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ABSTRACT
We develop streaming keyword spotting systems using a recurrent
neural network transducer (RNN-T) model: an all-neural, end-to-
end trained, sequence-to-sequence model which jointly learns acous-
tic and language model components. Our models are trained to
predict either phonemes or graphemes as subword units, thus al-
lowing us to detect arbitrary keyword phrases, without any out-of-
vocabulary words. In order to adapt the models to the requirements
of keyword spotting, we propose a novel technique which biases the
RNN-T system towards a specific keyword of interest.

Our systems are compared against a strong sequence-trained,
connectionist temporal classification (CTC) based “keyword-filler”
baseline, which is augmented with a separate phoneme language
model. Overall, our RNN-T system with the proposed biasing tech-
nique significantly improves performance over the baseline system.

Index Terms— Keyword spotting, sequence-to-sequence mod-
els, recurrent neural network transducer, attention, embedded speech
recognition.

1. INTRODUCTION

Keyword spotting (KWS), sometimes also referred to as spoken
term detection, is the task of detecting specific words, or multi-word
phrases in speech utterances. Many previous works consider the
problem of developing “offline” (i.e., non-streaming) KWS tech-
nologies. In this setting, the dominant paradigm consists of recog-
nizing the entire speech corpus using a large vocabulary continuous
speech recognizer (LVCSR) to build word or sub-word lattices,
which can then be indexed to perform efficient search, e.g., [1, 2, 3].

In contrast to the methods described above, there is growing
interest in building “online” (i.e., streaming) KWS systems which
can be deployed on mobile devices which are significantly limited
in terms of memory and computational capabilities. In such appli-
cations, when deployed for inference, the KWS system must con-
tinuously process incoming audio, and only trigger when a specific
keyword is uttered. In order to simplify the problem further, most
previous works assume that the model will only be required to detect
a small number of possible keywords, thus allowing the development
of keyword-specific models. Many previous works propose to train
neural networks to identify word targets in individual keywords: for
example, using feed-forward deep neural networks [4, 5, 6], convo-
lutional networks [7] or recurrent neural networks [8, 9, 10]. Such
systems assume the availability of a large number of examples of the
keywords of interest in order to train models robustly. Prominent ex-
amples of such technologies include speech-enabled assistants such
as “Okay/Hey Google” on Google Home [11], “Alexa” on the Ama-
zon Echo, and “Hey Siri” on Apple devices. There has also been

some prior work which has explored building low-footprint KWS
systems which can detect arbitrary keywords in the incoming speech:
for example, using structured support vector machines [12, 13], and
techniques based on matching incoming audio to example templates
of the keyword (Query-by-Example) [14, 15].

Recently, end-to-end trained, sequence-to-sequence models
have become popular for speech recognition. Examples of such
models include the recurrent neural network transducer (RNN-
T) [16, 17], the recurrent neural aligner [18], connectionist temporal
classification (CTC) [19] with grapheme [20, 21], syllable [22] or
word targets [23], and attention-based models [24, 25, 26]. Such
models combine the acoustic, and language model components of
a traditional speech recognition system into a single, jointly trained
model. In recent work, we have shown that RNN-T and attention-
based models, trained on ∼12,500 hours of transcribed speech data
to directly predict grapheme sequences without a separate language
model, perform competitively on dictation test sets when compared
against a state-of-the-art, discriminatively sequence-trained, context-
dependent phone-based recognizer, augmented with a large language
model [27]. We have also shown, that sequence-to-sequence models
trained to predict phoneme-based targets, can be effective when used
in a second pass rescoring framework [28].

There has been some recent work which has explored sequence-
to-sequence models in the context of KWS. Zhuang et al. [29] use
a long short-term memory (LSTM) [30] network with CTC to train
a KWS system that generates phoneme lattices for efficient search.
Rosenberg et al. [31] apply attention-based models to compute n-
best lists of recognition results which are then indexed for efficient
search; performance, however, was found to be worse than a tradi-
tional lattice-based KWS approach. Audhkhasi et al. [32] train an
end-to-end system to predict whether a given keyword (represented
as a grapheme string) is present in the speech utterance without ex-
plicitly decoding utterances into output phoneme or word strings.

In the present work, we explore the use of sequence-to-sequence
models, specifically, RNN-T, to build a streaming KWS system
which can be used to detect arbitrary keywords. Unlike a number
of previous works which have only examined sequence-to-sequence
models in the context of graphemes, we train RNN-T systems to
predict graphemes as well as phonemes as sub-word units. Addi-
tionally, we propose a novel technique to bias the search towards a
specific keyword of interest using an attention mechanism (described
in more detail in Section 2.3). We find that RNN-T system trained
to predict phonemes, when augmented with an additional “end-
of-word” symbol (see Section 3.2) strongly outperforms a strong
keyword-filler baseline derived from a sequence-trained CTC-based
recognizer [33]. Overall, our best performing system achieves a
false reject (FR) rate of 8.9% at 0.05 false alarms (FA) per hour,
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Fig. 1: A schematic representation of the models used in this work.

compared to the baseline which achieves 14.5% at the same FA
threshold, which corresponds to a 39% reduction in the FR rate.

The organization of the rest of the paper is as follows. In Sec-
tion 2 we describe various modeling strategies used in this paper.
Section 3 describes our baseline approaches for keyword spotting.
We present our experimental setup in Section 4, and discuss our re-
sults in Section 5, before concluding in Section 6.

2. MODELING STRATEGIES

In subsequent sections, we denote a sequence of parameterized
acoustic features as, x = [x1, · · · ,xT ], where, xt ∈ Rd; T denotes
the number of acoustic frames in the utterance. We denote the corre-
sponding sequence of output targets (e.g., graphemes or phonemes)
corresponding to the utterance as y = [y1, · · · , yL], where, yi ∈ Y .
In the context of ASR, the input label sequence is typically much
longer than the target label sequence, i.e., T > L.

2.1. Connectionist Temporal Classification

CTC [19] is a technique for modeling a conditional probability dis-
tribution over sequence data, P (y|x), when frame-level alignments
of the target label sequence are unknown. CTC augments the set
of output targets with an additional symbol, referred to as the blank
symbol, denoted as 〈b〉. We denote by ŷ = [ŷ1, · · · , ŷT ] ∈ B(x,y),
the set of all label sequences of length |x| = T , such that ŷt ∈
{Y ∪ 〈b〉}, for 1 ≤ t ≤ T , which are equivalent to y after first re-
moving consecutive identical symbols, and then removing any blank
symbols: e.g., xx〈b〉〈b〉y〈b〉 → xy.

CTC models the output probability of the target sequence, y,
conditioned on the input, x, by marginalizing over all possible
frame-level alignments, where each output label is assumed to be
independent of the other labels, conditioned on x:

P (y|x) =
∑

ŷ∈B(x,y)

P (ŷ|x) =
∑

ŷ∈B(x,y)

T∏
t=1

P (ŷt|x1, · · · ,xt)

(1)
The conditional probability, P (ŷt|x1, · · · ,xt), can be computed us-
ing a recurrent neural network (which we refer to as the encoder
network), as illustrated in Figure 1(a.). As shown in the figure, the
encoder maps each input frame, xt, into a higher-level representa-
tion, henc

t , followed by a softmax layer which converts henc
t into a

probability distrubution P (ŷt|x1, · · · ,xt) over the output labels in
{Y ∪ 〈b〉}. The model can be trained using stochastic gradient de-
scent to optimize likelihood over the training set, given paired input

and target sequences (x,y). The gradients required for this process
can be computed using the forward-backward algorithm [19].

2.2. RNN Transducer

Although CTC has been used successfully in many previous works in
the context of ASR (e.g., [34, 35, 23]), it makes a strong conditional
independence assumption since it assumes that outputs at each step
are independent of the history of previous predictions. The RNN-T
model improves the CTC approach by augmenting it with an addi-
tional prediction network [16, 17], which is explicitly conditioned
on the history of previous outputs, as illustrated in Figure 1(b.). The
RNN-T model may be viewed as a type of sequence-to-sequence
model architecture [24, 25], where the encoder (referred to as a tran-
scription network in [16]) corresponds to the RNN acoustic model
in a traditional recognizer, and the prediction network (together with
the joint network) corresponds to the decoder. The decoder network
may be viewed as an RNN language model which attempts to pre-
dict the current label given the history of labels. We note that un-
like most attention-based models that have been explored in the past
(e.g., [24, 25]), output targets can be extracted from the RNN-T in
a streaming fashion, since the model does not have to examine the
entire encoded utterance in order to compute an output target label.

The prediction network is provided with the previous non-blank
input label, yu ∈ Y , as input, and produces a single output vector,
denoted as pu. The prediction network is fed a special symbol at
the start of decoding, y0 = 〈sos〉, which denotes the start of the
sentence.

The joint network consists of a set of feed-forward layers which
compute logits zt,u for every input frame t and label u, using addi-
tional parameters A,B, b,D, d, as follows:

hjoint
t,u = tanh(Ahenc

t +Bpu + b) (2)

zt,u = Dhjoint
t,u + d (3)

These logits are passed to a final softmax layer which computes
probabilities over targets in {Y ∪ 〈b〉}.1

The model can be trained to optimize likelihood over the train-
ing set, by marginalizing over all possible alignments (i.e., B(x,y))
similar to CTC, using stochastic gradient descent where the required
gradients are computed using the dynamic programming algorithm
described in [16, 17].

2.3. Biasing the RNN-Transducer with the keyword of interest
using the attention mechanism

Previous works that have examined the use of sequence-to-sequence
models for KWS (e.g., [31]) have typically only done so indirectly;
the models is trained for ASR, and used to generate n-best lists which
can be indexed for efficient search. A notable exception, is work
by Audhkhasi et al. [32] where the model is trained directly for the
KWS task which is similar to the query-by-example approach that
has been investigated previously [14].

With the goal of improving KWS performance, we extend the
RNN-T system described in Section 2.2 with an attention-based
keyword biasing mechanism in the prediction network to make the
model aware of the keyword of interest during the search process.
This model can be thought of as a variant of the RNN-T model aug-
mented with attention, proposed in our previous work [27], wherein
we replace the prediction network with an attention-based decoder
that computes attention over the targets in the keyword phrase. The

1These equations correspond to Eq. 15–18 in [17].



intuition is that during inference, when the suffix of the current
predicted label sequence is close to the prefix of the keyword, the
attention vector is activated in the corresponding position within
the keyword. This, in turn, generates a context vector to bias the
network prediction towards the remaining part of the keyword. Crit-
ically, since the keyword phrase only consists of a small number
of targets, the use of attention over the keyword does not introduce
any latency or significant computational overhead during inference.
This model is depicted in Figure 1(c.).

Specifically, at each step, the prediction network recieves, in
addition to the previous non-blank label yu−1, a context vector,
cu which is computed using dot-product attention [24] over the
keyword targets (phoneme targets, in our experiments). We denote
the sequence of phoneme targets in the keyword phrase to be de-
tected, as k = [k1, · · · , kM , kM+1], where M is the number of
targets in the keyword phrase, and kM+1 is a special target that
corresponds to “not applicable”, denoted 〈n/a〉.2 The keyword en-
coder takes as input the phoneme sequence, and outputs a matrix
kenc = [kenc

1 , · · · , kenc
M , kenc

M+1], where kenc
i is a one-hot embedding

vector of ki, and kenc
M+1 is a zero vector. If we denote the state of the

prediction network after predicting u−1 labels as hatt
u−1, the context

vector, cu is computed as follows:

βj,u =
〈
φ(kenc

j ), ψ(hatt
u−1)

〉
for each 1 ≤ j ≤M + 1 (4)

αj,u =
eβj,u∑M+1

j′=1 e
βj′,u

(5)

cu =

M+1∑
j=1

αj,uk
enc
j (6)

where, φ(·) and ψ(·) represent linear embeddings, and 〈·, ·〉 rep-
resents the dot product between two vectors. Thus, the prediction
network produces an output pu conditioned on both the previously
predicted labels, as well as the keyword of interest.

Unlike the RNN-T model, which can be trained given pairs
of input and output sequences (x,y), in order to train the RNN-T
model with keyword biasing, we need to also associate a key-
word phrase, k, with the training instance. We create examples
where the keyword, k, is present in x, as well as examples where
the keyword is absent in x as follows: with probability pkw we
uniformly sample one of the words in x as the keyword, k, and
with probability 1 − pkw we uniformly sample a word which is
not in x as the keyword, k. If we select one of the words in x
as the target, we modify the target labels y by inserting a spe-
cial symbol 〈eokw〉 after the occurence of the keyword. For
example, when training with phoneme targets, for the utterance
the cat sat, (which corresponds to the phoneme sequence3

[D V 〈eow〉 k { t 〈eow〉 s { t 〈eow〉]), if we sampled
k =cat as the keyword, then we would modify the target labels as,
y = [D V 〈eow〉 k { t 〈eow〉 〈eokw〉 s { t 〈eow〉].
Note that the 〈eow〉 token marks the end of each word token (see
Section 3.2). The intuition behind adding the 〈eokw〉 at the end
of the keyword phrase in the transcript, is that it might serve as a
marker that the model should attend to the targets in the keyword
phrase. As a final note, the training and inference algorithms for this
model are similar to the standard RNN-T model.

2We also experimented with excluding this symbol, and only using the
targets in the keyword, and found that the overall performance was similar to
a model with this target. In this work, we only present results with the 〈n/a〉
keyword target.

3We use X-SAMPA to denote phonemes throughout the paper.
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Fig. 2: Two decoder graphs representing the building blocks of our
baseline CTC-based keyword spotters.

3. BASELINE SYSTEMS

We present two baseline approaches for the task of streaming KWS.
First, we adapt an embedded LVCSR system, designed for efficient
real-time recognition on a wide variety of smartphones, developed in
our previous work [33]. Second, we explore “keyword-filler” mod-
els [36] using the acoustic model component of the LVCSR system.
These approaches are described in the following sections.

3.1. LVCSR with CTC

Our first approach directly uses an embedded LVCSR system devel-
oped in our previous work [33] to recognize input utterances; this is
followed by a simple confidence estimation scheme in order to de-
tect a particular keyword of interest. In particular, we recognize the
input utterance, x, and create an n-best list of hypotheses, denoted as
W . Note that the output vocabulary of the system is limited to 64K
words, which results in a significant number of out-of-vocabulary
words during the search process. In previous works, e.g., [37], the
KWS confidence metric is defined as a likelihood ratio of the key-
word model to a background model. Similar to the approaches, we
define a simple confidence metric based on the n-best list, as follows.
Given an utterance x, we identify the highest probability hypothesis
inW containing k: P (w+|x), and the highest probability hypothe-
sis inW which does not contain k: (P (w−|x)), setting these to 0 if
no such hypothesis exists in the n-best list. We can then compute a
confidence metric C(x) ∈ [0, 1] as:

C(x) =
P (w+|x)

P (w+|x) + P (w−|x) (7)

Thus, in the case where all n-best entries contain the keyword, the
confidence score is set to one; when none of the entries contain the
keyword, the score is set to zero. This same confidence metric is
used for all systems, including the RNN-T systems presented in this
paper.

3.2. Keyword-Filler Models with CTC

An alternative approach to KWS is through the use of “keyword-
filler” models [36], which corresponds to constucting a decoder
graph with two basic paths: the first is a path through the key-
word(s), and the second is a path through a filler (background) that
models all non-keyword speech. We use this approach to create our
next set of keyword spotters.

Instead of defining a single decoder graph with keyword and
filler paths, we find it advantageous to use two decoders on separate
graphs as depicted in Figure 2. This effectively corresponds to using
two beams during decoding: one for the filler model (Figure 2 (a)),
and one for the keyword paths, (Figure 2 (b)). The scores of the most
likely paths from each these graph can be used to estimate P (w−|x)
and P (w+|x), respectively, which can be used to generate a confi-
dence score using Equation 7.



The simplest example of a filler model is a phone loop. How-
ever, we remove all paths from the filler model which contain the
keyword’s phones, so that any path containing the keyword must
pass through the keyword model.

In previous work it has been shown that constraining filler mod-
els yields accuracy improvements [38, 39, 40]. We therefore explore
two variants along these lines. In the first, we replace the simple
phone loops with unweighted word loops (using the 64k word vocab-
ulary from [33]), thus adding in word-level constraints. In the sec-
ond, we apply an n-gram phone LM, trained on automatically gen-
erated phonetic transcriptions of the same utterances that are used
to train the word-level LM in [33]; the number of parameters in the
phone LM is trained to match the number of parameters of the word
LM in [33]. In this case, we compose the LM with both the filler and
keyword graphs.

In preliminary experiments, we found that a source of false-
positives during KWS with phoneme based models was when a
part of word’s phonetic transcription matched that of the key-
word. For example, the keyword Erica (E r\ @ k @) is
incorrectly detected in utterances containing the word, America
(@ m E r\ @ k @); Marilyn (m E r\ @ l @ n) is in-
correctly detected in utterances containing the word, Maryland
(m E r\ @ l @ n d). We therefore expanded the phoneme
LM by inserting a special symbol 〈eow〉 at the end of each word’s
pronunciation when creating training data, e.g., the cat sat
→ D V 〈eow〉 k { t 〈eow〉 s { t 〈eow〉. The 〈eow〉 to-
ken is the analog of the space symbol which delimits words in their
graphemic representation; from the long context along with the
〈eow〉 symbol, the phone LM is expected to implicitly model word-
level dependencies and learn the correct segmentation of a phone
sequence into words. During search, we only consider keywords in
between two end-of-word markers, or between a start-of-sentence
marker and an end-of-word marker, in the hypotheses. For instance,
Erica would not be false triggered in the phrase: In America
(I n 〈eow〉 @ m E r @ k @ 〈eow〉), but will correctly trig-
ger when the utterance contains Call Erica (k O l 〈eow〉
E r\ @ k @ 〈eow〉).

The idea of using an end-of-word symbol has also been explored
in [29], however the authors added it to the transcript for training the
CTC acoustic model instead. We believe it would be more explicit
and effective to use the symbol for LM training, in which the la-
bel dependencies are modeled directly, whereas in CTC the output
targets are conditionally independent to each other. As is shown in
the results below, we also use the end-of-word symbol for training
RNN-T models and find it useful, where AM and LM are jointly
trained.

4. EXPERIMENTAL DETAILS

4.1. Data and Evaluation Metric

Our models are trained on a set of∼22M hand-transcribed anonymized
utterances extracted from Google voice-search traffic, which corre-
sponds to ∼18,000 hours of training data. In order to improve
system robustness to noise and reverberation, multi-condition train-
ing (MTR) data are generated: training utterances are artificially
distorted using a room simulator, by adding in noise samples ex-
tracted from YouTube videos and environmental recordings of daily
events. To further improve robustness to variation in signal loudness,
we perform multi-loudness training by scaling the loudness of each
training utterance to a randomly selected level.

We construct separate development and test sets to measure

KWS performance. As keyword phrases we consider personal
names which contain three or more syllables (e.g., Olivia or
Erica). The development set consists of 328 keywords, each of
which is contained in ∼75 positive utterances, collected from multi-
ple speakers, of the form “keyword, query”, (e.g., Olivia, how
tall is the Eiffel tower?). A set of ∼37K negative ut-
terances (∼50 hours in total) are shared across keywords, which are
collected as queries without a keyword, to form the full develop-
ment set. Each keyword is evaluated separately on a set consisting
of its own positive utterances and the shared negative utterances.
A test set is created similarly, with 228 keywords each contained
in ∼500 positive utterances, and a set of ∼20k negative utterances
(∼60 hours in total) shared across keywords, which consist of hand-
transcribed anonymized utterances extracted from Google traffic
from the domains of open-ended dictation and voice-search queries.

We evaluate performance in terms of the receiver operating char-
acteristic (ROC) curve [41], which is constructed by sweeping a
threshold over all possible confidence values and plotting false reject
(FR) rates against false alarm (FA) rates. Our goal is to achieve low
FR rates while maintaining extremely low FA rates (e.g. no more
than 0.1 false alarms per hour of audio).

Following [42], we employ a score normalization approach to
map system confidence score at the utterance level for a keyword
to the probability of false alarm (pFA) for that keyword, which al-
lows us to use a single consistent score for all keywords and set the
decision threshold reliably. A confidence-score-to-pFA mapping is
estimated from the development set, and applied to both the develop-
ment and the test sets. All ROC curve results in this work are plotted
after the score normalization.

4.2. Model Details

The input acoustic signal is represented with 80-dimensional log-
mel filterbank energies, computed with a 25ms window, and a 10ms
frame-shift. Following previous work [34], we stack three consec-
utive frames and present only every third stacked frame as input to
the encoder. The same acoustic frontend is used for all experiments
described in this work.

The CTC acoustic model (AM) consists of 5 layers of 500
LSTM cells, that predict context-independent phonemes as out-
put targets. The system is heavily compressed, both by quantiza-
tion [43], and by the application of low-rank projection layers with
200 units between consecutive LSTM layers [44]. The AM consists
of 4.6 million parameters in total. The model is first trained to
optimize the CTC objective function [19] until convergence. Once
CTC-training is complete, the model is discriminatively sequence-
trained to optimize expected word errors by minimizing word-level,
edit-based, minimum Bayes risk (EMBR) proposed recently by
Shannon [45].

The encoder networks used in all RNN transducer models are
identical in size and configuration to the encoder used in the CTC
model (without the softmax output layer). During the training of an
RNN transducer, the weights from the encoders are initialized from
a pre-trained CTC model, since this was found to significantly speed
up convergence, following which the weights are trained jointly with
the rest of the network. For the RNN-T model that is trained to di-
rectly output grapheme targets, the CTC model used for initializa-
tion is also trained to predict graphemes. The grapheme inventory
includes the 26 lower-case letters (a-z), the numerals (0-9), a label
representing ‘space’ (〈space〉), and punctuation symbols (e.g., the
apostrophe symbol (’), hyphen (-), etc.).

The prediction network used in the RNN transducer models,



Fig. 3: Comparison among multiple CTC baseline systems on the
test set.

both with and without attention, consists of a single layer of 500
LSTM cells with coupled input and forget gate (CIFG) [46], and the
joint network consists of a single feed-forward layer of 500 units
with a tanh activation function, as described in Section 2.2. The de-
coder network (including prediction network and the joint network)
has 1.5 million parameters in total.

The RNN transducer models are decoded using a beam-search
algorithm [16], where at most 50 highest scoring candidates are re-
tained at every step during decoding. In general, the output posterior
distribution of sequence-to-sequence models like RNN-T is peaky
(i.e., low entropy); such over-confidence is typically suboptimal for
keyword spotting, since diversity in hypotheses is critical to reduce
the number of false rejects. We find that smoothing the output pos-
teriors with a temperature τ , i.e. mapping each posterior to its τ -th
root and renormalizing them, can help improve KWS performance
significantly. The optimal temperature value is determined by tun-
ing on the development set; we set τ = 2.0 for all RNN-T models
without attention, and τ = 2.2 for the ones with attention. However
smoothing the output posteriors of the CTC acoustic model does not
help, possibly because it does not combine well with the LM.

The language model (LM) used in the keyword-filler model with
CTC is trained to predict phoneme targets on the same ∼22M utter-
ances used for training RNN-T models. The LM is pruned to ∼1.5-
million 6-grams using entropy pruning, similar to the number of pa-
rameters in the decoder of our RNN-T models. We choose n = 6
which is optimized from the development set.

The LM for our embedded LVCSR system is a standard word-
level 5-gram, which is trained on a larger corpus with ∼100M
automatically-transcribed anonymized utterances extracted from
Google voice-search traffic. This LM is also pruned to∼1.5-million
n-grams using entropy pruning. The vocabulary is limited to 64K
words, allowing us to shrink the data structures used to maintain the
LM [33]. Note that the fixed vocabulary results in out-of-vocabulary
keywords on the development and test sets. Utterances are decoded
with a heavily pruned version of the LM in the first-pass, while
rescoring with the full LM on-the-fly, thus allowing us to reduce the
size of the decoder graph used in the first-pass.

All models are trained using asynchronous stochastic gradient
descent [47], and are implemented in TensorFlow [48].

5. RESULTS

5.1. Baselines

The performance of our CTC-trained “keyword-filler” baseline mod-
els is shown in Figure 3. As can be seen, we find that a phoneme

Fig. 4: A comparison of the various RNN-T systems against the best
performance CTC baseline on the test set.

language model is important for a keyword-filler system even with
a strong CTC model for extremely low FA rates (6 0.05 FAs per
hour). The effect of the language model can be seen by comparing
different levels of constraints added in the keyword-filler graphs.

CTC with unweighted phoneme loops allows for arbitrary
phoneme paths in the graph to be treated as equally likely, thus
entirely relying on the CTC model to recognize the keyword from
the background, which performs the worst. Adding word constraints
in the graph, albeit without weights, helps to improve performance
since it eliminates many confusable paths that correspond to invalid
words. Note that in this case, we can add the keyword phrase into
the vocabulary for the search since the word loop filler models are
unweighted.

The addition of a phoneme language model without the 〈eow〉
token helps to recognize phoneme sequences in context, but does not
account for word constraints. As described in Section 3.2, this model
has an increased number of false triggers (e.g., the keyword Erica
is detected incorrectly in utterances containing the word America).
The addition of 〈eow〉 to the phoneme language models, however,
significantly improves performance over the other baseline systems.

For reference, a KWS system constructed from the embedded
LVCSR system, as described in Section 3.1, achieves an FR rate of
29.8% at 0.05 FAs per hour on the test set for only in-vocabulary
keywords (196 out of total 228 keywords), while the best CTC sys-
tem above achieves 13.4% on the same set.

5.2. RNN-T Models with Graphemes and Phonemes Targets

Compared to CTC with a phoneme n-gram LM, an RNN-T model
with phoneme targets jointly trains an acoustic model component
and a language model component in a single all-neural system. As
can be seen from Figure 4, an RNN-T phoneme model (with 〈eow〉)
outperforms the best CTC baseline. If the 〈eow〉 token is not used,
however, the RNN-T phoneme system has significantly higher false
alarms as explained in Section 3.2.

The RNN-T system trained to predict grapheme targets performs
worse than the one trained with phoneme targets. We conduct an
analysis to determine the cause of this performance degradation and
found that it is partly due to variant orthographic representations of
some of the keyword phrases: e.g., the keyword kathryn is en-
countered very rarely in the training data, and as a result the RNN-T
model typically recognizes these examples as catherine, which
is more common in the training data. We therefore considered a vari-
ant system where we replace each keyword with the most frequent
orthographic representation (as determined by its unigram probabil-
ity) during the search. This technique significantly improves false
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(a) Attention matrix of a positive utterance for the keyword
“sounds”, with the transcript “sounds good”.
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(b) Attention matrix of a negative utterance for the keyword “after-
noon”, with the transcript “you’re welcome you know”.

Fig. 5: Attention matrices for two representative utterances computed by the RNN-T phoneme system with keyword biasing. The Y-axis
corresponds to targets k1, · · · , kM+1 in the keyword k. The X-axis corresponds to the expected sequence of phoeneme targets given the
utterance transcript. The entry at row j and column u corresponds to αj,u in Equation 5, with values in each column summing up to 1.
Brighter colors correspond to values closer to 1, while darker colors correspond to values closer to 0.

Fig. 6: A comparison of the RNN-T phoneme model with keyword
biasing against the best CTC baseline and the RNN-T phoneme sys-
tem without biasing on the test set. All systems use the 〈eow〉 token.

reject rates for the RNN-T grapheme system from 15.5% to 14.0%
at 0.05 FAs per hour; however this system was still worse than the
RNN-T phoneme model, which achieves an FR rate of 11.1% at 0.05
FAs per hour.

5.3. RNN-T with Keyword Biasing

We train an RNN-T phoneme system with 〈eow〉 and 〈eokw〉 labels,
by setting pKW = 0.5, determined by tuning on the development set.
As is shown in Figure 6, adding attention-based keyword biasing to
an RNN-T phoneme system improves the overall performance sig-
nificantly. The final results are reported on the test set, where CTC,
RNN-T phoneme and RNN-T phoneme with biasing achieve 14.5%,
11.1% and 8.9% false reject rates respectively at 0.05 FAs per hour.

We also plot a histogram of the FR rates across keywords at
a threshold corresponding to 0.05 FAs per hour for the RNN-T
phoneme system with keyword biasing in Figure 7. As can be seen
in the figure, most of the keywords have low FR rates in the 0–15%
range, with only a few outliers.

Finally, in Figure 5 we plot representative examples of the atten-
tion weights αj,u computed by the attention model during inference
on a positive (Figure 5 (a)) and a negative (Figure 5 (b)) utterance
extracted from the training data. These plots were generated by feed-
ing as input the expected target label sequence (i.e., the labels are not
determined by a beam-search decoding).

As can be seen in the figure, when decoding the positive ut-
terance, the attention weights are concentrated on the first target.

Fig. 7: Histogram of keyword-specific false reject rates for the RNN-
T phoneme system with keyword biasing at 0.05 FAs per hour, plot-
ted for the keywords on the test set.

When the model begins to predict the phonemes corresponding to the
keyword (sounds (s aU n d z)), the attention weights are fo-
cussed on consecutive keyword targets, as revealed by the prominent
diagonal pattern (although admittedly, the model also appears to at-
tend to other keyword targets during this process). We also note
the prominent attention weight assigned to the 〈n/a〉 label after the
keyword has been detected.

In the case of the negative utterances, however, the attention
does not evolve diagonally across the labels, but is instead spread
across the second keyword target (i.e., the initial part of the hot-
word), and the 〈n/a〉 label.

6. CONCLUSIONS

In this work, we developed streaming keyword spotting systems us-
ing a recurrent neural network transducer, a sequence-to-sequence
model that jointly trains acoustic and language model components.
We proposed a novel techinque which biases the RNN-T system to-
wards a specific keyword of interest based on an attention mecha-
nism over the keyword. In experimental evaluations, we find that our
RNN-T system trained with phoneme targets performs significantly
better on keyword spotting than a strong CTC-based keyword-filler
baseline which is augmented with a phoneme n-gram LM. We also
find that the proposed biasing techique provides further gains over
the vanilla RNN-T model.
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[36] I. Szöke, P. Schwarz, P. Matějka, L. Burget, M. Karafiát, and
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