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ABSTRACT

Many applications in machine learning require optimizing a function whose true
gradient is unknown, but where surrogate gradient information (directions that
may be correlated with, but not necessarily identical to, the true gradient) is avail-
able instead. This arises when an approximate gradient is easier to compute than
the full gradient (e.g. in meta-learning or unrolled optimization), or when a true
gradient is intractable and is replaced with a surrogate (e.g. in certain reinforce-
ment learning applications or training networks with discrete variables). We pro-
pose Guided Evolutionary Strategies, a method for optimally using surrogate gra-
dient directions along with random search. We define a search distribution for
evolutionary strategies that is elongated along a subspace spanned by the surro-
gate gradients. This allows us to estimate a descent direction which can then be
passed to a first-order optimizer. We analytically and numerically characterize the
tradeoffs that result from tuning how strongly the search distribution is stretched
along the guiding subspace, and use this to derive a setting of the hyperparame-
ters that works well across problems. Finally, we apply our method to example
problems including truncated unrolled optimization and training neural networks
with discrete variables, demonstrating improvement over both standard evolution-
ary strategies and first-order methods (that directly follow the surrogate gradient).
We provide a demo of Guided ES at: redacted URL

1 INTRODUCTION

Optimization in machine learning often involves minimizing a cost function where the gradient of
the cost with respect to model parameters is known. When gradient information is available, first-
order methods such as gradient descent are popular due to their ease of implementation, memory
efficiency, and convergence guarantees (Sra et al., 2012). When gradient information is not available,
however, we turn to zeroth-order optimization methods, including random search methods such as
evolutionary strategies (Rechenberg, 1973; Nesterov & Spokoiny, 2011; Salimans et al., 2017).

However, what if only partial gradient information is available? That is, what if one has access to
surrogate gradients that are correlated with the true gradient, but may be biased in some unknown
fashion? Naı̈vely, there are two extremal approaches to optimization with surrogate gradients. On
one hand, you could ignore the surrogate gradient information entirely and perform zeroth-order
optimization, using methods such as evolutionary strategies to estimate a descent direction. These
methods exhibit poor convergence properties when the parameter dimension is large (Duchi et al.,
2015). On the other hand, you could directly feed the surrogate gradients to a first-order optimization
algorithm. However, bias in the surrogate gradients will interfere with optimizing the target problem
(Tucker et al., 2017). Ideally, we would like a method that combines the complementary strengths
of these two approaches: we would like to combine the unbiased descent direction estimated with
evolutionary strategies with the low-variance estimate given by the surrogate gradient. In this work,
we propose a method for doing this called guided evolutionary strategies (Guided ES).

The critical assumption underlying Guided ES is that we have access to surrogate gradient informa-
tion, but not the true gradient. This scenario arises in a wide variety of machine learning problems,
which typically fall into two categories: cases where the true gradient is unknown or not defined,
and cases where the true gradient is hard or expensive to compute. Examples of the former in-
clude: models with discrete stochastic variables (where straight through estimators (Bengio et al.,
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Figure 1: (a) Schematic of guided evolutionary strategies. We perform a random search using a
distribution (white contours) elongated along a subspace (white arrow) which we are given instead
of the true gradient (blue arrow). (b) Comparison of different algorithms on a quadratic loss, where
a bias is explicitly added to the gradient to mimic situations where the true gradient is unknown. The
loss (left) and correlation between surrogate and true gradient (right) are shown during optimization.
See §4.1 for experimental details.

2013; van den Oord et al., 2017) or Concrete/Gumble-Softmax methods (Maddison et al., 2016; Jang
et al., 2016) are commonly used) and learned models in reinforcement learning (e.g. for Q functions
(Watkins & Dayan, 1992; Mnih et al., 2013; 2015; Lillicrap et al., 2015) or value estimation (Mnih
et al., 2016)). For the latter, examples include optimization using truncated backprop through time
(Rumelhart et al., 1985; Williams & Peng, 1990; Wu et al., 2018). Surrogate gradients also arise
in situations where the gradients are explicitly modified during training, as in feedback alignment
(Lillicrap et al., 2014) and related methods (Nøkland, 2016; Gilmer et al., 2017).

The key idea in Guided ES is to keep track of a low-dimensional subspace, defined by the recent
history of surrogate gradients during optimization, which we call the guiding subspace. We then
perform a finite difference random search (as in evolutionary strategies) preferentially within this
subspace. By concentrating our search samples in a low-dimensional subspace where the true gra-
dient has non-negative support, we dramatically reduce the variance of the search direction.

Our contributions in this work are:

• a new method for combining surrogate gradient information with random search,

• an analysis of the bias-variance tradeoff underlying the technique (§3.3),

• a scheme for choosing optimal hyperparameters for the method (§3.4), and

• applications to example problems (§4).

2 RELATED WORK

This work builds upon a random search method known as evolutionary strategies (Rechenberg,
1973; Nesterov & Spokoiny, 2011), or ES for short, which generates a descent direction via finite
differences over random perturbations of parameters. ES has seen a resurgence in popularity in
recent years (Salimans et al., 2017; Mania et al., 2018). Our method can primarily be thought of as
a modification to ES where we augment the search distribution using surrogate gradients.

Extensions of ES that modify the search distribution use natural gradient updates in the search dis-
tribution (Wierstra et al., 2008) or construct non-Gaussian search distributions (Glasmachers et al.,
2010). The idea of using gradients in concert with evolutionary algorithms was proposed by Lehman
et al. (2017b), who use gradients of a network with respect to its inputs (as opposed to parameters)
to augment ES. Other methods for adapting the search distribution include covariance matrix adap-
tation ES (CMA-ES) (Hansen, 2016), which uses the recent history of descent steps to adapt the
distribution over parameters, or variational optimization (Staines & Barber, 2012), which optimizes
the parameters of a probability distribution over model weights. Guided ES, by contrast, adapts the
search distribution using surrogate gradient information. In addition, we never need to work with or
compute a full n× n covariance matrix.
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3 GUIDED EVOLUTIONARY STRATEGIES

3.1 VANILLA ES

We wish to minimize a function f(x) over a parameter space in n-dimensions (x ∈ Rn), where∇f
is either unavailable or uninformative. A popular approach is to estimate a descent direction with
stochastic finite differences (commonly referred to as evolutionary strategies (Rechenberg, 1973) or
random search (Rastrigin, 1963)). Here, we use antithetic sampling (Owen, 2013) (using a pair of
function evaluations at x+ ε and x− ε) to reduce variance. This estimator is defined as:

g =
β

2σ2P

P∑

i=1

εi (f(x+ εi)− f(x− εi)) , (1)

where εi ∼ N (0, σ2I), and P is the number of sample pairs. We will set P to one for all exper-
iments, and when analyzing optimal hyperparameters. The overall scale of the estimate (β) and
variance of the perturbations (σ2) are constants, to be chosen as hyperparameters. This estimate
solely relies on computing 2P function evaluations. However, it tends to have high variance, thus
requiring a large number of samples to be practical, and scales poorly with the dimension n. We
refer to this estimator as vanilla evolutionary strategies (or vanilla ES) in subsequent sections.

3.2 GUIDED SEARCH

Even when we do not have access to ∇f , we frequently have additional information about f , either
from prior knowledge or gleaned from previous iterates during optimization. To formalize this, we
assume we are given a set of vectors which may correspond to biased or corrupted gradients. That
is, these vectors are correlated (but need not be perfectly aligned) with the true gradient. If we are
given a single vector or surrogate gradient for a given parameter iterate, we can generate a subspace
by keeping track of the previous k surrogate gradients encountered during optimization. We use U
to denote an n× k orthonormal basis for the subspace spanned by these vectors (i.e., UTU = Ik).

We leverage this information by changing the distribution of εi in eq. (1) to N (0, σ2Σ) with

Σ =
α

n
In +

1− α
k

UUT ,

where k and n are the subspace and parameter dimensions, respectively, and α is a hyperparameter
that trades off variance between the full parameter space and the subspace. Setting α = 1 recovers
the vanilla ES estimator (and ignores the guiding subspace), but as we show choosing α < 1 can
result in significantly improved performance. The other hyperparameter is the scale β in (1), which
controls the size of the estimated descent direction. The parameter σ2 controls the overall scale
of the variance, and will drop out of the analysis of the bias and variance below, due to the 1

σ2

factor in (1). In practice, if f(x) is stochastic, then increasing σ2 will dampen noise in the gradient
estimate, while decreasing σ2 reduces the error induced by third and higher-order terms in the Taylor
expansion of f below. For an exploration of the effects of σ2 in ES, see Lehman et al. (2017a).

Samples of εi can be generated efficiently as εi = σ
√

α
n ε + σ

√
1−α
k Uε′ where ε ∼ N(0, In) and

ε′ ∼ N(0, Ik). Our estimator requires 2P function evaluations in addition to the cost of computing
the surrogate gradient. Furthermore, it may be possible to parallelize the forward pass computations.

Figure 1a depicts the geometry underlying our method. Instead of the true gradient (blue arrow), we
are given a surrogate gradient (white arrow) which is correlated with the true gradient. We use this
to form a guiding distribution (denoted with white contours) and use this to draw samples (white
dots) which we use as part of a random search procedure. (Figure 1b demonstrates the performance
of the method on a toy problem, and is discussed in §4.1.)

For the purposes of analysis, suppose ∇f exists. We can approximate the function in the local
neighborhood of x using a second order Taylor approximation: f(x + ε) ≈ f(x) + εT∇f(x) +
1
2ε
T∇2f(x)ε. For the remainder of §3, we take this second order Taylor expansion to be exact. By

substituting this expression into (1), we see that our estimate g is equal to

g =
β

σ2P

P∑

i=1

(
εiε

T
i

)
∇f(x). (2)
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Note that even terms in the Taylor expansion cancel out in the expression for g due to antithetic
sampling. The computational and memory costs of using Guided ES to compute parameter updates,
compared to standard (vanilla) ES and gradient descent, are outlined in Appendix D.

3.3 TRADEOFF BETWEEN VARIANCE AND SAFE BIAS

As we have alluded to, there is a bias-variance tradeoff lurking within our estimate g. In particular,
by emphasizing the search in the full space (i.e., choosing α close to 1), we reduce the bias in our
estimate at the cost of increased variance. Emphasizing the search along the guiding subspace (i.e.,
choosing α close to 0) will induce a bias in exchange for a potentially large reduction in variance,
especially if the subspace dimension k is small relative to the parameter dimension n. Below, we
analytically and numerically characterize this tradeoff.

Importantly, regardless of the choice of α and β, the Guided ES estimator always provides a descent
direction in expectation. The mean of the estimator in eq. (2) is E[g] = βΣ∇f(x) corresponds to
the gradient multiplied by a positive semi-definite (PSD) matrix, thus the update (−E[g]) remains a
descent direction. This desirable property ensures that α trades off variance for “safe” bias. That is,
the bias will never produce an ascent direction when we are trying to minimize f .

The alignment between the k-dimensional orthonormal guiding subspace (U ) and the true gradient
(∇f(x)) will be a key quantity for understanding the bias-variance tradeoff. We characterize this
alignment using a k-dimensional vector of uncentered correlation coefficients ρ, whose elements
are the correlation between the gradient and every column of U . That is, ρi = ∇f(x)TU·i

‖∇f(x)‖ . This
correlation ‖ρ‖2 varies between zero (if the gradient is orthogonal to the subspace) and one (if the
gradient is full contained in the subspace).

We can evaluate the squared norm of the bias of our estimate g as

‖Bias(g)‖22 = (E[g]−∇f(x))T (E[g]−∇f(x))

= ∇f(x)T (βΣ− I)
2∇f(x). (3)

We additionally define the normalized squared bias, b̃, as the squared norm of the bias divided by the
squared norm of the true gradient (this quantity is independent of the overall scale of the gradient).
Plugging in our estimate for g from eq. (2) yields the following expression for the normalized
squared bias (see Appendix A.1 for derivation):

b̃ =
(
β
α

n
− 1
)2

+

(
β2 (1− α)2

k2
+ 2β

(1− α)

k

(
β
α

n
− 1
))
‖ρ‖22 (4)

where again β is a scale factor and α is part of the parameterization of the covariance matrix that
trades off variance in the full parameter space for variance in the guiding subspace (Σ = α

n I +
(1−α)
k UUT ). We see that the normalized squared bias consists of two terms: the first is a contribution

from the search in the full space and is thus independent of ρ, whereas the second depends on the
squared norm of the uncentered correlation, ‖ρ‖22.

In addition to the bias, we are also interested in the variance of our estimate. We use total variance
(i.e., tr(Var(g))) to quantify the variance of our estimator

total variance ≡ tr (Var(g)) = tr
(
E[ggT ]− E[g]E[g]T

)
= E[gT g]− E[g]TE[g]

= β2∇f(x)TE[εεT εεT ]∇f(x)− β2∇f(x)TΣTΣ∇f(x)

= ∇f(x)T
(
β2Σ + β2Σ2

)
∇f(x),

using an identity for the fourth moment of a Gaussian (see Appendix A.2) and the fact that the trace
is linear and invariant under cyclic permutations.

We are interested in the normalized variance, ṽ, which we define as the quantity above divided by
the squared norm of the gradient. Plugging in our estimate g yields the following expression for the
normalized variance (see Appendix A.2):

ṽ = β2

(
α2

n2
+
α

n

)
+ β2

(
(1− α)2

k2
+ 2

α(1− α)

kn
+

(1− α)

k

)
‖ρ‖22. (5)
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Equations (4) and (5) quantify the bias and variance of our estimate as a function of the subspace and
parameter dimensions (k and n), the parameters of the distribution (α and β), and the correlation
‖ρ‖2. Note that for simplicity we have set the number of pairs of function evaluations, P , to one.
As P increases, the variance will decrease linearly, at the cost of extra function evaluations.

Figure 2 explores the tradeoff between normalized bias and variance for different settings of the
relevant hyperparameters (α and β) for example values of ‖ρ‖2 = 0.23, k = 3, and n = 100.
Figure 2c shows the sum of the normalized bias plus variance, the global minimum of which (blue
star) can be used to choose optimal values for the hyperparameters, discussed in the next section.
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Figure 2: Exploring the tradeoff between variance and safe bias in Guided ES. Contour plots of
normalized bias b̃ (a), normalized variance ṽ (b), and the sum of both (c) are shown as a function
of the tradeoff (α) and scale (β) hyperparameters, for a fixed ‖ρ‖2 = 0.23. For these plots, the
subspace dimension was set to k = 3 and the parameter dimension was set to n = 100. The blue
line in (c) denotes the optimal β for every value of α, and the star denotes the global optimum.

3.4 CHOOSING OPTIMAL HYPERPARAMETERS BY MINIMIZING ERROR IN THE ESTIMATE

The expressions for the normalized bias and variance depend on the subspace and parameter di-
mensions (k and n, respectively), the hyperparameters of the guiding distribution (α and β) and the
uncentered correlation between the true gradient and the subspace (‖ρ‖2). All of these quantities
except for the correlation ‖ρ‖2 are known or defined in advance.

To choose optimal hyperparameters, we minimize the sum of the normalized bias and variance,

(equivalent to the expected normalized square error in the gradient estimate, b̃+ ṽ =
E[‖g−∇f(x)‖22]
‖∇f(x)‖22

).
This objective becomes:

b̃+ ṽ = (6)
[
2β2α

2

n2
+ (β2 − 2β)

α

n
+ 1

]
+

[
2β2 (1− α)2

k2
+ 4β2α(1− α)

kn
+ (β2 − 2β)

(1− α)

k

]
‖ρ‖22,

subject to the feasibility constraints β ≥ 0 and 0 ≤ α ≤ 1.

As further motivation for this hyperparameter objective, in the simple case that f(x) = 1
2‖x‖22 then

minimizing eq. (6) also results in the hyperparameters that cause SGD to most rapidly descend f(x).
See Appendix C for a derivation of this relationship.

We can solve for the optimal tradeoff (α∗) and scale (β∗) hyperparameters as a function of ‖ρ‖2,
k, and n. Figure 3a shows the optimal value for the tradeoff hyperparameter (α∗) in the 2D plane
spanned by the correlation (‖ρ‖2) and ratio of the subspace dimension to the parameter dimension
k
n . Remarkably, we see that for large regions of the (‖ρ‖2, kn ) plane, the optimal value for α is either
0 or 1. In the upper left (blue) region, the subspace is of high quality (highly correlated with the true
gradient) and small relative to the full space, so the optimal solution is to place all of the weight in
the subspace, setting α to zero (therefore Σ ∝ UUT ). In the bottom right (orange) region, we have
the opposite scenario, where the subspace is large and low-quality, thus the optimal solution is to
place all of the weight in the full space, setting α to one (equivalent to vanilla ES, Σ ∝ I). The strip
in the middle is an intermediate regime where the optimal α is between 0 and 1.
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We can also derive an expression for when this transition in optimal hyperparameters occurs. To

do this, we use the reparameterization θ =

(
αβ

(1− α)β

)
. This allows us to express the objective in

(6) as a least squares problem 1
2‖Aθ − b‖22, subject to a non-negativity constraint (θ � 0), where A

and b depend solely on the problem data k, n, and ‖ρ‖2 (see Appendix B.1 for details). In addition,
A is always a positive semi-definite matrix, so the reparameterized problem is convex. We are
particularly interested in the point where the non-negativity constraint becomes tight. Formulating
the Lagrange dual of this problem and solving for the KKT conditions allows us to identify this
point using the complementary slackness conditions (Boyd & Vandenberghe, 2004). This yields the

equations ‖ρ‖2 =
√

k+4
n+4 and ‖ρ‖2 =

√
k
n (see Appendix B.2), which are shown in Figure 3a, and

line up with the numerical solution. Figure 3b further demonstrates this tradeoff. For fixed n = 100,
we plot four curves for k ranging from 1 to 30. As ‖ρ‖2 increases, the optimal hyperparameters
sweep out a curve from

(
α∗ = 1, β∗ = n

n+2

)
to
(
α∗ = 0, β∗ = k

k+2

)
.

In practice, the correlation between the gradient and the guiding subspace is typically unknown.
However, we find that ignoring ‖ρ‖2 and setting β = 2 and α = 1

2 works well (these are the
values used for all experiments in this paper). A direction for future work would be to estimate the
correlation ‖ρ‖2 online, and to use this to choose hyperparameters by minimizing eq. (6).
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Figure 3: Choosing optimal hyperparameters. (a) Different regimes of optimal hyperparameters in
the ( kn , ‖ρ‖2) plane are shown as shaded regions. See §3.4 for details. (b) As ‖ρ‖2 increases, the
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4 APPLICATIONS

4.1 QUADRATIC FUNCTION WITH A BIASED GRADIENT

We first test our method on a toy problem where we control the bias of the surrogate gradient
explicitly. We generated random quadratic problems of the form f(x) = 1

2‖Ax − b‖22 where the
entries of A and b were drawn independently from a standard normal distribution, but rather than
allow the optimizers to use the true gradient, we (for illustrative purposes) added a random bias to
generate surrogate gradients. Figure 1b compares the performance of stochastic gradient descent
(SGD) with standard (vanilla) evolutionary strategies (ES), CMA-ES, and Guided ES. For this, and
all of the results in this paper, we set the hyperparameters as β = 2 and α = 1

2 , as described above.

We see that Guided ES proceeds in two phases: it initially quickly descends the loss as it follows
the biased gradient, and then transitions into random search. Vanilla ES and CMA-ES, however, do
not get to take advantage of the information available in the surrogate gradient, and converge more
slowly. We see this also in the plot of the uncentered correlation (ρ) between the true gradient and
the surrogate gradient in Figure 1c. Further experimental details are provided in Appendix E.1.

6



Under review as a conference paper at ICLR 2019

4.2 UNROLLED OPTIMIZATION
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Figure 4: Unrolled optimization. (a) Bias in the loss landscape of unrolled optimization for small
numbers of unrolled optimization steps (t). (b) Training curves (shown as distance from the opti-
mum) for training a multi-layer perceptron to predict the optimal learning rate as a function of the
eigenvalues of the function to optimize. See §4.2 for details.

Another application where surrogate gradients are available is in unrolled optimization. Unrolled
optimization refers to taking derivatives through an optimization process. For example, this ap-
proach has been used to optimize hyperparameters (Domke, 2012; Maclaurin et al., 2015; Baydin
et al., 2017), to stabilize training (Metz et al., 2016), and even to train neural networks to act as
optimizers (Andrychowicz et al., 2016; Wichrowska et al., 2017; Li & Malik, 2017; Lv et al., 2017).
Taking derivatives through optimization with a large number of steps is costly, so a common ap-
proach is to instead choose a small number of unrolled steps, and use that as a target for training.
However, Wu et al. (2018) recently showed that this approach yields biased gradients.

To demonstrate the utility of Guided ES here, we trained multi-layer perceptrons (MLP) to predict
the learning rate for a target problem, using as input the eigenvalues of the Hessian at the current
iterate. Figure 4a shows the bias induced by unrolled optimization, as the number of optimization
steps ranges from one iteration (orange) to 15 (blue). We compute the surrogate gradient of the
parameters in the MLP using the loss after one SGD step. Figure 4b, we show the absolute value of
the difference between the optimal learning rate and the MLP prediction for different optimization
algorithms. Further experimental details are provided in Appendix E.2.

4.3 SYNTHESIZING GRADIENTS FOR A GUIDING SUBSPACE

Next, we explore using Guided ES in the scenario where the surrogate gradient is not provided,
but instead we train a model to generate surrogate gradients (we call these synthetic gradients). In
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Figure 5: Synthetic gradients serving as the guiding subspace for Guided ES. (a) Loss curves when
using synthetic gradients to minimize a target quadratic problem. (b) Correlation between the syn-
thetic update direction and the true gradient during optimization for Guided ES.
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Figure 6: Training a VQ-VAE. (a) Guided ES (using the straight-through estimator as the surrogate
gradient) achieves lower training loss than Adam. (b) Histogram of the correlation between the
Guided ES update and the straight-through gradient during training.

real-world applications, training a model to produce synthetic gradients is the basis of model-based
and actor-critic methods in RL (Lillicrap et al., 2015; Heess et al., 2015) and has been applied
to decouple training across neural network layers (Jaderberg et al., 2016) and to generate policy
gradients (Houthooft et al., 2018). A key challenge with such an approach is that early in training,
the model generating the synthetic gradients is untrained, and thus will produce biased gradients. In
general, it is unclear during training when following these synthetic gradients will be beneficial.

We define a parametric model, M(x; θ) (an MLP), which provides synthetic gradients for the target
problem f . The target model M(·) is trained online to minimize mean squared error against eval-
uations of f(x). Figure 5 compares vanilla ES, Guided ES, and the Adam optimizer (Kingma &
Ba, 2014). We show training curves for these methods in Figure 5a, and the correlation between the
synthetic gradient and true gradients for Guided ES in Figure 5b. Despite the fact that the quality
of the synthetic gradients varies wildly during optimization, Guided ES consistently makes progress
on the target problem. Further experimental details are provided in Appendix E.3.

4.4 NEURAL NETWORKS WITH DISCRETE LATENT VARIABLES

Finally, we applied Guided ES to train neural networks with discrete variables. Specifically, we
trained autoencoders with a discrete latent codebook as in the VQ-VAE (van den Oord et al., 2017)
on MNIST. The encoder and decoder were fully connected networks with two hidden layers. We use
the straight-through estimator (Bengio et al., 2013) taken through the discretization step as the surro-
gate gradient. For Guided ES, we computed the Guided ES update only for the encoder weights, as
those are the only parameters with biased gradients (due to the straight-through estimator)–the other
weights in the network were trained directly with Adam. Figure 6a shows the training loss using
Adam, standard (vanilla) ES, and Guided ES (note that vanilla ES does not make progress on this
timescale due to the large number of parameters (n = 152912)). We achieve a small improvement,
likely due to the biased straight-through gradient estimator leading to suboptimal encoder weights.
The correlation between the Guided ES update step and the straight-through gradient (Figure 6b)
can be thought of as a metric for the quality of the surrogate gradient (which is fairly high for this
problem). Overall, this demonstrates that we can use Guided ES and first-order methods together,
applying the Guided ES update only to the parameters that have surrogate gradients (and using first-
order methods for the parameters that have unbiased gradients). Further experimental details are
provided in Appendix E.4.

5 DISCUSSION

We have introduced guided evolutionary strategies (Guided ES), an optimization algorithm which
combines the benefits of first-order methods and random search, when we have access to surrogate
gradients that are correlated with the true gradient. We analyzed the bias-variance tradeoff inher-
ent in our method analytically, and demonstrated the generality of the technique by applying it to
unrolled optimization, synthetic gradients, and training neural networks with discrete variables.
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APPENDIX

A DERIVATION OF THE BIAS AND VARIANCE OF THE GUIDED ES UPDATE

A.1 BIAS

The squared bias norm is defined as:

‖E[g]−∇f(x)‖22 = ∇f(x)T (βΣ− I)
2∇f(x),

where ε ∼ N (0,Σ) and the covariance is given by: Σ = α
n I + 1−α

k UUT . This expression reduces
to (recall that U is orthonormal, so UTU = I):

‖Bias ‖22 = ‖∇f(x)‖22
[
β2α

2

n2
− 2β

α

n
+ 1 +

(
β2 (1− α)2

k2
+ 2β2α(1− α)

kn
− 2β

1− α
k

)
‖ρ‖22

]

= ‖∇f(x)‖22
[(
β
α

n
− 1
)2

+

(
β2 (1− α)2

k2
+ 2β

1− α
k

(
β
α

n
− 1
))
‖ρ‖22

]

Dividing by the norm of the gradient (‖∇f(x)‖22) yields the expression for the normalized bias (eq.
(4) in the main text).

A.2 VARIANCE

First, we state a useful identity. Suppose ε ∼ N (0,Σ), then

E[εεT εεT ] = tr(Σ)Σ + 2Σ2.

We can see this by observing that the (i, k) entry of E[εεT εεT ] = E[(εT ε)εεT ] is

E


∑

j

εiε
2
jεk


 =

∑

j

E
[
εiε

2
jεk
]

=
∑

j

E
[
ε2j
]
E [εiεk] + 2

∑

j

E [εiεj ]E [εjεk] ,

by Isserlis’ theorem, and then we recover the identity by rewriting the terms in matrix notation.

The total variance is given by:

total variance = tr(Var(g)) = β2∇f(x)TE[εεT εεT ]∇f(x)− E[g]TE[g]

Using the identity above, we can express the total variance as:

total variance = β2∇f(x)T
(
tr(Σ)Σ + 2Σ2

)
∇f(x)− β2∇f(x)TΣ2∇f(x)

= β2∇f(x)T
(
tr(Σ)Σ + Σ2

)
∇f(x)
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Since the trace of the covariance matrix Σ is 1, we can expand the quantity tr(Σ)Σ + Σ2 as:

tr(Σ)Σ + Σ2 = Σ + Σ2

=

[
α2

n2
+
α

n

]
I +

[
(1− α)2

k2
+ 2

α(1− α)

kn
+

1− α
k

]
UUT

Thus the expression for the total variance reduces to:

total variance = ‖∇f(x)‖22β2

(
α2

n2
+
α

n
+

[
(1− α)2

k2
+ 2

α(1− α)

kn
+

1− α
k

]
‖ρ‖22

)
,

and dividing by the norm of the gradient yields the expression for the normalized variance (eq. (5)
in the main text).

B OPTIMAL HYPERPARAMETERS

B.1 REPARAMETERIZATION

We wish to minimize the sum of the normalized bias and variance, eq. (6) in the main text. First, we
use a reparameterization by using the substitution θ1 = αβ and θ2 = (1 − α)β. This substitution
yields:

b̃+ ṽ =

[
2
θ21
n2

+ (θ0 + θ1 − 2)
θ0
n

+ 1

]
+

[
2
θ22
k2

+ 4
θ0θ1
kn

+ (θ0 + θ1 − 2)
θ1
k

]
‖ρ‖22,

which is quadratic in θ. Therefore, we can rewrite the problem as: b̃ + ṽ = 1
2‖Aθ − b‖22, where A

and b are given by:

A =




2
n2 + 1

n
1
2

(
4‖ρ‖22
kn +

‖ρ‖22
k + 1

n

)

1
2

(
4‖ρ‖22
kn +

‖ρ‖22
k + 1

n

) (
2
k2 + 1

k

)
‖ρ‖22


 , b =

(
1
n
‖ρ‖22
k

)
(7)

Note thatA and b depend on the problem data (k, n, and ‖ρ‖2), and thatA is a positive semi-definite
matrix (as k and n are non-negative integers, and ‖ρ‖2 is between 0 and 1). In addition, we can
express the constraints on the original parameters (β ≥ 0 and 0 ≤ α ≤ 1) as a non-negativity
constraint in the new parameters (θ � 0).

B.2 KKT CONDITIONS

The optimal hyperparameters are defined (see main text) as the solution to the minimization problem:

minimize
θ

1
2‖Aθ − b‖22

subject to θ � 0
(8)

where θ =

(
αβ

(1− α)β

)
are the hyperparameters to optimize, and A and b are specified in eq. (7).

The Lagrangian for (8) is given by L(θ, λ) = 1
2‖Aθ − b‖22 − λT θ, and the corresponding dual

problem is:
maximize

λ
infθ

1
2‖Aθ − b‖22 − λT θ

subject to λ � 0
(9)

Since the primal is convex, we have strong duality and the Karush-Kuhn-Tucker (KKT) conditions
guarantee primal and dual optimality. These conditions include primal and dual feasibility, that the
gradient of the Lagrangian vanishes (∇θL(θ, λ) = Aθ − b− λ = 0), and complimentary slackness
(which ensures that for each inequality constraint, either the constraint is satisfied or λ = 0).

Solving the condition on the gradient of the Langrangian for λ yields that the lagrange multipliers
λ are simply the residual λ = Aθ − b. Complimentary slackness tells us that λiθi = 0, for all i.
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We are interested in when this constraint becomes tight. To solve for this, we note that there are
two regimes where each of the two inequality constraints is tight (the blue and orange regions in

Figure 3a). These occur for the solutions θ(1) =

(
0
k
k+2

)
(when the first inequality is tight) and

θ(2) =

(
n
n+2
0

)
(when the second inequality is tight). To solve for the transition point, we solve

for the point where the constraint is tight and the lagrange multiplier (λ) equals zero. We have two
inequality constraints, and thus will have two solutions (which are the two solid curves in Figure
3a). Since the lagrange multiplier is the residual, these points occur when

(
Aθ(1) − b

)
1

= λ1 = 0

and
(
Aθ(2) − b

)
2

= λ2 = 0.

The first solution θ(1) =

(
0
k
k+2

)
yields the upper bound:

(
Aθ(1)

)
1
− b1 = 0

1

2

(
1

n
+
‖ρ‖22
k

+ 4
‖ρ‖22
kn

)(
k

k + 2

)
=

1

n

‖ρ‖22
(
n+ 4

n

)
=
k + 4

n

‖ρ‖2 =

√
k + 4

n+ 4

And the second solution θ(2) =

(
n
n+2
0

)
yields the lower bound:
(
Aθ(2)

)
2
− b2 = 0

1

2

(
1

n
+
‖ρ‖22
k

+ 4
‖ρ‖22
kn

)(
n

n+ 2

)
=
‖ρ‖22
k

k + n‖ρ‖22 + 4‖ρ‖22 = ‖ρ‖22(2n+ 4)

‖ρ‖2 =

√
k

n

These are the equations for the lines separating the regimes of optimal hyperparameters in Figure 3.

C ALTERNATIVE MOTIVATION FOR OPTIMAL HYPERPARAMETERS

Choosing hyperparameters which most rapidly descend the simple quadratic loss in eq. (10) is
equivalent to choosing hyperparameters which minimize the expected square error in the estimated
gradient, as is done in §3.4. This provides further support for the method used to choose hyperpa-
rameters in the main text. Here we derive this equivalence.

Assume a loss function of the form

f(x) =
1

2
‖x‖22, (10)

and that updates are performed via gradient descent with learning rate 1,
x← x− g.

The expected loss after a single training step is then

Eg [f (x− g)] =
1

2
Eg
[
‖x− g‖22

]
. (11)

For this problem, the true gradient is simply∇f(x) = x. Substituting this into eq. (11), we find

Eg [f(x− g)] =
1

2
Eg
[
‖∇f(x)− g‖22

]
.

Up to a multiplicative constant, this is exactly the expected square error between the descent direc-
tion g and the gradient ∇f(x) used as the objective for choosing hyperparameters in §3.4.
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D COMPUTATIONAL AND MEMORY COST

Here, we outline the computational and memory costs of Guided ES and compare them to standard
(vanilla) evolutionary strategies and gradient descent. As elsewhere in the paper, we define the pa-
rameter dimension as n and the number of pairs of function evaluations (for evolutionary strategies)
as P . We denote the cost of computing the full loss as F0, and (for Guided ES and gradient descent),
we assume that at every iteration we compute a surrogate gradient which has cost F1. Note that
for standard training of neural networks with backpropogation, these quantities have similar cost
(F1 ≈ 2F0), however for some applications (such as unrolled optimization discussed in §4.2) these
can be very different.

Algorithm Computational cost Memory cost
Gradient descent F1 n
Vanilla evolutionary strategies 2PF0 n
Guided evolutionary strategies F1 + 2PF0 (k + 1)n

Table 1: Per-iteration compute and memory costs for gradient descent, standard (vanilla) evolution-
ary strategies, and the method proposed in this paper, guided evolutionary strategies. Here, F0 is the
cost of a function evaluation, F1 is the cost of computing a surrogate gradient, n is the parameter
dimension, k is the subspace dimension used for the guiding subspace, and P is the number of pairs
of function evaluations used for the evolutionary strategies algorithms.

E EXPERIMENTAL DETAILS

Below, we give detailed methods used for each of the experiments from §4. For each problem, we
specify a desired loss function that we would like to minimize (f(x)), as well as specify the method
for generating a surrogate or approximate gradient (∇f̃(x)).

E.1 QUADRATIC FUNCTION WITH A BIASED GRADIENT

Our target problem is linear regression, f(x) = 1
2M ‖Ax− b‖22, where A is a random M ×N matrix

and b is a random M -dimensional vector. The elements of A and b were drawn IID from a standard
Normal distribution. We chose N = 1000 and M = 2000 for this problem. The surrogate gradient
was generated by adding a random bias (drawn once at the beginning of optimization) and noise
(resampled at every iteration) to the gradient. These quantities were scaled to have the same norm as
the gradient. Thus, the surrogate gradient is given by: ∇f̃(x) = ∇f(x)+(b+ n) ‖∇f(x)‖2, where
b and n are unit norm random vectors that are fixed (bias) or resampled (noise) at every iteration.

The plots in Figure 1b show the loss suboptimality (f(x) − f∗), where f∗ is the minimum of f(x)
for a particular realization of the problem. The parameters were initialized to the zeros vector and
optimized for 10,000 iterations. Figure 1b shows the mean and spread (std. error) over 10 random
seeds. For each optimization algorithm, we performed a coarse grid search over the learning rate
for each method, scanning 17 logarithmically spaced values over the range (10−5, 1). The learning
rates chosen were: 5e-3 for gradient descent, 0.2 for guided and vanilla ES, and 1.0 for CMA-ES.
For the two evolutionary strategies algorithms, we set the overall variance of the perturbations as
σ = 0.1 and used P = 1 pair of samples per iteration. The subspace dimension for Guided ES was
set to k = 10. The results were not sensitive to the choices for σ, P , or k.

E.2 UNROLLED OPTIMIZATION

We define the target problem as the loss of a quadratic after running T = 15 steps of gradient
descent. The quadratic has the same form as described above, 1

2M ‖Ax − b‖22, but with M = 20
and N = 10. The learning rate for the optimizer was taken as the output of a multilayer percep-
tron (MLP), with three hidden layers containing 32 hidden units per layer and with rectified linear
(ReLU) activations after each hidden layer. The inputs to the MLP were the 10 eigenvalues of the
Hessian, ATA, and the output was a single scalar that was passed through a softplus nonlinearity
(to ensure a positive learning rate). Note that the optimal learning rate for this problem is 2M

λmin+λmax
,

where λmin and λmax are the minimum and maximum eigenvalues of ATA, respectively.
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The surrogate gradients for this problem were generated by backpropagation through the optimiza-
tion process, but by unrolling only T = 1 optimization steps (truncated backprop). Figure 4b shows
the distance between the MLP predicted learning rate and the optimal learning rate

(
2M

λmin+λmax

)
,

during the course of optimization of the MLP parameters. That is, Figure 4b shows the progress on
the meta-optimization problems (optimizing the MLP to predict the learning rate) using the three
different algorithms (SGD, vanilla ES, and guided ES).

As before, the mean and spread (std. error) over 10 random seeds are shown, and the learning rate
for each of the three methods was chosen by a grid search over the range (10−5, 10). The learning
rates chosen were 0.3 for gradient descent, 0.5 for guided ES, and 10 for vanilla ES. For the two
evolutionary strategies algorithms, we set the variance of the perturbations to σ = 0.01 and used
P = 1 pair of samples per iteration. The results were not sensitive to the choices for σ, P , or k.

E.3 SYNTHESIZING GRADIENTS FOR A GUIDING SUBSPACE

Here, the target problem consisted of a mean squared error objective, f(x) = 1
2‖x − x∗‖22, where

x∗ was random sampled from a uniform distribution between [-1, 1]. The surrogate gradient was
defined as the gradient of a model, M(x; θ), with inputs x and parameters θ. We parameterize this
model using a multilayered perceptron (MLP) with two 64-unit hidden layers and relu activations.
The surrogate gradients were taken as the gradients of M with respect to x: ∇f̃(x) = ∇xM(x; θ).

The model was optimized online during optimization of f by minimizing the mean squared error
with the (true) function observations: Lmodel(θ) = Ex∼D [f(x)−M(x; θ)]

2. The data D used
to train M were randomly sampled in batches of size 512 from the most recent 8192 function
evaluations encountered during optimization. This is equivalent to uniformly sampling from a replay
buffer, a strategy commonly used in reinforcement learning. We performed one θ update per x
update with Adam with a learning rate of 1e-4.

The two evolutionary strategies algorithms inherently generate samples of the function during opti-
mization. In order to make a fair comparison when optimizing with the Adam baseline, we similarly
generated function evaluations for training the model M by sampling points around the current it-
erate from the same distribution used in vanilla ES (Normal with σ = 0.1). This ensures that the
amount and spread of training data for M (in the replay buffer) when optimizing with Adam is
similar to the data in the replay buffer when training with vanilla or guided ES.

Figure 5a shows the mean and spread (standard deviation) of the performance of the three algorithms
over 10 random instances of the problem. We set σ = 0.1 and used P = 1 pair of samples per
iteration. For Guided ES, we used a subspace dimension of k = 1. The results were not sensitive to
the number of samples P , but did vary with σ, as this controls the spread of the data used to train
M , thus we tuned σ with a coarse grid search.

E.4 AUTOENCODERS WITH DISCRETE LATENT VARIABLES

We trained a vector quantized variational autoencoder (VQ-VAE) as defined in van den Oord et al.
(2017) on MNIST. Our encoder and decoder networks were both fully connected neural networks
with 64 hidden units per layer and ReLU nonlinearities. For the vector quantization, we used a small
codebook (twelve codebook vectors). The dimensionality of the codebook and latent variables was
16, and we used 10 latent variables. To train the encoder weights, van den Oord et al. (2017)
proposed using a straight through estimator Bengio et al. (2013) to bypass the discretization in the
vector quantizer. Here, we use this as the surrogate gradient passed to Guided ES. Since the gradients
are correct (unbiased) for the decoder and embedding weights, we do not use Guided ES on those
variables, instead using first-order methods (Adam) directly. For training with vanilla ES or Guided
ES, we used P = 10 pairs of function evaluations per iteration to reduce variance (note that these
can be done in parallel).
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