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ABSTRACT

Effectively capturing graph node sequences in the form of vector embeddings is
critical to many applications. We achieve this by (i) first learning vector embed-
dings of single graph nodes and (ii) then composing them to compactly repre-
sent node sequences. Specifically, we propose SENSE-S (Semantically Enhanced
Node Sequence Embedding - for Single nodes), a skip-gram based novel embed-
ding mechanism, for single graph nodes that co-learns graph structure as well as
their textual descriptions. We demonstrate that SENSE-S vectors increase the ac-
curacy of multi-label classification tasks by up to 50% and link-prediction tasks
by up to 78% under a variety of scenarios using real datasets. Based on SENSE-S,
we next propose generic SENSE to compute composite vectors that represent a
sequence of nodes, where preserving the node order is important. We prove that
this approach is efficient in embedding node sequences, and our experiments on
real data confirm its high accuracy in node order decoding.

1 INTRODUCTION

Accurately learning vector embeddings for a sequence of nodes in a graph is critical to many
scenarios, e.g., a set of Web pages regarding one specific topic that are linked together. Such a
task is challenging as: (i) the embeddings may have to capture graph structure along with any
available textual descriptions of the nodes, and moreover, (ii) nodes of interest may be associated
with a specific order. For instance, (i) for a set of Wikipedia pages w.r.t. a topic, there exists
a recommended reading sequence; (ii) an application may consist of a set of services/functions,
which must be executed in a particular order (workflow composability); (iii) in source routing, the
sender of a packet on the Internet specifies the path that the packet takes through the network or (iv)
the general representation of any path in a graph or a network, e.g., shortest path. Node sequence
embedding, thus, requires us to (i) learn embeddings for each individual node of the graph and (ii)
compose them together to represent their sequences. To learn the right representation of individual
nodes and also their sequences, we need to understand how these nodes are correlated with each
other both functionally and structurally.

A lot of work has only gone into learning single node embeddings (i.e., where node sequence length
is 1), as they are essential in feature representations for applications like multi-label classification
or link prediction. For instance, algorithms in Perozzi et al. (2014), Grover & Leskovec (2016),
Tang et al. (2015) and others try to extract features purely from the underlying graph structure;
algorithms in Le & Mikolov (2014), Mikolov et al. (2013) and others learn vector representations of
documents sharing a common vocabulary set. However, many applications would potentially benefit
from representations that are able to capture both textual descriptions and the underlying graph
structure simultaneously. For example, (1) classification of nodes in a network not only depends on
their inter-connections (i.e., graph structure), but also nodes’ intrinsic properties (i.e., their textual
descriptions); (2) for product recommendations, if the product is new, it may not have many edges
since not many users have interacted with it; however, using the textual descriptions along with the
graph structure allows for efficient bootstrapping of the recommendation service. For general case of
sequence lengths greater than 1, despite the importance in applications like workflow composability
described above, there is generally a lack of efficient solutions. Intuitively, we can concatenate or
add all involved node vectors; however, such a mechanism either takes too much space or loses the
sequence information; thus unable to represent node sequences properly.
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We aim to learn node sequence embeddings by first first addressing the single node embedding issue,
as a special case of node sequence embedding, by considering both the textual descriptions and the
graph structure. We seek to answer two questions: How should we combine these two objectives?
What framework should we use for feature learning? Works that jointly address these two questions
either investigate them under different problem settings (Cao et al., 2017; Xiao et al., 2017), under
restricted learning models (Le & Lauw, 2014), ignore the word context within the document (Liao
et al., 2017; Wang et al., 2017), do not co-learn text and graph patterns (Li et al., 2016) or only
consider linear combinations of text and graph (Garcia Duran & Niepert, 2017); this is elaborated
further in Section 2. In contrast, we propose a generic neural-network-based model called SENSE-
S (Semantically Enhanced Node Sequence Embeddings - for Single nodes) for computing vector
representations of nodes with additional semantic information in a graph. SENSE-S is built on the
foundation of skip-gram models. However, SENSE-S is significantly different from classic skip-
gram models in the following aspects: (i) For each word ¢ in the textual description of node v in
the given graph, neighboring words of ¢ within v’s textual description and neighboring nodes of v
within the graph are sampled at the same time. (ii) The text and graph inputs are both reflected in
the output layer in the form of probabilities of co-occurrence (in graph or text). (iii) Moreover, this
joint optimization problem offers an opportunity to leverage the synergy between the graph and text
inputs to ensure faster convergence. We evaluate the generated vectors on (i) Wikispeedia (2009) to
show that our SENSE-S model improves multi-label classification accuracy by up to 50% and (ii)
Physics Citation dataset (Leskovec & Krevl, 2014) to show that SENSE-S improves link prediction
accuracy by up to 78% over the state-of-the-art.

Next, we propose SENSE for general feature representation of a sequence of nodes. This problem
is more challenging in that (i) besides the original objectives in SENSE-S, we now face another
representation goal, i.e., sequence representation while preserving the node order; (ii) it is important
to represent the sequence in a compact manner; and (iii) more importantly, given a sequence vector,
we need to be able to decipher which functional nodes are involved and in what order. To this end, we
develop efficient schemes to combine individual vectors into complex sequence vectors that address
all of the above challenges. The key technique we use here is vector cyclic shifting, and we prove
that the different shifted vectors are orthogonal with high probability. This sequence embedding
method is also evaluated on the Wikispeedia and Physics Citation datasets, and the accuracy of
decoding a node sequence is shown to be close to 100% when the vector dimension is large.

2 RELATED WORK

We overview the most related works by categorizing them as follows:

Learning vector representation from text: Vector representation of words (Schiitze, 1993) has
been a long standing research topic. It has received significant attention in the recent times due to
the advances in deep neural networks (Bengio et al., 2003; Mikolov et al., 2009; 2013). In particular,
these neural-network-based schemes outperform n-gram-based techniques (Katz, 1987; Jelinek &
Mercer, 1980) significantly as they are able to learn the similarities between words. Furthermore,
paragraph2vec (Le & Mikolov, 2014) extends the well-established word2vec (Mikolov et al., 2013)
to learn representations of chunks of text.

Learning vector representation from graphs: Lot of research has gone into learning graph repre-
sentations by translating the network/graph into a set of words or documents (Perozzi et al., 2014;
Pimentel et al., 2017; Ribeiro et al., 2017; Wang et al., 2016; Liu et al., 2016; Tang et al., 2015;
Grover & Leskovec, 2016). Generic models incorporating both edge weight and direction infor-
mation for graph embeddings are proposed in Zhou et al. (2017), Tang et al. (2015) and Grover &
Leskovec (2016). Specifically, node2vec (Grover & Leskovec, 2016) advances the state-of-the-art
in this area by designing flexible node sampling methodologies to allow feature vectors to exhibit
different properties. Subgraph2vec (Narayanan et al., 2016) extends these schemes to learn vec-
tor representations of subgraphs. Simpkin et al. (2018) proposes techniques to represent graph
sequences under the assumption that each node is represented by a random binary vector.

Learning graph representation with auxiliary information: Broadly speaking, our work falls into
the category of node embedding in graphs with auxiliary information. Guo et al. (2017), Xie et al.
(2016), Huang et al. (2017a) and others address the case where nodes are associated with labels.
Niepert et al. (2016) studies graph embedding when node/edge attributes are continuous. Cao et al.
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(2017) investigates phrase ambiguity resolution via leveraging hyperlinks. However, all these works
operate under information or network constraints. On the other hand, Xiao et al. (2017), Yao et al.
(2017) and Wang & Li (2016) explore embedding strategies in the context of knowledge graphs,
where the main goal is to maintain the entity relationships specified by semantic edges. In contrast,
we consider a simpler network setting where only nodes are associated with semantic information.
EP (Garcia Duran & Niepert, 2017) and GraphSAGE (Hamilton et al., 2017) learn embeddings for
structured graph data. However, the textual similarities are only captured by linear combinations.
Planetoid (Yang et al., 2016) computes node embeddings under semi-supervised settings; metap-
ath2vec (Dong et al., 2017) learns embeddings for heterogeneous networks (node can be author or
paper); and Graph-Neural-Network-based embeddings are explored in Kipf & Welling (2017) and Li
et al. (2016). However, these papers do not explicitly learn graph structure and text patterns simulta-
neously, and thus are complementary to SENSE. SNE (Liao et al., 2017), SNEA (Wang et al., 2017),
TADW (Yang et al., 2015), HSCA (Zhang et al., 2016), AANE (Huang et al., 2017b), ANRL (Zhang
et al., 2018) and PLANE (Le & Lauw, 2014) are more related to our work. However, unlike SENSE,
these do not consider the relative context of the words w.r.t. the document. Furthermore, the ob-
jective of PLANE is to maximize the likelihood that neighboring nodes have similar embeddings,
which is not always the case in practice because neighboring nodes may be semantically different;
more critically, it relies on strong assumptions of statistical distributions of words and edges in the
network. In this regard, we propose a generic embedding scheme that jointly considers network
topology as well as the nodes’ semantic information.

3 SENSE-S: SENSE FOR SINGLE NODE EMBEDDINGS

To embed a general node sequence, we first consider a special case where each node sequence
contains only one node. Such single node embedding is referred to as SENSE-S, which jointly
learns node representations along with textual descriptions in graphs.

3.1 SENSE-S OBJECTIVE

Let G = (V, E) denote a given directed or undirected graph, where V' is the set of nodes and E
the set of edges. Each node in V' is associated with a text description. We aim to embed each node
v in V into a feature vector that captures both graphical (neighboring node inter-connections) and
textual (semantic meaning of v) properties. Specifically, let ¢ denote a word in the text description
of node v. Suppose we obtain a set of neighboring nodes of v in graph G via a specific node sampling
strategy, e.g., biased random walk (Grover & Leskovec, 2016), and a set of neighboring words of ¢
in the text description of v by a sliding window over consecutive words (Mikolov et al., 2013). We
then define Ng(v) as a probabilistic event of observing the set of neighboring nodes of v in G (under
the chosen model) and Np(¢|v) as an event of observing the set of neighboring words of ¢ in the
text description of v. Let f : v — R? (v € V) be the embedding function that maps each node v in
V into a d-dimensional vector. Our goal is to find function f that maximizes:

max } > logPr{Ng(v)Nr(¢[v)le, f(v)] )

veV ¢pinv
Since events Ng(v) and Np(¢|v) are independent, (1) can be rewritten as:

max Z wy, log Pr[Ng (v)| f(v)] + Z Z log Pr[Nr(¢|v)|9, f(v)], 2)
f

veV veEV ¢pinv

where w,, is the number of words in the description of v. Given a word in a node, (2) jointly captures
the node neighborhood in the graph and the word neighborhood in text.

3.2 SENSE-S ARCHITECTURE

We build SENSE-S on the foundation of the skip-gram model (Mikolov et al., 2013). In particular,
Grover & Leskovec (2016) and Perozzi et al. (2014) leverage this skip-gram model to learn vector
representation of nodes in a graph by performing biased random walks on the graph and treating each
walk as equivalent to a sentence, aiming to predict a neighboring node given the current node in a
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Figure 1: SENSE-S (add) architecture Figure 2: SENSE-S (concat) architecture

graph. On the other hand, Le & Mikolov (2014) extends skip-gram models to learn embeddings of
various chunks of text, e.g., sentences, paragraphs or entire documents, via sampling the neighboring
words over a sliding window within the text. Motivated by the effectiveness of these models, we
build two SENSE-S models, SENSE-S (add) and SENSE-S (concat), as detailed below.

SENSE-S (add): Let w denote the number of words (some uninformative words are skipped) in text
descriptions across all nodes in the given graph G, i.e., w is the size of the entire vocabulary, and n
the number of nodes in G. Then our model is formulated as a neural network, as shown in Figure 1.
In this model, each input is a two-tuple (¢, v), i.e., word ¢ is picked from the description of node v.
Then (¢, v) is mapped to two one-hot vectors, w-dimensional word vector ¢ and n-dimensional ver-
tex vector v, where only the entries corresponding to ¢ and v are set to 1 and others are set to 0. Then
as in typical fully connected neural network architectures, in the first layer, ¢ and v’ are multi-
plied (implemented as look-up for efficiency) by two matrices M., x4 and M, « 4, respectively. The
resulting vectors are then added together and multiplied by another matrix M gy (1+4r) in the second
layer, i.e., a (w + n)-dimensional vector h” := (¢" My xq + v My xd) My () is obtained.
Finally, unlike typical skip-gram models where all entries in the output vectors of the second layer
are processed by a softmax function, we decompose vector h into two sub-vectors, h) consisting of
the first w entries and h, consisting of the rest. Then h) and h/, are fed to separate softmax func-
tions, yielding h; and h,, respectively (see Figure 1). The reason for this decomposition operation
is that we use h; to represent the probability vector of neighboring words of ¢ in the description of
node v, and hy to represent the probability vector of neighboring nodes of v in the graph. Using this
neural network architecture, we aim to learn the values of all entries in the matrices M, x4, M, xd
and Mgy (w+n) such that the entries (i.e., probabilities) in h; and hy corresponding to neighboring
words of ¢ (within the text description of node v) and neighboring nodes of v (within the given
graph) are maximized; see the objective in (2). We use matrix M, x4 as our final semantically
augmented node embeddings, i.e., each row in M, .4 corresponds to a node embedding vector.

Note that a unique property of SENSE-S is that it is a conjoined model where the textual and graph-
ical inputs both contribute to the learning of node embeddings. Moreover, there is an add operation
for combining these features, and thus this model is called SENSE-S (add). This is in contrast to the
concatenation operation that is used in a different implementation of SENSE-S; see below.

SENSE-S (concat): SENSE-S (concat) model is illustrated in Figure 2. Clearly, SENSE-S (concat)
is quite similar to SENSE-S (add), except that (i) the resulting vectors generated by the first layer
are concatenated, and (ii) the matrix dimension in the second layer becomes (2d) x (w + n).

4 SENSE

In SENSE-S, our focus has been on computing semantically enhanced embeddings for individual
nodes. In this section, we propose the general SENSE to represent any set of nodes following a
specified order using the node vectors generated by SENSE-S, called node sequence embedding.

Given the original graph G = (V, E), let S = v; — v3 — - -+ — v, be a node sequence constructed
with v; € V(e = 1,2,...,q). Note that S may contain repeated nodes, e.g., some functions need
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to be executed more than once in one application. Intuitively, node sequence .S can be represented
by a d x ¢ matrix with column 7 being the vector representation of node v;. However, such a
representation is costly in space. Alternatively, representing S by the vector sum 2321 v (Vg
corresponds to v;) results in missing the node order information. Hence, in this section, we seek to
find a low-dimensional vector representation such that (i) node properties in the original network G
and (ii) the node order in .S are both preserved.

4.1 NODE SEQUENCE EMBEDDING MECHANISM

In this section, all node vectors are unit vectors obtained by normalizing the node vectors generated
by SENSE-S; this property is critical in our node sequence embedding method (see Section 4.2).

Node Sequence Vector Construction: Given a node sequence S = v; — va — - -+ — v, following
in order from node v; to node vy, let v; be the unit node vector of node v;. We first perform positional
encoding, via cyclic shift function. Specifically, given vector v of dimension-d and non-negative
integer m, we define v(™) as a vector obtained via cyclically shifting elements in v by m’ = (m
mod d) positions. Therefore, Vgl_l) represents a vector resulted from cyclically shifting (i — 1
mod d) positions of the node vector at position ¢ in S. Let S denote the vector representation of
node sequence S. Suppose ¢ < d, Then we embed S as S = Y 7| vglfl). Note that for repeated
nodes in S, they are cyclically shifted by different positions depending on the specific order in the
node sequence. In S, by imposing the restriction ¢ < d, we ensure that wraparounds do not occur
while shifting the vector, because it may lead to ambiguity of node positions within a node sequence.
Simple as this embedding approach may seem, we show that it exhibits the following advantages.
First, the dimension of node sequence vectors remains the same as that of the original node vectors.
Second, given a node sequence vector S, we are able to infer which nodes are involved in S and
their exact positions in S as explained below.

Node Sequence Vector Decoding: The method for determining which nodes are included (and in
which order) in a given node sequence vector is referred to as node sequence vector decoding. The
basic idea in node sequence vector decoding is rooted in Theorem 2 (Section 4.2), which implies

that using cyclic shifting, we essentially enable a preferable property that VEFI) and vy U with

i # j are almost orthogonal, i.e., VEFD VU o 0, even if v; and v are related in the original

graph (v; and v; may even correspond to the same node). By this property, we make the following
claim, assuming that all node vectors are unit vectors.

Claim 1. Given a node sequence vector S, node v, whose node vector is v, is at the k-th position of
this node sequence if the inner product S - v»*=1) ~ 1.

Claim 1 provides an efficient way to decode a given node sequence. In particular, to determine
whether (and where) a node resides in a node sequence, it only takes quadratic complexity O(d?).

Example: Suppose we have a node sequence S = () — @ — @ consisting of three nodes. By
SENSE-S and our encoding method, we construct its node sequence vector as S = v§0) —i—v;l) +V§2).
Then each node can compute the inner product of its cyclic shifted vector with S. If the result
is approximately 1, then its position in this node sequence is uniquely determined. For instance,
S- vél) = v§0) . vél) + vgl) . vél) + v§2) . vél) ~ 0+ 14 0 = 1 (see Theorem 2). Thus, given the
encoded node sequence S, we know node 2 is at the second position.

4.2 THEORETICAL FOUNDATION

We now present our theoretical results, to support Claim 1. Proofs are presented in the appendix.

Theorem 2. Let x and y be N-dimensional unit vectors with i.i.d. (independent and identically
distributed) vector elements. If x -y = ¢, then E[x - y™|x -y = ¢] = 0 and Var[x - y™|x -y =
cJ=(1—-¢c?)/(N —1), where c(|¢| < 1) is a constant and m # kN (m,k € ZT).

Theorem 2 suggests that when two nodes a and b in a graph are related, then their embedded vectors
Vv, Vp = ¢, where c is non-zero. Nevertheless, if one of v, and vy, say vy, is cyclically shifted,
yielding vl()m) with v;, # vlgm), then v, - Vl()m) = 0 happens with high probability when the vector

dimension is sufficiently large, although v, and v, are originally related.
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5 EVALUATION

This section evaluates SENSE under varying scenarios, with multiple datasets and applications.

5.1 DATASETS

We evaluate SENSE on the following datasets that contain graph information along with textual de-
scriptions: (1) Wikispeedia (2009): it contains both Wikipedia plain text articles (text descriptions)
and hyper links between articles (graph structure). It is a directed graph with 4, 604 nodes (each is
a Wikipedia article) and 119, 882 hyper links. (2) Citation Network (Leskovec & Krevl, 2014): it
contains both textual descriptions (title, authors and abstract of the paper) and graphical structure
(citations). It is a directed graph with 27, 770 nodes (papers) and 352, 807 edges (citations).

5.2 SENSE-S MODEL TRAINING

To train our SENSE-S model, we first define the loss function based on (2). Suppose the vocabulary
size associated with each node v € V' is similar, i.e., we assume Vv € V,w, = c (cis a constant).
Thenlet Fg := ), .y log Pr[Ng(v)|f(v)] and Fr := 3"y, > 45, log Pr[N7(8|v)|8, f(v)]. We
define the loss function as

L= 7CFg — FT. (3)

We then use stochastic gradient descent to minimize our loss function. Let 7 be the learning rate.
At each iteration, we update the model parameters by adding a fraction of —V L, i.e.,—nVL =
enV Fg + nV Fr. Since the per-node vocabulary size is much larger than 1, the node neighborhood
sampling via random walk is much less frequent than the textual neighborhood sampling. Therefore
we want to inject more input data consisting of only the nodes’ graphical neighborhood information.
To do so, we adjust the model parameter update rule —nV L as

1V Fg + B2V Fr (B > B2 > 0), )

where 1 and [, are the equivalent learning rates for graph inputs and text inputs, respectively.

5.3 SENSE-S EVALUATION

We first evaluate SENSE-S, which is compared against the following baseline solutions.

Leverage graph information alone: To compare with schemes that use graph information alone,
we use node2vec since it has been shown to be flexible to capture different graph properties.

Leverage text information alone: To compare against schemes that use textual information alone,
we use semantic vectors from paragraph2vec since it outperforms other schemes such as Recursive
Neural Tensor Networks (Socher et al. (2013)) for tasks like Sentiment Analysis. As in SENSE-S,
we also study two implementations of paragraph2vec, i.e., addition and concatenation operations at
the hidden layer, referred to as paragraph2vec (add) and paragraph2vec (concat), respectively.

Leverage text+graph information: For joint text/graph learning, we compare with the following:

1) Initialize with semantic vectors: We learn embeddings using node2vec, but rather than using
random initialization, we initialze the vectors using paragraph2vec.

2) Initialize with graphical vectors: Here, we learn final embeddings using paragraph2vec, but
initialize them with node2vec, i.e., just reverse of the scheme above.

3) Iterative Vectorization: The above approaches only leverage semantic or graphical vectors for
initializations. Here, we try to capture both iteratively. Specifically, in one iteration, we compute
node embedding via node2vec with the embeddings from the previous iteration as initializations;
the corresponding results are then fed to paragraph2vec as initializations to further compute node
embeddings, after which we go to the next iteration. We repeat this process multiple times (5
times in our experiment) to get the final embeddings.

4) Concatenation of graphical and semantic vectors: Here, we simply concatenate the vectors
obtained from paragraph2vec and node2vec and use them as our node embedding vectors.
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Figure 3: Multi-label classification on Wikispeedia dataset for varying Train:Validation:Test splits
of data. Document length = first 500 characters (n2v: node2vec, p2v (add)/(cat): paragraph2vec
(add)/(concat), n2v w/ p2v: node2vec with paragraph2vec (add) initialization, p2v w/ n2v: para-
graph2vec (add) with node2vec initialization, IteraVec: Iterative Vectorization, cat(p2v,n2v): con-
catenation of p2v and n2v vectors).

Experimental Setup: We first learn the vector representations and then use these vector represen-
tations for two different tasks: (i) Multi-label classification: Wikipedia pages are classified into
different categories, such as history, science, people, etc. This ground truth information is included
in the Wikispeedia dataset (which is not used while learning the vectors). There are 15 different top
level categories, and our multi-label classification task tries to classify a page into one or more of
these categories based on the vectors obtained from different algorithms. We train the OneVsRest-
Classifier (SVM, linear kernel) from scikit-learn for this task. (ii) Link prediction: Since no category
information is available for the Citation Network, we evaluate for link prediction. In particular, 1%
of existing citations are removed, after which vectors are learned on this network. We use these
removed links as positive samples for link prediction. For negative samples, we randomly sample
the same number of pairs which are not linked via a citation in the original network. To obtain the
similarity features w.r.t. a pair of nodes, after experimenting with several alternatives, we chose the
element-wise absolute difference and train SVM classifier (linear kernel) for link prediction.

Parameter settings: (i) We perform « random walks starting from each node in the graph (x is 10
for Wikispeedia and 3 for Citation Network, since Citation Network is larger); (ii) each walk is
of length 80 as recommended by Grover & Leskovec (2016); (iii) we use sliding window of size
5 for neighboring word sampling; (iv) the default node vector dimension is 128; (v) multi-label
classification error is the misclassification rate over the test set; (vi) link prediction error is the
percentage of incorrect link predictions over all pairs of papers in the test set; (vii) learning rates 31
and (5 in (4) are selected based on the validation set, and the error is reported on the test set.

Multi-label classification error: The error of multi-label classification is reported in Figure 3,
where the first 500 characters of each Wikipedia page are selected as its textual description. Fig-
ures 3 (a), (b) and (c) correspond to different splits of the dataset (based on number of nodes)
into training, validation and test samples. The following observations can be made. First, as ex-
pected, the results of all the schemes improve with higher ratio of training to test samples. Sec-
ond, in general, schemes that leverage both textual and graphical information incur lower errors.
Third, among the schemes that utilize both textual and graphical

information, SENSE-S (add) and SENSE-S (concat) consistently = /savec =r2v = ez
perform the best. This is because we train the network to co-learn —=sp2v(ct) mmp2vw/n2v mm SENSES (cat)
the textual and graphical information to ensure that both objectives g ”

converge. This is in contrast with other schemes where the two ob- é
jectives, due to the loose coupling, are not guaranteed to converge. *
Finally, SENSE-S (add) (in Figure 3 (c)) outperforms node2vec

by over 40%, paragraph2vec (add) by over 55% and the closest 0
baseline scheme that leverages both text and graph by 30%. This . C
confirms the benefit of co-learning features from textual as well as Fl'gur'e 4: Link prediction in
graphical information under the SENSE-S architecture. We also see Citation Network.

similar trends using the first 1, 000 characters and omit the results for brevity.

Link prediction error: The error of link prediction in the Citation Network is reported in Figure 4.
We fix train:valid:test to 60%:20%:20% (based on number of links) and use the first 500 characters as
text description. We make several interesting observations. First, schemes that use graph information
alone (node2vec) substantially outperform schemes that use text descriptions alone (paragraph2vec)
for link prediction task. Intuitively, this is because the neighborhood information, which is important
for link prediction task, is captured effectively by the node embeddings obtained from node2vec-like
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Figure 5: Accuracy of decoding a node sequence vector (Dim: dimension of the vectors).

techniques. Second, even in cases where the difference in accuracy using the two different sources
of information is large, SENSE-S (add) and (cat) are robust, and can effectively extract useful infor-
mation from text descriptions to further reduce the error of link prediction that uses graph structure
alone. Finally, this is significant because it demonstrates the effectiveness of SENSE-S in a variety
of scenarios, including cases where the two sources of information may not be equally valuable.

5.4 SENSE EVALUATION

We now evaluate the accuracy of encoding/decoding by SENSE for node sequences. We evaluate on
three experiments via constructing node sequences in the following different ways: Experiment 1:
the node at every position in a sequence is chosen uniformly at random from 4,604 Wikispeedia
nodes. Note that as mentioned earlier, this node sequence may contain repeated nodes (which is al-
lowed), and may or may not be a subgraph of the original graph. Experiment 2: the node sequences
are constructed by performing random walks on the Wikispeedia graph. Experiment 3: the node
sequences are constructed by performing random walks on the Physics Citation Network. Note that
in both Experiments 2 and 3, adjacent nodes in the node sequences will have related vector em-
beddings. Next, for such constructed node sequences, their vector representations are computed by
SENSE-S. Given these sequence vectors, we then decode the node at each position. We evaluate the
decoding accuracy under different sequence lengths and vector dimensions, as reported in Figure 5.

From Figure 5 (a), we make the following observations. First, when the node sequence length is
small, all vector dimensions lead to almost 100% decoding accuracy. Second, as node sequence
length increases, the decoding accuracy declines sharply especially in cases where the node vector
dimensions are relatively small, i.e., 128 and 256. This is because, by Theorem 2, correlations
between the involved node vectors cause inevitable errors. Such error accumulates when the length
of the node sequence is large. Nevertheless, with sufficiently large node vector dimension, i.e., 1024,
even long sequences can be decoded perfectly, and with 512, we can decode a workflow of length
10 with over 90% accuracy. Interestingly, Figures 5 (b) and (c) also show similar trends. This is
significant, as it shows that even if node sequences are constructed from correlated node vectors,
i.e., picked from same graph neighborhood, the decoding still achieves high accuracy. This is
because, as shown in Theorem 2, after cyclic shifting, the resulting vectors are orthogonal with high
probability when the vector dimension is large (even if these vectors are originally related). Finally,
in Figures 5 (a) and (b) the decoding algorithm needs to find the best match from among 4, 592 nodes
(Wikispeedia network). In contrast, in Figure 5 (c), it is much more challenging to find the match
among 27, 770 nodes. Yet, we are able to decode with high accuracy with theoretical guarantees.

6 CONCLUSION

We presented SENSE that learns semantically enriched vector representations of graph node se-
quences. To achieve this, we first developed SENSE-S that learns single node embeddings via a
multi-task learning formulation that jointly learns the co-occurrence probabilities of nodes within
a graph and words within a node-associated document. We evaluated SENSE-S against state-of-
the-art approaches that leverage both graph and text inputs and showed that SENSE-S improves
multi-label classification accuracy in Wikispeedia dataset by up to 50% and link prediction over
Physics Citation network by up to 78%. We then developed SENSE that is able to employ provable
schemes for vector composition to represent node sequences using the same dimension as the indi-
vidual node vectors from SENSE-S. We demonstrated that the individual nodes within the sequence
can be inferred with a high accuracy (close to 100%) from such composite SENSE vectors.
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A LEMMA FOR THE PROOF OF THEOREM 2

Lemma 3. Ifx and 'y are N-dimensional unit vectors with i.i.d. random vector elements, then E[x - y] = 0
and Var[x - y] = 1/N.

Proof. Since both x and y are unit vectors, we have x - y = ||x||2]|y||2 cos @ = cos 8, where 6 is the angle
between x and y. Since x and y are not correlated and both x and y are uniformly distributed across the sphere
surface, 6 is also uniformly distributed, and thus E[x - y] = 0.

Asx -y is qurely determined by the angle 6 between x and y, without loss of generality, we select y =

[1,0,...,0]" and only consider x = [z1,Z2,...,ZnN] to be a unit vector with i.i.d. random vector elements.
Then, x - y = x1. Therefore, Var[x - y] = E[z}] — E*[z1] = E[z?]. Since all vector elements in x
are identically distributed, we have E[x - x] = ]E[Zf;l z?] = Zfil E[z?] = N - E[z?] = 1. Therefore,
Var[x - y] = E[z}] = 1/N. O

Based on Lemma 3, we know that if x and y are N-dimensional unit vectors with i.i.d. vector elements, then
event x - y = 0 happens almost surely, i.e., Pr[x -y = 0] &~ 1, when N is large. Using this lemma, we are
ready to prove Theorem 2.

B PROOF OF THEOREM 2

Proof. Based on the proof of Lemma 3, we know that x - y is only determined by the angle 6 between them.
Therefore, again, without loss of generality, let y = [1,0,...,0]” and x = [z1,22,...,2n]. Thenx -y =
#1 =candx-y™ =z, wherey =1+ (m mod N). ThenE[x - y™|x -y = ¢] = E[z,,|x -y = .
Asm # kN (k € Z"), we have y # y™). Moreover, 2~ is uniformly distributed across the sphere surface
under the condition that z; = c. Therefore, E[z,|x -y = ¢] = 0, i.e., E[x - y™|x -y = ¢] = 0. Next,

Varlx - y™|x -y = ¢ = E[z?|zy = ] — E*[z,|z1 = ¢ = E[z?|21 = . Since x2,23,..., 2y in x
are identically distributed, we have E[x - x] = E[Zf\;l 2o = = Zf\;l Elz?|lz; = ] = & 4+ (N —
1)E[22|21 = ¢| = 1. Therefore, Var[x - y™|x -y = ] = (1 — ¢*)/(N —1). O

Based on Theorem 2, if x and y are N-dimensional unit vectors with i.i.d. vector elements, then given
x-y =c(e <1, eventx-y™ = 0(m # kN and m,k € Z7%) happens almost surely, i.c.,

Pr [X . y<m) =0x-y= c] ~ 1, when N is large.
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