t
n and δ2 =

√
c·2k·2t
n . Noting that y = A[x̂h(k) e]

T + Fx̂t(k), where [x̂h(k) e]
T ∈

Mk,t, set x[T+1] = IHT (y,A, k, t, T ) and apply Theorem 8 with x = [x̂h(k) e]
T , r = Fx̂t(k), and

S = supp(x). Letting x[T+1] = [x̂[T+1] e[T+1]]T , use the facts that ‖x̂[T+1]− x̂h(k)‖2 ≤ ‖x[T+1]−

xS‖2 and ‖Fx̂t(k)‖2 = ‖x̂t(k)‖2. That will give (3). Letting T =

(
log(1/ε)+log(

√
‖x̂h(k)‖22+‖e‖22)

log(1/ρ)

)
,
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gives ρT
√
‖x̂h(k)‖22 + ‖e‖22 ≤ ε, which can be substituted in (3) to get (4). Noting that ||e[T ]−e||2 ≤

τ ||x̂t(k)||2 + ε, we can use the same reasoning as used in Bafna et al. (2018) to get:

‖x̂[T+1] − x̂h(k)‖∞ ≤
√

2ct

n

(
τ‖x̂t(k)‖2 + ε

)
(15)

‖x̂[T+1] − x̂h(k)‖2 ≤
√

4ckt

n

(
τ‖x̂t(k)‖2 + ε

)
(16)

which are the essentially the same as the results of Theorem 2.2 in Bafna et al. (2018).

Now we prove (5). Write x[T ] = (z[T ])h(k,t), where z[T ] = x[T−1] + A∗(y − Ax[T−1]). Further,
write z[T ] = [z

[T ]
1 z

[T ]
2 ]T ∈ C2n, where z[T ]

1 , z
[T ]
2 ∈ Cn. Note that x̂[T ] = (z

[T ]
1 )h(k). Therefore,

we have z[T ]
1 = F ∗(y − e[T−1]), where e[T−1] = (y − Fx̂[T−2])h(t). Now let S be the set of

indices selected by the hard thresholding operation h(t) to get e[T−1]. Then observe that z[T ]
1 =

F ∗(y− (y−Fx̂[T−2])S). Next, note that ‖z[T ]
1 − x̂[T ]‖22 ≤ ‖z

[T ]
1 − x̂h(k)‖22 as x̂[T ] is a best k-sparse

approximation to z[T ]
1 . We can thus write,

‖(z[T ]
1 − x̂h(k))− (x̂[T ] − x̂h(k))‖22 = ‖z[T ]

1 − x̂h(k)‖22 − 2Re〈z[T ]
1 − x̂h(k), x̂

[T ] − x̂h(k)〉+ ‖x̂[T ] − x̂h(k)‖22
Therefore, we have,

‖x̂[T ] − x̂h(k)‖22 ≤ 2Re〈z[T ]
1 − x̂h(k), x̂

[T ] − x̂h(k)〉

≤ 2|〈z[T ]
1 − x̂h(k), x̂

[T ] − x̂h(k)〉|

≤ 2‖z[T ]
1 − x̂h(k)‖2‖x̂[T ] − x̂h(k)‖2

If ‖x̂[T ] − x̂h(k)‖2 > 0, then ‖x̂[T ] − x̂h(k)‖2 ≤ 2‖z[T ]
1 − x̂h(k)‖2. Now note that

z
[T ]
1 = x̂+ F ∗e− F ∗(F (x̂− x̂[T−2]) + e)S

= x̂+ F ∗e− (F ∗)S(F (x̂− x̂[T−2]) + e)

= x̂+ (F ∗ − (F ∗)S)e− (F ∗)SF (x̂− x̂[T−2])

Using the fact that (F ∗)S = F ∗ − (F ∗)S , we can simplify the above to get:

‖z[T ]
1 − x̂h(k)‖2 = ‖(F ∗)SFx̂t(k) + (F ∗)Se− (F ∗)SF (x̂h(k) − x̂[T−2])‖2

Therefore,

‖x̂[T ] − x̂h(k)‖2 ≤ 2
(
‖(F ∗)SF‖2→2‖x̂t(k)‖2 + ‖(F ∗)S‖2→2‖e‖2 + ‖(F ∗)SF (x̂h(k) − x̂[T−2])‖2

)
≤ 2

(
‖x̂t(k)‖2 + ‖e‖2

)
+ 2‖(F ∗)SF (x̂h(k) − x̂[T−2])‖2

where we use ‖(F ∗)S‖2→2 ≤ ‖F ∗‖2→2 = 1. Now since x̂h(k) − x̂[T−2] is 2k-sparse, we can use
the result of Lemma 9 to get:

‖x̂[T ] − x̂h(k)‖2 ≤ 2
(
‖x̂t(k)‖2 + ‖e‖2

)
+ 2

(√
2ktc

n

)
‖x̂[T−2] − x̂h(k)‖2

Now let ρ = 2
√
2
√

ktc
n , τ(1− ρ) = 2 and note that if ρ < 1, we can use induction on T to get (5).

Then for any 0 < ε < 1 and any T ≥
(

log(1/ε)+log(‖x̂h(k)‖2)

log(1/ρ)

)
, we have ρT (‖x̂h(k)‖2) ≤ ε which

gives us (6).
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A.3 BASIS PURSUIT

Definition 10. The matrix A ∈ Cm×N satisfies the robust null space property with constants 0 <
ρ < 1, τ > 0 and norm ‖ · ‖ if for every set S ⊆ [N ] with card(S) ≤ s and for every v ∈ CN we
have

‖vS‖1 ≤ ρ‖vS‖1 + τ‖Av‖
Definition 11. The matrix A ∈ Cm×N satisfies the `q robust null space property of order s with
constants 0 < ρ < 1, τ > 0 and norm ‖ · ‖ if for every set S ⊆ [N ] with card(S) ≤ s and for every
v ∈ CN we have

‖vS‖q ≤
1

s1−1/q
ρ‖vS‖1 + τ‖Av‖

Note that if q = 1 then this is simply the robust null space property.

The proof of Theorem 2 requires the following theorem (whose full proof is given in the Foucart &
Rauhut (2017)).
Theorem 12 (Theorem 4.33 in Foucart & Rauhut (2017)). Let a1, . . . , aN be the columns of A ∈
Cm×N , let x ∈ CN with s largest absolute entries supported on S, and let y = Ax + e with
‖e‖2 ≤ η. For δ, β, γ, θ, τ ≥ 0 with δ < 1, assume that:

‖A∗SAS − I‖2→2 ≤ δ, max
l∈S
‖A∗Sal‖2 ≤ β,

and that there exists a vector u = A∗h ∈ CN with h ∈ Cm such that

‖uS − sgn(xS)‖2 ≤ γ, ‖uS‖∞ ≤ θ, and ‖h‖2 ≤ τ
√
s.

If ρ := θ + βγ
(1−δ) < 1, then a minimizer x# of ‖z‖1 subject to ‖Az − y‖2 ≤ η satisfies:

‖x# − x‖2 ≤
2

(1− ρ)

(
1 +

β

(1− δ)

)
‖xS‖1 +

(
2(µγ + τ

√
s)

1− ρ

(
1 +

β

1− δ

)
+ 2µ

)
η

where µ :=
√

1+δ
1−δ and sgn(x)i =


0, xi = 0

1, xi > 0

−1. xi < 0

.

Lemma 13. LetA ∈ Cn×2n, if ‖Ax‖22 ≤ (1+δ)‖x‖22 for all x ∈Mk,t, then, ‖A∗SAS−I‖2→2 ≤ δ,
for any S ∈ Sk,t.

Proof. Let S ∈ Sk,t be given. Then for any x ∈ CS , we have

‖ASx‖22 − ‖x‖22 ≤ δ‖x‖22
We can re-write this as : ‖ASx‖22 − ‖x‖22 = 〈ASx,ASx〉 − 〈x, x〉 = 〈(A∗SAS − I)x, x〉. Noting
that A∗SAS − I is Hermitian, we have:

‖A∗SAS − I‖2→2 = max
x∈CS\{0}

〈(A∗SAS − I)x, x〉
‖x‖22

≤ δ

Proof of Theorem 2. We will derive (7) by showing that the matrix A satisfies all the hypotheses in
Theorem 12 for every vector in Mk,t.

First note that by Theorem 7,A satisfies theMk,t-RIP property with constant δk,t :=
√

ckt
n . There-

fore, by Lemma 13, for any S ∈ Sk,t, we have ‖A∗SAS − I‖2→2 ≤ δk,t. Since A∗SAS is a positive
semi-definite matrix, it has only non-negative eigenvalues that lie in the range [1 − δk,t, 1 + δk,t].
Since δk,t < 1 by assumption, A∗SAS is injective. Thus, we can set: h = AS(A

∗
SAS)

−1sgn(xS)
and get:

‖h‖2 = ‖AS(A∗SAS)−1sgn(xS)‖2 ≤ ‖AS‖2→2‖(A∗SAS)−1‖2→2‖sgn(xS)‖2 ≤ τ
√
k + t
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where τ =

√
1+δk,t

1−δk,t
and we have used the following facts: since ‖A∗SAS − I‖2→2 ≤ δk,t < 1, we

get that ‖(A∗SAS)−1‖2→2 ≤ 1
1−δk,t

and that the largest singular value of AS is less than
√
1 + δk,t.

Now let u = A∗h, then ‖uS − sgn(xS)‖2 = 0. Now we need to bound the value ‖uS‖∞. Denoting
row j of A∗

S
AS by the vector vj , we see that it has at most max{k, t} non-zero entries and that

|(vj)l|2 ≤ c
n for l = 1, . . . , (k + t). Therefore, for any element (uS)j , we have:

|(uS)j | = |〈(A
∗
SAS)

−1sgn(xS), (vj)∗〉| ≤ ‖(A∗SAS)−1‖2→2‖sgn(xS)‖2‖vj‖2 ≤
√
k + t

1− δk,t

√
max{k, t}c

n

Defining β :=
√

max{k,t}c
n and θ :=

√
k+t

1−δk,t
β, we get ‖uS‖∞ ≤ θ < 1 and also observe that

maxl∈S ‖A∗Sal‖2 ≤ β. Therefore, all the hypotheses of Theorem 12 have been satisfied. Note that
y = Fx̂+ e = A[x̂h(k) e]

T + Fx̂t(k), Therefore, setting x# = BP(y,A, ‖x̂t(k)‖2), we use the fact
‖Fx̂t(k)‖2 = ‖x̂t(k)‖2 combined with the bound in Theorem 12 to get (7):

‖x̂# − x̂h(k)‖2 ≤
(
2τ
√
k + t

1− θ

(
1 +

β

1− δk,t

)
+ 2τ

)
‖x̂t(k)‖2

where we write x# = [x̂#, e#]T with x̂#, e# ∈ Cn.

We now focus on proving Theorem 3. In order to do so, we will need some lemmas that will be used
in the main proof.

Lemma 14. If a matrix A ∈ Cm×N satisfies the `2 robust null space property for S ⊂ [N |, with
card(S) = s, then it satisfies the `1 robust null space property for S with constants 0 < ρ < 1, τ ′ :=
τ
√
s > 0.

Proof. For any v ∈ CN , ‖vS‖2 ≤ ρ√
s
‖vS̄‖1 + τ‖Av‖. Then, using the fact that ‖vS‖1 ≤

√
s‖vS‖2,

we get:‖vS‖1 ≤ ρ‖vS̄‖1 + τ
√
s‖Av‖.

Lemma 15 (Theorem 4.20 in Foucart & Rauhut (2017)). If a matrix A ∈ Cm×N satisfies the `1
robust null space property (with respect to ‖.‖) and for 0 < ρ < 1 and τ > 0 for S ⊂ [N |, then:

‖z − x‖1 ≤
1 + ρ

1− ρ
(‖z‖1 − ‖x‖1 + 2‖xS̄‖1) +

2τ

1− ρ
‖A(z − x)‖

for all z, x ∈ CN .

Lemma 16 (Proposition 2.3 in Foucart & Rauhut (2017)). For any p > q > 0 and x ∈ Cn,

inf
z∈Mk

‖x− z‖p ≤
1

(k)
1
q−

1
p

‖x‖q

Proof of Theorem 3. Let 0 < ρ < 1 be arbitrary. Since F is a unitary matrix, for any S ⊆ [n] and
v ∈ Cn, we have

‖vS‖2 ≤
ρ√
k
‖vS‖1 + τ‖v‖2 =

ρ√
k
‖vS‖1 + τ‖Fv‖2 (17)

where τ = 1. Now let S ⊆ [n] such that card(S) ≤ k. Then, F satisfies the `2 robust null space
property for S. Next, using Lemma 14 we get ‖vS‖1 ≤ ρ‖vS̄‖1 + τ

√
k‖Fv‖2 for all v ∈ Cn. Now

let x# = BP(y, F, η), then we know ‖x#‖1 ≤ ‖x̂‖1. Fixing S ⊆ [n] to be the support of x̂h(k) and
using Lemma 15 , we get:
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Layer Type Properties
1 Convolution 32 channels, 3× 3 Kernel, No padding
2 Convolution 64 channels, 3× 3 Kernel, No padding, Dropout with p = 0.5
3 Max-pooling 2× 2, Dropout with p = 0.5
4 Fully Connected 128 neurons, Dropout with p = 0.5
5 Fully Connected 10 neurons

Table 5: Network architecture used for MNIST and Fashion-MNIST datasets in Section 4.1 and
Section 4.2. The first four layers use ReLU activations while the last layer uses a softmax activation.

‖x# − x̂‖1 ≤
1 + ρ

1− ρ
(‖x#‖1 − ‖x̂‖1 + 2‖x̂t(k)‖1) +

2τ
√
k

1− ρ
‖F (x# − x̂)‖2

≤ 1 + ρ

1− ρ
(
2‖x̂t(k)‖1

)
+

2τ
√
k

1− ρ
‖F (x# − x̂)‖2

≤ 1 + ρ

1− ρ
(
2‖x̂t(k)‖1

)
+

4τ
√
k

1− ρ
‖e‖2

≤ 1 + ρ

1− ρ
(
2‖x̂t(k)‖1

)
+

4τ
√
k

1− ρ
η

Letting ρ → 0 and recalling that τ = 1 gives (8). Now let S be the support of (x# − x̂)h(k). Note
‖(x# − x̂)S‖2 = infz∈Mk

‖(x# − x̂)− z‖2. Then, using Lemma 16 and (17), we see that

‖x# − x̂‖2 ≤ ‖(x# − x̂)S‖2 + ‖(x
# − x̂)S‖2

≤ 1√
k
‖(x# − x̂)‖1 +

ρ√
k
‖(x# − x̂)S‖1 + τ‖F (x# − x)‖2

≤ 1 + ρ√
k
‖(x# − x̂)‖1 + 2τη

≤ (1 + ρ)2√
k(1− ρ)

(
2‖x̂t(k)‖1

)
+

4τ(1 + ρ)

(1− ρ)
η + 2τη

=
(1 + ρ)2√
k(1− ρ)

(
2‖x̂t(k)‖1

)
+

(
4τ(1 + ρ)

(1− ρ)
+ 2τ

)
η

Recalling τ = 1 and letting ρ→ 0 gives the desired result.

A.4 DANTZIG SELECTOR

Next we introduce the Dantzig Selector algorithm with an additional constraint. We first prove its
recovery guarantees for `∞-norm and then explain the reasoning behind the additional constraint.

Proof of Theorem 4. The proof follows the same structure as the proof of Theorem 3. Therefore
we provide a sketch and leave out the complete derivation. Let 0 < ρ < 1 be arbitrary. Since F is a
unitary matrix, for any S ⊆ [n] and v ∈ Cn, we have

‖vS‖2 ≤
ρ√
k
‖vS‖1 + ‖vS‖2 ≤

ρ√
k
‖vS‖1 +

√
k‖v‖∞ =

ρ√
k
‖vS‖1 +

√
k‖F ∗Fv‖∞

The rest of the argument is the same as in the proof of Theorem 3.
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