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ABSTRACT

Predicting structured outputs such as semantic segmentation relies on expensive
per-pixel annotations to learn strong supervised models like convolutional neural
networks. However, these models trained on one data domain may not generalize
well to other domains unequipped with annotations for model finetuning. To avoid
the labor-intensive process of annotation, we develop a domain adaptation method
to adapt the source data to the unlabeled target domain. To this end, we propose to
learn discriminative feature representations of patches based on label histograms in
the source domain, through the construction of a disentangled space. With such
representations as guidance, we then use an adversarial learning scheme to push the
feature representations in target patches to the closer distributions in source ones. In
addition, we show that our framework can integrate a global alignment process with
the proposed patch-level alignment and achieve state-of-the-art performance on
semantic segmentation. Extensive ablation studies and experiments are conducted
on numerous benchmark datasets with various settings, such as synthetic-to-real
and cross-city scenarios.

1 INTRODUCTION

Recent deep learning-based methods have made significant progress on vision tasks, such as object
recognition (Krizhevsky et al., 2012) and semantic segmentation (Long et al., 2015a), relying on
large-scale annotations to supervise the learning process. However, for a test domain different from
the annotated training data, learned models usually do not generalize well. In such cases, domain
adaptation methods have been developed to close the gap between a source domain with annotations
and a target domain without labels. Along this line of research, numerous methods have been
developed for image classification (Saenko et al., 2010; Ganin & Lempitsky, 2015), but despite recent
works on domain adaptation for pixel-level prediction tasks such as semantic segmentation (Hoffman
et al., 2016), there still remains significant room for improvement. Yet domain adaptation is a crucial
need for pixel-level predictions, as the cost to annotate ground truth is prohibitively expensive. For
instance, road-scene images in different cities may have various appearance distributions, while
conditions even within the same city may vary significantly over time or weather.

Existing state-of-the-art methods use feature-level (Hoffman et al., 2016) or output space adap-
tation (Tsai et al., 2018) to align the distributions between the source and target domains using
adversarial learning (Goodfellow et al., 2014; Zhu et al., 2017). These approaches usually exploit
the global distribution alignment, such as spatial layout, but such global statistics may already differ
significantly between two domains due to differences in camera pose or field of view. Figure 1
illustrates one example, where two images share a similar layout, but the corresponding grids do
not match well. Such misalignment may introduce an incorrect bias during adaptation. Instead, we
consider to match patches that are more likely to be shared across domains regardless of where they
are located.

One way to utilize patch-level information is to align their distributions through adversarial learning.
However, this is not straightforward since patches may have high variation among each other and
there is no guidance for the model to know which patch distributions are close. Motivated by recent
advances in learning disentangled representations (Kulkarni et al., 2015; Odena et al., 2017), we adopt
a similar approach by considering label histograms of patches as a factor and learn discriminative
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Figure 1: Illustration of the proposed patch-level alignment against the global alignment that
considers the spatial relationship between grids. We first learn discriminative representations for
source patches (solid symbols) and push a target representation (unfilled symbol) close to the
distribution of source ones, regardless of where these patches are located in the image.

representations for patches to relax the high-variation problem among them. Then, we use the learned
representations as a bridge to better align patches between source and target domains.

Specifically, we utilize two adversarial modules to align both the global and patch-level distributions
between two domains, where the global one is based on the output space adaptation (Tsai et al.,
2018), and the patch-based one is achieved through the proposed alignment by learning discriminative
representations. To guide the learning process, we first use the pixel-level annotations provided in the
source domain and extract the label histogram as a patch-level representation. We then apply K-means
clustering to group extracted patch representations into K clusters, whose cluster assignments are
then used as the ground truth to train a classifier shared across two domains for transferring a learned
discriminative representation of patches from the source to the target domain. Ideally, given the
patches in the target domain, they would be classified into one of K categories. However, since
there is a domain gap, we further use an adversarial loss to push the feature representations of target
patches close to the distribution of the source patches in this clustered space (see Figure 1). Note that
our representation learning can be viewed as a kind of disentanglement guided by the label histogram,
but is different from existing methods that use pre-defined factors such as object pose (Kulkarni et al.,
2015).

In experiments, we follow the domain adaptation setting in (Hoffman et al., 2016) and perform pixel-
level road-scene image segmentation. We conduct experiments under various settings, including the
synthetic-to-real, i.e., GTA5 (Richter et al., 2016)/SYNTHIA (Ros et al., 2016) to Cityscapes (Cordts
et al., 2016) and cross-city, i.e., Cityscapes to Oxford RobotCar (Maddern et al., 2017) scenarios. In
addition, we provide extensive ablation studies to validate each component in the proposed framework.
By combining global and patch-level alignments, we show that our approach performs favorably
against state-of-the-art methods in terms of accuracy and visual quality. We note that the proposed
framework is general and could be applicable to other forms of structured outputs such as depth,
which will be studied in our future work.

The contributions of this work are as follows. First, we propose a domain adaptation framework
for structured output prediction by utilizing global and patch-level adversarial learning modules.
Second, we develop a method to learn discriminative representations guided by the label histogram
of patches via clustering and show that these representations help the patch-level alignment. Third,
we demonstrate that the proposed adaptation method performs favorably against various baselines
and state-of-the-art methods on semantic segmentation.

2 RELATED WORK

Within the context of this work, we discuss the domain adaptation methods, including image classifica-
tion and pixel-level prediction tasks. In addition, algorithms that are relevant to learning disentangled
representations are discussed in this section.

Domain Adaptation. Domain adaptation approaches have been developed for the image classifica-
tion task via aligning the feature distributions between the source and target domains. Conventional
methods use hand-crafted features (Gong et al., 2012; Fernando et al., 2013) to minimize the discrep-
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ancy across domains, while recent algorithms utilize deep architectures (Ganin & Lempitsky, 2015;
Tzeng et al., 2015) to learn domain-invariant features. One common practice is to adopt the adversar-
ial learning scheme (Ganin et al., 2016) and minimize the Maximum Mean Discrepancy (Long et al.,
2015b). A number of variants have been developed via designing different classifiers (Long et al.,
2016) and loss functions (Tzeng et al., 2017; 2015). In addition, other recent work aims to enhance fea-
ture representations by pixel-level transfer (Bousmalis et al., 2017) and domain separation (Bousmalis
et al., 2016).

Compared to the image classification task, domain adaptation for structured pixel-level predictions
has not been widely studied. Hoffman et al. (2016) first introduce to tackle the domain adaptation
problem on semantic segmentation for road-scene images, e.g., synthetic-to-real images. Similar
to the image classification case, they propose to use adversarial networks and align global feature
representations across two domains. In addition, a category-specific prior is extracted from the
source domain and is transferred to the target distribution as a constraint. However, these priors,
e.g., object size and class distribution, may be already inconsistent between two domains. Instead
of designing such constraints, the CDA method (Zhang et al., 2017) applies the SVM classifier to
capture label distributions on superpixels as the property to train the adapted model on the target
domain. Similarly, as proposed in (Chen et al., 2017), a class-wise domain adversarial alignment is
performed by assigning pseudo labels to the target data. Moreover, an object prior is extracted from
Google Street View to help alignment for static objects.

The above-mentioned domain adaptation methods on structured output all use a global distribution
alignment and some class-specific priors to match statistics between two domains. However, such
class-level alignment does not preserve the structured information like the patches. In contrast, we
propose to learn discriminative representations for patches and use these learned representations to
help patch-level alignment. Moreover, our framework does not require additional priors/annotations
and the entire network can be trained in an end-to-end fashion. Compared to the recently proposed
output space adaptation method (Tsai et al., 2018) that also enables end-to-end training, our algorithm
focuses on learning patch-level representations that aid the alignment process.

Learning Disentangled Representation. Learning a latent disentangled space has led to a better
understanding for numerous tasks such as facial recognition (Reed et al., 2014), image genera-
tion (Chen et al., 2016b; Odena et al., 2017), and view synthesis (Kulkarni et al., 2015; Yang et al.,
2015). These approaches use pre-defined factors to learn interpretable representations of the image.
Kulkarni et al. (2015) propose to learn graphic codes that are disentangled with respect to various
image transformations, e.g., pose and lighting, for rendering 3D images. Similarly, Yang et al. (2015)
synthesize 3D objects from a single image via an encoder-decoder architecture that learns latent
representations based on the rotation factor. Recently, AC-GAN (Odena et al., 2017) develops a
generative adversarial network (GAN) with an auxiliary classifier conditioned on the given factors
such as image labels and attributes.

Although these methods present promising results on using the specified factors and learning a
disentangled space to help the target task, they focus on handling the data in a single domain.
Motivated by this line of research, we propose to learn discriminative representations for patches to
help the domain adaptation task. To this end, we take advantages of the available label distributions
and naturally utilize them as a disentangled factor, in which our framework does not require to
pre-define any factors like conventional methods.

3 DOMAIN ADAPTATION FOR STRUCTURED OUTPUT

In this section, we describe our proposed domain adaptation framework for predicting structured
outputs, our adversarial learning scheme to align distributions across domains, and the use of
discriminative representations for patches to help the alignment.

3.1 ALGORITHMIC OVERVIEW

Given the source and target images Is, It ∈ RH×W×3 and the source labels Ys, our goal is to align
the predicted output distribution Ot of the target data with the source distribution Os. As shown
in Figure 2(a), we use a loss function for supervised learning on the source data to predict the
structured output, and an adversarial loss is adopted to align the global distribution. Based on this
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(a) Global alignment (baseline model) (b) Our framework with patch-level alignment

Figure 2: Overview of the proposed framework. (a) A baseline model that utilizes global alignment
in (Tsai et al., 2018). (b) Our algorithm combines global and patch-level alignments in a general
framework that better preserves local structure. Note that Os, Ot ∈ (0, 1)H×W×C are distributions
and the figures used here are only for illustration purposes.

baseline model, we further incorporate a classification loss in a clustered space to learn patch-level
discriminative representations Fs from the source output distribution Os, shown in Figure 2(b). For
target data, we employ another adversarial loss to align the patch-level distributions between Fs and
Ft, where the goal is to push Ft to be closer to the distribution of Fs.

Objective Function. As described in Figure 2(b), we formulate the adaptation task as composed
of the following loss functions:

Ltotal(Is, It, Ys,Γ(Ys)) = Ls + λdLd + λgadvL
g
adv + λladvLl

adv, (1)

where Ls and Ld are supervised loss functions for learning the structured prediction and the dis-
criminative representation on source data, respectively, while Γ denotes the clustering process on
the ground truth label distribution. To align the target distribution, we utilize global and patch-level
adversarial loss functions, which are denoted as Lg

adv and Ll
adv, respectively. Here, λ’s are the

weights for different loss functions. The following sections describe details of the baseline model and
the proposed framework. Figure 3 shows the main components and loss functions of our method.

3.2 GLOBAL ALIGNMENT WITH ADVERSARIAL LEARNING

We first adopt a baseline model that consists of a supervised cross-entropy loss Ls and an output
space adaptation module using Lg

adv for global alignment as shown in Figure 2(a). The loss Ls can
be optimized by a fully-convolutional network G that predicts the structured output with the loss
summed over the spatial map indexed with h, w and the number of categories C:

Ls(Is, Ys;G) = −
∑
h,w

∑
c∈C

Y (h,w,c)
s log(O(h,w,c)

s ), (2)

where Os = G(Is) ∈ (0, 1) is the predicted output distribution through the softmax function and is
up-sampled to the size of the input image. Here, we will use the same h and w as the index for all the
formulations. For the adversarial loss Lg

adv, we follow the practice of GAN training by optimizing
G and a discriminator Dg that performs the binary classification to distinguish whether the output
prediction is from the source image or the target one.

Lg
adv(Is, It;G,Dg) =

∑
h,w

E[logDg(Os)
(h,w,1)] + E[log(1−Dg(Ot)

(h,w,1))]. (3)

Then we optimize the following min-max problem for G and Dg , with inputs to the functions dropped
for simplicity:

min
G

max
Dg

Ls(G) + λgadvL
g
adv(G,Dg). (4)

3.3 PATCH-LEVEL ALIGNMENT WITH DISCRIMINATIVE REPRESENTATIONS

Figure 1 shows that we may find transferable structured output representations shared across source
and target images from smaller patches rather than from the entire image or larger grids. Based on
this observation, we propose to perform a patch-level domain alignment. Specifically, rather than
naively aligning the distributions of all patches between two domains, we first perform clustering
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Figure 3: The proposed network architecture that consists of a generator G and a categorization
module H for learning discriminative patch representations. In the clustered space, solid symbols
denote source representations and unfilled ones are target representations pulled to the source
distribution.

on patches from the source-domain examples using ground truth segmentation labels to construct
a set of prototypical patch patterns. Then, we let patches from the target domain adapt to this
disentangled (clustered) space of source patch representations by guiding them to select the closest
cluster regardless of the spatial location via adversarial objective. In the following, we describe
details of the proposed patch-level alignment.

Learning Discriminative Representations. In order to learn a disentangled space, class la-
bels (Salimans et al., 2016) or pre-defined factors (Odena et al., 2017) are usually provided as
supervisory signals. However, it is non-trivial to assign some sort of class membership to individual
patches of an image. One may apply unsupervised clustering of image patches using pixel representa-
tions, but it is unclear whether the constructed clustering would separate patches in a semantically
meaningful way. In this work, we take advantage of already available per-pixel annotations in the
source domain to construct semantically disentangled space of patch representations.

To achieve this, we use label histograms for patches as the disentangled factor. We first randomly
sample patches from source images, use a 2-by-2 grid on patches to extract spatial label histograms,
and concatenate them into a vector, where each histogram is a 2 · 2 · C dimensional vector. Second,
we apply K-means clustering on these histograms, whereby the label for any patch can be assigned as
the cluster center with the closest distance on the histogram.

To incorporate this clustered space during training the network G on source data, we add a clas-
sification module H after the predicted output Os, to simulate the procedure of constructing the
label histogram and learn a discriminative representation. We denote the learned representation as
Fs = H(G(Is)) ∈ (0, 1)U×V×K through the softmax function, where K is the number of clusters.
Here, each data point on the spatial map Fs corresponds to a patch of the input image, and we obtain
the group label Γ(Ys) for each patch accordingly. Then the learning process to construct the clustered
space can be formulated as a cross-entropy loss:

Ld(Is,Γ(Ys);G,H) = −
∑
u,v

∑
k∈K

Γ(Ys)
(u,v,k) log(F (u,v,k)

s ). (5)

Patch-level Adversarial Alignment. The ensuing task is to align the representations of target
patches to the clustered space constructed in the source domain. To this end, we utilize another
adversarial loss between Fs and Ft, where Ft is generated in the same way as described above. Our
goal is to align patches regardless of where they are located in the image, that is, without the spatial
and neighborhood supports. Thus, we reshape F by concatenating the K-dimensional vectors along
the spatial map, which results in U · V independent data points. We note that a similar effect can be
achieved by using a convolution layer with a proper stride and kernel size. We denote this reshaped
data as F̂ and formulate the adversarial objective:

Ll
adv(Is, It;G,H,Dl) =

∑
u,v

E[logDl(F̂s)
(u,v,1)] + E[log(1−Dl(F̂t)

(u,v,1))], (6)
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where Dl is the discriminator to classify whether the feature representation F̂ is from the source or
the target domain. Finally, we integrate (5) and (6) into the min-max problem in (4):

min
G,H

max
Dg,Dl

Ls(G) + λdLd(G,H) + λgadvL
g
adv(G,Dg) + λladvLl

adv(G,H,Dl). (7)

3.4 NETWORK OPTIMIZATION

Following the standard procedure for training a GAN (Goodfellow et al., 2014), we alternate the
optimization between three steps: 1) update the discriminator Dg, 2) update the discriminator Dl,
and 3) update the network G and H while fixing the discriminators.

Update the Discriminator Dg . We train the discriminator Dg to distinguish between the source
output distribution (labeled as 1) and the target distribution (labeled as 0). The maximization problem
on Dg in (7) is equivalent to minimizing the binary cross-entropy loss:

Lg
D(Os, Ot;Dg) = −

∑
h,w

log(Dg(Os)
(h,w,1)) + log(1−Dg(Ot)

(h,w,1)). (8)

Update the Discriminator Dl. Similarly, we train the discriminator Dl to classify whether the
feature representation F̂ is from the source or the target domain:

Ll
D(F̂s, F̂t;Dl) = −

∑
u,v

log(Dl(F̂s)
(u,v,1)) + log(1−Dl(F̂t)

(u,v,1)). (9)

Update the Network G and H. The goal of this step is to push the target distribution closer to
the source distribution using the optimized Dg and Dl, while maintaining good performance on
the main tasks using G and H. As a result, the minimization problem in (7) is the combination of
two supervised loss functions, namely, (2) and (5), with two adversarial loss functions, where the
adversarial ones can be expressed as binary cross-entropy loss functions that assign the source label
to the target distribution:

Ltotal = Ls + λdLd − λgadv
∑
h,w

log(Dg(Ot)
(h,w,1))− λladv

∑
u,v

log(Dl(F̂t)
(u,v,1)). (10)

We note that updating H would also update G through back-propagation, and thus the feature
representations are enhanced in G. In addition, we only require G during the testing phase, so that
runtime is unaffected compared to the baseline approach.

3.5 NETWORK ARCHITECTURE AND IMPLEMENTATION DETAILS

Discriminator. For the discriminator Dg using a spatial map O as the input, we adopt an architec-
ture similar to (Radford et al., 2016) but use fully-convolutional layers. It contains 5 convolution
layers with kernel size 4 × 4, stride 2 and channel numbers {64, 128, 256, 512, 1}. In addition, a
leaky ReLU activation (Maas et al., 2013) is added after each convolution layer, except the last layer.
For the discriminator Dl, input data is aK-dimensional vector and we utilize 3 fully-connected layers
similar to (Tzeng et al., 2017), with leaky ReLU activation and channel numbers {256, 512, 1}.
Generator. The generator consists of the network G with a categorization module H. For a fair
comparison, we follow the framework used in (Tsai et al., 2018) that adopts DeepLab-v2 (Chen
et al., 2016a) with the ResNet-101 architecture (He et al., 2016) pre-trained on ImageNet (Deng et al.,
2009) as our baseline network G. To add the module H on the output prediction O, we first use an
adaptive average pooling layer to generate a spatial map, where each data point on the map has a
desired receptive field corresponding to the size of extracted patches. Then this pooled map is fed
into two convolution layers and a feature map F is produced with the channel number K. Figure 3
illustrates the main components of the proposed architecture.

Implementation Details. We implement the proposed framework using the PyTorch toolbox on
a single Titan X GPU with 12 GB memory. To train the discriminators, we use the Adam op-
timizer (Kingma & Ba, 2015) with initial learning rate of 10−4 and momentums set as 0.9 and
0.99. For learning the generator, we use the Stochastic Gradient Descent (SGD) solver where the
momentum is 0.9, the weight decay is 5× 10−4 and the initial learning rate is 2.5× 10−4. For all
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Table 1: Ablation study on GTA5-to-Cityscapes using the ResNet-101 network. We also show the
corresponding loss functions used in each setting.

GTA5→ Cityscapes

Without Adaptation Disentanglement Global Alignment Patch-level Alignment
Ls Ls + Ld Ls + Lg

adv Ls + Ld + Ll
adv

mIoU 36.6 38.8 41.4 41.3

Without Ld Without Ll
adv Without Reshaped F̂ Ours (final)

Ls + Lg
adv + Ll

adv Ls + Ld + Lg
adv Ls + Ld + Lg

adv + Ll
adv Ls + Ld + Lg

adv + Ll
adv

mIoU 41.3 41.7 40.8 43.2

the networks, we decrease the learning rates using the polynomial decay with a power of 0.9, as
described in (Chen et al., 2016a). During training, we use λd = 0.01, λgadv = λladv = 0.0005 and
K = 50 for all the experiments. Note that we first train the model only using the loss Ls for 10K
iterations to avoid initially noisy predictions and then train the network using all the loss functions
for 100K iterations. More details of the hyper-parameters such as image and patch sizes are provided
in the appendix.

4 EXPERIMENTAL RESULTS

We evaluate the proposed framework for domain adaptation on semantic segmentation. We first
conduct an extensive ablation study to validate each component in the algorithm on the GTA5-to-
Cityscapes (synthetic-to-real) scenario. Second, we show that our method performs favorably against
state-of-the-art approaches on numerous benchmark datasets and settings.

4.1 EVALUATED DATASETS AND METRIC

We evaluate our domain adaptation method on semantic segmentation under various settings, including
synthetic-to-real and cross-city scenarios. First, we adapt the synthetic GTA5 (Richter et al., 2016)
dataset to the Cityscapes (Cordts et al., 2016) dataset that contains real road-scene images. Similarly,
we use the SYNTHIA (Ros et al., 2016) dataset with a larger domain gap compared to Cityscapes
images. For the above experiments, we follow (Hoffman et al., 2016) to split the training and test
sets. To overcome the realistic case when two domains are in different cities under various weather
conditions, we adapt Cityscapes with sunny images to the Oxford RobotCar (Maddern et al., 2017)
dataset that contains rainy scenes. We manually select 10 sequences in the Oxford RobotCar dataset
annotated with the rainy tag, in which we randomly split them into 7 sequences for training and 3
for testing. We sequentially sample 895 images as training images and annotate 271 images with
per-pixel semantic segmentation ground truth as the test set for evaluation. The annotated ground
truth will be made publicly available. For all the experiments, intersection-over-union (IoU) ratio is
used as the metric to evaluate different methods.

4.2 ABLATION STUDY

In Table 1, we conduct an ablation study on the GTA5-to-Cityscapes scenario to understand the
impact of different loss functions and design choices in the proposed framework.

Loss Functions. In the first row of Table 1, we show different steps of the proposed method,
including disentanglement, global alignment, and patch-level alignment. Interestingly, we find
that adding disentanglement without any alignments (Ls + Ld) also improves the performance
(from 36.6% to 38.8%), which demonstrates that the learned feature representation enhances the
discrimination and generalization ability. Finally, as shown in the last result of the second row, our
method that combines both the global and patch-level alignments achieve the highest IoU as 43.2%.

Impact on Ld and Ll
adv . In the first two results of the second row, we conduct experiments to

validate the effectiveness of our patch-level alignment. We show that both losses, Ld and Ll
adv, are

necessary to assist this alignment process. Removing either of them will result in performance loss,
i.e., 1.9% and 1.5% lower than our final result. The reason behind this is that, Ld is to construct a
clustered space so that Ll

adv can then effectively perform patch-level alignment in this space.
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Our Method Without Patch Adaptation

Figure 4: Visualization of patch-level feature representations via t-SNE. In each figure, two thousand
patches are sampled from each source and target domain.

Table 2: Results of adapting GTA5 to Cityscapes. In the first and second groups, VGG-16 and
ResNet-101 base networks are adopted, respectively.

GTA5→ Cityscapes

Method ro
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ht

si
gn

ve
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sk
y

pe
rs

on
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r
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s

tr
ai

n

m
bi

ke

bi
ke

mIoU

Hoffman et al. (2016) 70.4 32.4 62.1 14.9 5.4 10.9 14.2 2.7 79.2 21.3 64.6 44.1 4.2 70.4 8.0 7.3 0.0 3.5 0.0 27.1
Zhang et al. (2017) 74.9 22.0 71.7 6.0 11.9 8.4 16.3 11.1 75.7 13.3 66.5 38.0 9.3 55.2 18.8 18.9 0.0 16.8 14.6 28.9
Hoffman et al. (2018) 83.5 38.3 76.4 20.6 16.5 22.2 26.2 21.9 80.4 28.7 65.7 49.4 4.2 74.6 16.0 26.6 2.0 8.0 0.0 34.8
Tsai et al. (2018) 87.3 29.8 78.6 21.1 18.2 22.5 21.5 11.0 79.7 29.6 71.3 46.8 6.5 80.1 23.0 26.9 0.0 10.6 0.3 35.0
Ours (VGG-16) 87.0 31.5 79.4 30.5 21.4 24.5 19.6 10.4 80.6 30.8 72.1 48.8 6.6 81.4 23.5 14.7 8.4 16.4 1.7 36.3

Without Adaptation 75.8 16.8 77.2 12.5 21.0 25.5 30.1 20.1 81.3 24.6 70.3 53.8 26.4 49.9 17.2 25.9 6.5 25.3 36.0 36.6
Tsai et al. (2018) (Feature) 83.7 27.6 75.5 20.3 19.9 27.4 28.3 27.4 79.0 28.4 70.1 55.1 20.2 72.9 22.5 35.7 8.3 20.6 23.0 39.3
Tsai et al. (2018) (Output) 86.5 25.9 79.8 22.1 20.0 23.6 33.1 21.8 81.8 25.9 75.9 57.3 26.2 76.3 29.8 32.1 7.2 29.5 32.5 41.4
Ours (ResNet-101) 89.2 38.4 80.4 24.4 21.0 27.7 32.9 16.1 83.1 34.1 77.8 57.4 27.6 78.6 31.2 40.2 4.7 27.6 27.6 43.2

Without Reshaped F̂ . In the module H that transforms the output distribution to the clustered
space, the features are reshaped as independent data points F̂ to remove the spatial relationship and
are then used as the input to the discriminator Dl. To validate the usefulness, we show that without
the reshaping process, the performance drops 2.4% in IoU. This result matches our assumption that
patches with similar representations should be aligned regardless of their locations.

Visualization of Feature Representations. In Figure 4, we show the t-SNE visualization (van der
Maaten & Hinton, 2008) of the patch-level features in the clustered space of our method and compare
with the one without patch-level adaptation. The result shows that with adaptation in the clustered
space, the features are embedded into groups and the source/target representations overlap to each
other well. Example patch visualizations are provided in the appendix.

4.3 COMPARISONS WITH STATE-OF-THE-ART METHODS

In this section, we compare the proposed method with state-of-the-art algorithms under various
scenarios, including synthetic-to-real and cross-city cases.

Synthetic-to-real Case. We first present experimental results for adapting GTA5 to Cityscapes in
Table 2. The methods in the upper group adopt the VGG-16 architecture as the base network and we
show that our approach performs favorably against state-of-the-art adaptations via feature (Hoffman
et al., 2016; Zhang et al., 2017), pixel-level (Hoffman et al., 2018), and output space (Tsai et al.,
2018) alignments. In the bottom group, we further utilize the stronger ResNet-101 base network
and compare our result with (Tsai et al., 2018) under two settings, i.e., feature and output space
adaptations. We show that the proposed method improves the IoU with a gain of 1.8% and achieves
the best IoU on 14 out of the 19 categories. In Table 3, we show results for adapting SYNTHIA
to Cityscapes and similar improvements are observed comparing with state-of-the-art methods. In
addition, we shows visual comparisons in Figure 5 and more results are presented in the appendix.

Cross-city Case. Adapting between real images across different cities and conditions is an impor-
tant scenario for practical applications. We choose a challenge case where the weather condition is
different (i.e., sunny v.s rainy) in two cities by adapting Cityscapes to Oxford RobotCar. The proposed

8
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Target Image Ground Truth Before Adaptation Global Alignment Ours

Figure 5: Example results for GTA5-to-Cityscapes. Our method often generates the segmentation
with more details (e.g., sidewalk and pole) while producing less noisy regions.

Table 3: Results of adapting SYNTHIA to Cityscapes. In the first and second groups, VGG-16 and
ResNet-101 base networks are adopted, respectively.

SYNTHIA→ Cityscapes

Method ro
ad

si
de

w
al

k

bu
ild
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g

lig
ht

si
gn

ve
g

sk
y

pe
rs

on

ri
de

r

ca
r

bu
s

m
bi

ke

bi
ke

mIoU

Hoffman et al. (2016) 11.5 19.6 30.8 0.1 11.7 42.3 68.7 51.2 3.8 54.0 3.2 0.2 0.6 22.9
Zhang et al. (2017) 65.2 26.1 74.9 3.7 3.0 76.1 70.6 47.1 8.2 43.2 20.7 0.7 13.1 34.8
Chen et al. (2017) 62.7 25.6 78.3 1.2 5.4 81.3 81.0 37.4 6.4 63.5 16.1 1.2 4.6 35.7
Tsai et al. (2018) 78.9 29.2 75.5 0.1 4.8 72.6 76.7 43.4 8.8 71.1 16.0 3.6 8.4 37.6
Ours (VGG-16) 76.3 29.0 75.3 0.8 6.1 72.9 78.7 44.1 9.5 71.5 18.5 4.4 8.7 38.1

Without Adaptation 55.6 23.8 74.6 6.1 12.1 74.8 79.0 55.3 19.1 39.6 23.3 13.7 25.0 38.6
Tsai et al. (2018) (Feature) 62.4 21.9 76.3 11.7 11.4 75.3 80.9 53.7 18.5 59.7 13.7 20.6 24.0 40.8
Tsai et al. (2018) (Output) 79.2 37.2 78.8 9.9 10.5 78.2 80.5 53.5 19.6 67.0 29.5 21.6 31.3 45.9
Ours (ResNet-101) 82.2 39.4 79.4 6.5 10.8 77.8 82.0 54.9 21.1 67.7 30.7 17.8 32.2 46.3

framework achieves a mean IoU of 65.0% averaged on 10 categories, significantly improving the
model without adaptation by 8.8%. To compare with the state-of-the-art method (Tsai et al., 2018),
we run the authors’ released code and obtain a mean IoU of 63.6%, which is 1.4% lower than the
proposed method. Further results and comparisons are provided in the appendix.

5 CONCLUSIONS

In this paper, we present a domain adaptation method for structured output via a general framework
that combines global and patch-level alignments. The global alignment is achieved by the output
space adaptation, while the patch-level one is performed via learning discriminative representations
of patches across domains. To learn such patch-level representations, we propose to construct
a clustered space of the source patches and adopt an adversarial learning scheme to push the
target patch distributions closer to the source ones. We conduct extensive ablation study and
experiments to validate the effectiveness of the proposed method under numerous challenges on
semantic segmentation, including synthetic-to-real and cross-city scenarios, and show that our
approach performs favorably against existing algorithms.

REFERENCES

K. Bousmalis, G. Trigeorgis, N. Silberman, D. Krishnan, and D. Erhan. Domain separation networks.
In NIPS, 2016.

K. Bousmalis, N. Silberman, D. Dohan, D. Erhan, and D. Krishnan. Unsupervised pixel-level domain
adaptation with generative adversarial networks. In CVPR, 2017.

Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L Yuille.
Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully
connected crfs. CoRR, abs/1606.00915, 2016a.

X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever, and P. Abbeel. Infogan: Interpretable
representation learning by information maximizing generative adversarial nets. In NIPS, 2016b.

9



Under review as a conference paper at ICLR 2019

Y.-H. Chen, W.-Y. Chen, Y.-T. Chen, B.-C. Tsai, Y.-C. F. Wang, and M. Sun. No more discrimination:
Cross city adaptation of road scene segmenters. In ICCV, 2017.

M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke, S. Roth, and
B. Schiele. The cityscapes dataset for semantic urban scene understanding. In CVPR, 2016.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In CVPR, 2009.

B. Fernando, A. Habrard, M. Sebban, and T. Tuytelaars. Unsupervised visual domain adaptation
using subspace alignment. In ICCV, 2013.

Yaroslav Ganin and Victor Lempitsky. Unsupervised domain adaptation by backpropagation. In
ICML, 2015.

Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François
Laviolette, Mario Marchand, and Victor Lempitsky. Domain-adversarial training of neural networks.
In JMLR, 2016.

Boqing Gong, Yuan Shi, Fei Sha, and Kristen Grauman. Geodesic flow kernel for unsupervised
domain adaptation. In CVPR, 2012.

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and
Y. Bengio. Generative adversarial nets. In NIPS, 2014.

Y. Grandvalet and Y. Bengio. Semi-supervised learning by entropy minimization. In NIPS, 2004.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In CVPR, 2016.

J. Hoffman, D. Wang, F. Yu, and T. Darrell. Fcns in the wild: Pixel-level adversarial and constraint-
based adaptation. CoRR, abs/1612.02649, 2016.

J. Hoffman, E. Tzeng, T. Park, J.-Y. Zhu, P. Isola, K. Saenko, A. A. Efros, and T. Darrell. Cycada:
Cycle-consistent adversarial domain adaptation. In ICML, 2018.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In ICLR, 2015.

A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural
networks. In NIPS, 2012.

T. D. Kulkarni, W. F. Whitney, P. Kohli, and J. Tenenbaum. Deep convolutional inverse graphics
network. In NIPS, 2015.

J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic segmentation. In
CVPR, 2015a.

Mingsheng Long, Yue Cao, Jianmin Wang, and Michael Jordan. Learning transferable features with
deep adaptation networks. In ICML, 2015b.

Mingsheng Long, Han Zhu, Jianmin Wang, and Michael I Jordan. Unsupervised domain adaptation
with residual transfer networks. In NIPS, 2016.

Andrew L Maas, Awni Y Hannun, and Andrew Y Ng. Rectifier nonlinearities improve neural network
acoustic models. In ICML, 2013.

W. Maddern, G. Pascoe, C. Linegar, and P. Newman. 1 year, 1000km: The oxford robotcar dataset.
The International Journal of Robotics Research (IJRR), 36(1), 2017.

A. Odena, C. Olah, and J. Shlens. Conditional image synthesis with auxiliary classifier gans. In
ICML, 2017.

A. Radford, L. Metz, and S. Chintala. Unsupervised representation learning with deep convolutional
generative adversarial networks. In ICLR, 2016.

S. Reed, K. Sohn, Y. Zhang, and H. Lee. Learning to disentangle factors of variation with manifold
interaction. In ICML, 2014.

10



Under review as a conference paper at ICLR 2019

S. R. Richter, V. Vineet, S. Roth, and V. Koltun. Playing for data: Ground truth from computer games.
In ECCV, 2016.

G. Ros, L. Sellart, J. Materzynska, D. Vazquez, and A. Lopez. The SYNTHIA Dataset: A large
collection of synthetic images for semantic segmentation of urban scenes. In CVPR, 2016.

Kate Saenko, Brian Kulis, Mario Fritz, and Trevor Darrell. Adapting visual category models to new
domains. In ECCV, 2010.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
Improved techniques for training gans. In NIPS, 2016.

Y.-H. Tsai, W.-C. Hung, S. Schulter, K. Sohn, M.-H. Yang, and M. Chandraker. Learning to adapt
structured output space for semantic segmentation. In CVPR, 2018.

Eric Tzeng, Judy Hoffman, Trevor Darrell, and Kate Saenko. Simultaneous deep transfer across
domains and tasks. In ICCV, 2015.

Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Darrell. Adversarial discriminative domain
adaptation. In CVPR, 2017.

L. J. P van der Maaten and G. E. Hinton. Visualizing high-dimensional data using t-sne. Journal of
Machine Learning Research, 9:2579–2605, 2008.

J. Yang, S. E. Reed, M.-H. Yang, and H. Lee. Weakly-supervised disentangling with recurrent
transformations for 3d view synthesis. In NIPS, 2015.

Y. Zhang, P. David, and B. Gong. Curriculum domain adaptation for semantic segmentation of urban
scenes. In ICCV, 2017.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-image translation
using cycle-consistent adversarial networks. ICCV, 2017.

11



Under review as a conference paper at ICLR 2019

A TRAINING DETAILS

To train the model in an end-to-end manner, we randomly sample one image from each of the source
and target domain (i.e., batch size as 1) in a training iteration. Then we follow the optimization
strategy as described in Section 3.4 of the paper. Table 4 shows the image and patch sizes during
training and testing. Note that, the aspect ratio of the image is always maintained (i.e., no cropping)
and then the image is down-sampled to the size as in the table.

Table 4: Image and patch sizes for training and testing.

Dataset Cityscapes GTA5 SYNTHIA Oxford RobotCar

Patch size for training 32× 64 36× 64 38× 64 -
Image size for training 512× 1024 720× 1280 760× 1280 960× 1280

Image size for testing 512× 1024 - - 960× 1280

B RELATION TO ENTROPY MINIMIZATION

Entropy minimization (Grandvalet & Bengio, 2004) can be used as a loss in our model to push
the target feature representation Ft to one of the source clusters. To add this regularization, we
replace the adversarial loss on the patch level with an entropy loss as in (Long et al., 2016), i.e.,
Ls + Ld + Lg

adv + Ll
en, where Ll

en =
∑

u,v

∑
kH(σ(F̂t/τ))(u,v,k), H is the information entropy

function, σ is the softmax function, and τ is the temperature of the softmax. The model with
adding this entropy regularization achieves the IoU as 41.9%, that is lower than the proposed patch-
level adversarial alignment as 43.2%. The reason is that, different from the entropy minimization
approach that does not use the source distribution as the guidance, our model learns discriminative
representations for the target patches by pushing them closer to the source distribution in the clustered
space guided by the label histogram.

C VISUALIZATION OF PATCH-LEVEL REPRESENTATIONS

In Figure 6, we show example patches from the source and target domains corresponding to the
t-SNE visualization. For each group in the clustered space via t-SNE, we show that source and
target patches share high similarity between each other, which demonstrates the effectiveness of the
proposed patch-level alignment.

Figure 6: Visualization of patch-level representations. We first show feature representations via t-SNE
of our method and compare with the one without the proposed patch-level alignment. In addition,
we show patch examples in the clustered space. In each group, patches are similar in appearance
between the source and target domains.
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D RESULT OF ADAPTING CITYSCAPES TO OXFORD ROBOTCAR

In Table 5, we present the complete result for adapting Cityscapes (sunny condition) to Oxford
RobotCar (rainy scene). We compare the proposed method with the model without adaptation and the
output space adaptation approach (Tsai et al., 2018). More qualitative results are provided in Figure 7
and 8.

Table 5: Results of adapting Cityscapes to Oxford RobotCar.

Cityscapes→ Oxford RobotCar

Method ro
ad

si
de

w
al

k

bu
ild

in
g

lig
ht

si
gn
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g
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rs
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to

m
ob

ile

tw
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w
he

el

mIoU

Without Adaptation 79.2 49.3 73.1 55.6 37.3 4.5 36.1 54.0 81.3 49.7 56.2
Tsai et al. (2018) 95.1 64.0 75.7 61.3 35.5 10.5 63.9 58.1 84.6 57.0 63.6
Ours 94.9 64.4 82.8 62.3 35.2 8.7 76.4 57.4 85.0 57.5 65.0

E QUALITATIVE COMPARISONS

We provide more visual comparisons for GTA5-to-Cityscapes and SYNTHIA-to-Cityscapes scenarios
from Figure 9 to Figure 11. In each row, we present the results of the model without adaptation,
output space adaptation (Tsai et al., 2018), and the proposed method. We show that our approach
often yields better segmentation outputs with more details and produces less noisy regions.

13



Under review as a conference paper at ICLR 2019

Figure 7: Example results of adapted segmentation for the Cityscapes-to-OxfordRobotCar setting.
We sequentially show images in a video and their adapted segmentations generated by our method.

Figure 8: Example results of adapted segmentation for the Cityscapes-to-OxfordRobotCar setting.
We sequentially show images in a video and their adapted segmentations generated by our method.
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Target Image Ground Truth Before Adaptation Global Alignment Ours

Figure 9: Example results of adapted segmentation for the GTA5-to-Cityscapes setting. For each
target image, we show results before adaptation, output space adaptation Tsai et al. (2018), and the
proposed method.
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Target Image Ground Truth Before Adaptation Global Alignment Ours

Figure 10: Example results of adapted segmentation for the GTA5-to-Cityscapes setting. For each
target image, we show results before adaptation, output space adaptation Tsai et al. (2018), and the
proposed method.
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Target Image Ground Truth Before Adaptation Global Alignment Ours

Figure 11: Example results of adapted segmentation for the SYNTHIA-to-Cityscapes setting. For
each target image, we show results before adaptation, output space adaptation Tsai et al. (2018), and
the proposed method.
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