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ABSTRACT

We view molecular optimization as a graph-to-graph translation problem. The
goal is to learn to map from one molecular graph to another with better proper-
ties based on an available corpus of paired molecules. Since molecules can be
optimized in different ways, there are multiple viable translations for each input
graph. A key challenge is therefore to model diverse translation outputs. Our
primary contributions include a junction tree encoder-decoder for learning diverse
graph translations along with a novel adversarial training method for aligning dis-
tributions of molecules. Diverse output distributions in our model are explicitly
realized by low-dimensional latent vectors that modulate the translation process.
We evaluate our model on multiple molecular optimization tasks and show that
our model outperforms previous state-of-the-art baselines.

1 INTRODUCTION

The goal of drug discovery is to design molecules with desirable chemical properties. The task is
challenging since the chemical space is vast and often difficult to navigate. One of the prevailing
approaches, known as matched molecular pair analysis (MMPA) (Griffen et al., 2011; Dossetter
et al., 2013), learns rules for generating “molecular paraphrases” that are likely to improve target
chemical properties. The setup is analogous to machine translation: MMPA takes as input molecular
pairs {(X,Y )}, where Y is a paraphrase of X with better chemical properties. However, current
MMPA methods distill the matched pairs into graph transformation rules rather than treating it as a
general translation problem over graphs based on parallel data.

In this paper, we formulate molecular optimization as graph-to-graph translation. Given a corpus
of molecular pairs, our goal is to learn to translate input molecular graphs into better graphs. The
proposed translation task involves many challenges. While several methods are available to encode
graphs (Duvenaud et al., 2015; Li et al., 2015; Lei et al., 2017), generating graphs as output is
more challenging without resorting to a domain-specific graph linearization. In addition, the target
molecular paraphrases are diverse since multiple strategies can be applied to improve a molecule.
Therefore, our goal is to learn multimodal output distributions over graphs.

To this end, we propose junction tree encoder-decoder, a refined graph-to-graph neural architec-
ture that decodes molecular graphs with neural attention. To capture diverse outputs, we introduce
stochastic latent codes into the decoding process and guide these codes to capture meaningful molec-
ular variations. The basic learning problem can be cast as a variational autoencoder, where the pos-
terior over the latent codes is inferred from input molecular pair (X,Y ). Further, to avoid invalid
translations, we propose a novel adversarial training method to align the distribution of graphs gen-
erated from the model using randomly selected latent codes with the observed distribution of valid
targets. Specifically, we perform adversarial regularization on the level of the hidden states created
as part of the graph generation.

We evaluate our model on three molecular optimization tasks, with target properties ranging from
drug likeness to biological activity.1 As baselines, we utilize state-of-the-art graph generation meth-
ods (Jin et al., 2018; You et al., 2018a) and MMPA (Dalke et al., 2018). We demonstrate that our
model excels in discovering molecules with desired properties, outperforming the baselines across

1Code and data are available at https://github.com/wengong-jin/iclr19-graph2graph

1

https://github.com/wengong-jin/iclr19-graph2graph


Published as a conference paper at ICLR 2019

different tasks. Meanwhile, our model can translate a given molecule into a diverse set of com-
pounds, demonstrating the diversity of learned output distributions.

2 RELATED WORK

Molecular Generation/Optimization Prior work on molecular optimization approached the graph
translation task through generative modeling (Gómez-Bombarelli et al., 2016; Segler et al., 2017;
Kusner et al., 2017; Dai et al., 2018; Jin et al., 2018; Samanta et al., 2018; Li et al., 2018a) and
reinforcement learning (Guimaraes et al., 2017; Olivecrona et al., 2017; Popova et al., 2018; You
et al., 2018a). Earlier approaches represented molecules as SMILES strings (Weininger, 1988),
while more recent methods represented them as graphs. Most of these methods coupled a molecule
generator with a property predictor and solved the optimization problem through Bayesian optimiza-
tion or reinforcement learning. In contrast, our model is trained to translate a molecular graph into
a better graph through supervised learning, which is more sample efficient.

Our approach is closely related to matched molecular pair analysis (MMPA) (Griffen et al., 2011;
Dossetter et al., 2013) in drug de novo design, where the matched pairs are hard-coded into graph
transformation rules. MMPA’s main drawback is that large numbers of rules have to be realized (e.g.
millions) to cover all the complex transformation patterns. In contrast, our approach uses neural
networks to learn such transformations, which does not require the rules to be explicitly realized.

Graph Neural Networks Our work is related to graph encoders and decoders. Previous work on
graph encoders includes convolutional (Scarselli et al., 2009; Bruna et al., 2013; Henaff et al., 2015;
Duvenaud et al., 2015; Niepert et al., 2016; Defferrard et al., 2016; Kondor et al., 2018) and recurrent
architectures (Li et al., 2015; Dai et al., 2016; Lei et al., 2017). Graph encoders have been applied to
social network analysis (Kipf & Welling, 2016; Hamilton et al., 2017) and chemistry (Kearnes et al.,
2016; Gilmer et al., 2017; Schütt et al., 2017; Jin et al., 2017). Recently proposed graph decoders
(Simonovsky & Komodakis, 2018; Li et al., 2018b; Jin et al., 2018; You et al., 2018b; Liu et al.,
2018) focus on learning generative models of graphs. While our model builds on Jin et al. (2018) to
generate graphs, we contribute new techniques to learn multimodal graph-to-graph mappings.

Image/Text Style Translation Our work is closely related to image-to-image translation (Isola
et al., 2017), which was later extended by Zhu et al. (2017) to learn multimodal mappings. Our
adversarial training technique is inspired by recent text style transfer methods (Shen et al., 2017;
Zhao et al., 2018) that adversarially regularize the continuous representation of discrete structures
to enable end-to-end training. Our technical contribution is a novel adversarial regularization over
graphs that constrains their scaffold structures in a continuous manner.

3 JUNCTION TREE ENCODER-DECODER

Our translation model extends the junction tree variational autoencoder (Jin et al., 2018) to an
encoder-decoder architecture for learning graph-to-graph mappings. Following their work, we inter-
pret each molecule as having been built from subgraphs (clusters of atoms) chosen from a vocabulary
of valid chemical substructures. The clusters form a junction tree representing the scaffold struc-
ture of molecules (Figure 1), which is an important factor in drug design. Molecules are decoded
hierarchically by first generating the junction trees and then combining the nodes of the tree into a
molecule. This coarse-to-fine approach allows us to easily enforce the chemical validity of generated
graphs, and provides an enriched representation that encodes molecules at different scales.

In terms of model architecture, the encoder is a graph message passing network that embeds both
nodes in the tree and graph into continuous vectors. The decoder consists of a tree-structured decoder
for predicting junction trees, and a graph decoder that learns to combine clusters in the predicted
junction tree into a molecule. Our key departures from Jin et al. (2018) include a unified encoder
architecture for trees and graphs, along with an attention mechanism in the tree decoding process.

3.1 TREE AND GRAPH ENCODER

Viewing trees as graphs, we encode both junction trees and graphs using graph message passing
networks. Specifically, a graph is defined as G = (V, E) where V is the vertex set and E the edge
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Figure 1: Illustration of our encoder-decoder model. Molecules are represented by their graph struc-
tures and junction trees encoding the scaffold of molecules. Nodes in the junction tree (which we
call clusters) are valid chemical substructures such as rings and bonds. During decoding, the model
first generates its junction tree and then combines clusters in the predicted tree into a molecule.

set. Each node v has a feature vector fv . For atoms, it includes the atom type, valence, and other
atomic properties. For clusters in the junction tree, fv is a one-hot vector indicating its cluster label.
Similarly, each edge (u, v) ∈ E has a feature vector fuv . Let N(v) be the set of neighbor nodes of
v. There are two hidden vectors νuv and νvu for each edge (u, v) representing the message from u
to v and vice versa. These messages are updated iteratively via neural network g1(·):

ν(t)
uv = g1

(
fu,fuv,

∑
w∈N(u)\v

ν(t−1)
wu

)
(1)

where ν(t)
uv is the message computed in the t-th iteration, initialized with ν(0)

uv = 0. In each iteration,
all messages are updated asynchronously, as there is no natural order among the nodes. This is
different from the tree encoding algorithm in Jin et al. (2018), where a root node was specified and
an artificial order was imposed on the message updates. Removing this artifact is necessary as the
learned embeddings will be biased by the artificial order.

After T steps of iteration, we aggregate messages via another neural network g2(·) to derive the
latent vector of each vertex, which captures its local graph (or tree) structure:

xu = g2

(
fu,
∑

v∈N(u)
ν(T )
vu

)
(2)

Applying the above message passing network to junction tree T and graph G yields two sets of
vectors {xT1 , · · · ,xTn } and {xG1 , · · · ,xGn}. The tree vector xTi is the embedding of tree node i, and
the graph vector xGj is the embedding of graph node j.

3.2 JUNCTION TREE DECODER

We generate a junction tree T = (V, E) with a tree recurrent neural network with an attention
mechanism. The tree is constructed in a top-down fashion by expanding the tree one node at a time.
Formally, let Ẽ = {(i1, j1), · · · , (im, jm)} be the edges traversed in a depth first traversal over tree
T , where m = 2|E| as each edge is traversed in both directions. Let Ẽt be the first t edges in Ẽ . At
the t-th decoding step, the model visits node it and receives message vectors hij from its neighbors.
The message hit,jt is updated through a tree Gated Recurrent Unit (Jin et al., 2018):

hit,jt = GRU(fit , {hk,it}(k,it)∈Ẽt,k 6=jt) (3)

Topological Prediction When the model visits node it, it first computes a predictive hidden state ht
by combining node features fit and inward messages {hk,it} via a one hidden layer network. The
model then makes a binary prediction on whether to expand a new node or backtrack to the parent
of it. This probability is computed by aggregating the source encodings {xT∗ } and {xG∗ } through an
attention layer, followed by a feed-forward network (τ(·) stands for ReLU and σ(·) for sigmoid):

ht = τ(W d
1 fit +W

d
2

∑
(k,it)∈Ẽt

hk,it) (4)

cdt = attention
(
ht, {xT∗ }, {xG∗ };Ud

att

)
(5)

pt = σ
(
ud · τ(W d

3 ht +W
d
4 c

d
t )
)

(6)

Here we use attention(·;Ud
att) to mean the attention mechanism with parameters Ud

att. It com-
putes two set of attention scores {αT∗ }, {αG∗ } (normalized by softmax) over source tree and
graph vectors respectively. The output cdt is a concatenation of tree and graph attention vectors:
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Figure 2: Multiple ways to assemble
neighboring clusters in the junction tree.

cdt =

[∑
i

αTi,tx
T
i ,
∑
i

αGi,tx
G
i

]
(7)

Label Prediction If node jt is a new child to be gener-
ated from parent it, we predict its label by

clt = attention(hit,jt , {xT∗ }, {xG∗ };U l
att) (8)

qt = softmax(U lτ(W l
1hit,jt +W

l
2c
l
t)) (9)

where qt is a distribution over the label vocabulary and
U l
att is another set of attention parameters.

3.3 GRAPH DECODER

The second step in the decoding process is to construct a molecular graph G from a predicted
junction tree T̂ . This step is not deterministic since multiple molecules could correspond to the
same junction tree. For instance, the junction tree in Figure 2 can be assembled into three different
molecules. The underlying degree of freedom pertains to how neighboring clusters are attached to
each other. Let Gi be the set of possible candidate attachments at tree node i. Each graph Gi ∈ Gi
is a particular realization of how cluster Ci is attached to its neighboring clusters {Cj , j ∈ NT̂ (i)}.
The goal of the graph decoder is to predict the correct attachment between the clusters.

To this end, we design the following scoring function f(·) for ranking candidate attachments
within the set Gi. We first apply a graph message passing network over graph Gi to compute
atom representations {µGi

v }. Then we derive a vector representation of Gi through sum-pooling:
mGi

=
∑
v µ

Gi
v . Finally, we score candidate Gi by computing dot products between mGi

and the
encoded source graph vectors: f(Gi) =

∑
u∈GmGi

· xGu .

The graph decoder is trained to maximize the log-likelihood of ground truth subgraphs at all tree
nodes (Eq. (10)). During training, we apply teacher forcing by feeding the graph decoder with
ground truth junction tree as input. During testing, we assemble the graph one neighborhood at a
time, following the order in which the junction tree was decoded.

Lg(G) =
∑

i

[
f(Gi)− log

∑
G′

i∈Gi
exp(f(G′i))

]
(10)

4 MULTIMODAL GRAPH-TO-GRAPH TRANSLATION

Our goal is to learn a multimodal mapping between two molecule domains, such as molecules with
low and high solubility, or molecules that are potent and impotent. During training, we are given
a dataset of paired molecules {(X,Y )} ⊂ X × Y sampled from their joint distribution P (X ,Y),
where X ,Y are the source and target domains. It is important to note that this joint distribution is a
many-to-many mapping. For instance, there exist many ways to modify molecule X to increase its
solubility. Given a new molecule X , the model should be able to generate a diverse set of outputs.

To this end, we propose to augment the basic encoder-decoder model with low-dimensional latent
vectors z to explicitly encode the multimodal aspect of the output distribution. The mapping to be
learned now becomes F : (X, z) → Y , with latent code z drawn from a prior distribution P (z),
which is a standard Gaussian N (0, I). There are two challenges in learning this mapping. First,
as shown in the image domain (Zhu et al., 2017), the latent codes are often ignored by the model
unless we explicitly enforce the latent codes to encode meaningful variations. Second, the model
should be properly regularized so that it does not produce invalid translations. That is, the translated
molecule F(X, z) should always belong to the target domain Y given latent code z ∼ N (0, I). In
this section, we propose two techniques to address these issues.

4.1 VARIATIONAL JUNCTION TREE ENCODER-DECODER (VJTNN)

First, to encode meaningful variations, we derive latent code z from the embedding of ground truth
molecule Y . The decoder is trained to reconstruct Y when taking as input both its vector encoding
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Figure 3: Multimodal graph-to-graph learning. Our model combines the strength of both variational
JTNN and adversarial scaffold regularization.

zY and source molecule X . For efficient sampling, the latent code distribution is regularized to be
close to the prior distribution, similar to a variational autoencoder. We also restrict zY to be a low
dimensional vector to prevent the model from ignoring input X and degenerating to an autoencoder.

Specifically, we first embed molecules X and Y into their tree and graph vectors {xT∗ }, {xG∗ };
{yT∗ }, {yG∗ }, using the same encoder with shared parameters (Sec 3.1). Then we compute the dif-
ference vector δX,Y between molecules X and Y as in Eq.(11). Since each tree and graph vector yi
represents local substructure in the junction tree and molecular graph, the difference vector encodes
the structural changes occurred from molecule X to Y :

δTX,Y =
∑

i
yTi −

∑
i
xTi δGX,Y =

∑
i
yGi −

∑
i
xGi (11)

Following Kingma & Welling (2013), the approximate posterior Q(·|X,Y ) is modeled as a normal
distribution, allowing us to sample latent codes zT and zG via reparameterization trick. The mean
and log variance ofQ(·|X,Y ) is computed from δX,Y with two separate affine layersµ(·) and Σ(·):

zT ∼ N
(
µ(δTX,Y ),Σ(δTX,Y )

)
zG ∼ N

(
µ(δGX,Y ),Σ(δGX,Y )

)
(12)

Finally, we combine the latent code zT and zG with source tree and graph vectors:

x̃Ti = τ(W e
1x
T
i +W e

2 z
T ) x̃Gi = τ(W e

3x
G
i +W e

4 z
G); (13)

where x̃T∗ and x̃G∗ are “perturbed” tree and graph vectors of molecule X . The perturbed inputs
are then fed into the decoder to synthesize the target molecule Ŷ . The training objective follows a
conditional variational autoencoder, including a reconstruction loss and a KL regularization term:

LVAE(X,Y ) = −Ez∼Q[logP (Y |z, X)] + λKLDKL[Q(z|X,Y )||P (z)] (14)

4.2 ADVERSARIAL SCAFFOLD REGULARIZATION

Second, to avoid invalid translations, we force molecules decoded from latent codes z ∼ N (0, I) to
follow the distribution of the target domain through adversarial training (Goodfellow et al., 2014).
The adversarial game involves two components. The discriminator tries to distinguish real molecules
in the target domain from fake molecules generated by the model. The generator (i.e. our encoder-
decoder) tries to generate molecules indistinguishable from the molecules in the target domain.

The main challenge is how to integrate adversarial training into our decoder, as the discrete deci-
sions in tree and graph decoding hinder gradient propagation. To this end, we apply adversarial
regularization over continuous representations of decoded molecular structures, derived from the
hidden states in the decoder (Shen et al., 2017; Zhao et al., 2018). That is, we replace the input
of the discriminator with continuous embeddings of discrete outputs. For efficiency reasons, we
only enforce the adversarial regularization in the tree decoding step. As a result, the adversary only
matches the scaffold structure between translated molecules and true samples.

The continuous representation is computed as follows. The decoder first predicts the label distribu-
tion qroot of the root of tree T̂ . Starting from the root, we incrementally expand the tree, guided
by topological predictions, and compute the hidden messages {hit,jt} between nodes in the partial
tree. At timestep t, the model decides to either expand a new node jt or backtrack to the parent of
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Algorithm 1 Adversarial Scaffold Regularization

1: for k ← 1 to N do . Discriminator training
2: Sample batch {X(i)}mi=1 ∼ PX and {Y (i)}mi=1 ∼ PY .
3: Let T (i) be the junction tree of molecule Y (i). For each T (i), compute its continuous repre-

sentation h(i) by unrolling the decoder with teacher forcing.
4: Encode each molecule X(i) with latent codes z(i) ∼ N (0, I).
5: For each i, unroll the decoder by feeding the predicted labels and tree topologies to construct

the translated junction tree T̂ (i), and compute its continuous representation ĥ(i).
6: Update D(·) by minimizing 1

m

∑m
i=1−D(h(i)) +D(ĥ(i)) along with gradient penalty.

7: end for
8: Sample batch {X(i)}mi=1 ∼ PX and {Y (i)}mi=1 ∼ PY . . Generator training
9: Repeat lines 3-5.

10: Update encoder/decoder by minimizing 1
m

∑m
i=1D(h(i))−D(ĥ(i)).

node it. We denote this binary decision as d(it, jt) = 1pt>0.5, which is determined by the topo-
logical score pt in Eq.(6). For the true samples Y , the hidden messages are computed by Eq.(3)
with teacher-forcing, namely replacing the label and topological predictions with their ground truth
values. For the translated samples Ŷ from source molecules X , we replace the one-hot encoding
fit with its softmax distribution qit over cluster labels in Eq.(3) and (4). Moreover, we multiply
message hit,jt with the binary gate d(it, jt), to account for the fact that the messages should depend
on the topological layout of the tree:

hit,jt =

{
d(it, jt) ·GRU(qit , {hk,it}(k,it)∈Ẽt,k 6=jt) if jt is a child of node it

(1− d(it, jt)) ·GRU(qit , {hk,it}(k,it)∈Ẽt,k 6=jt) vice versa
(15)

As d(it, jt) is computed by a non-differentiable threshold function, we approximate its gradient with
a straight-through estimator (Bengio et al., 2013; Courbariaux et al., 2016). Specifically, we replace
the threshold function with a differentiable hard sigmoid function during back-propagation, while
using the threshold function in the forward pass. This technique has been successfully applied to
training neural networks with dynamic computational graphs (Chung et al., 2016).

Finally, after the tree T is completely decoded, we derive its continuous representation hT by con-
catenating the root label distribution qroot and the sum of its inward messages:

sroot =
∑

k∈N(root)
hk,root hT = [qroot, sroot] (16)

We implement the discriminator D(·) as a multi-layer feedforward network, and train the adversary
using Wasserstein GAN with gradient penalty (Arjovsky et al., 2017; Gulrajani et al., 2017). The
whole algorithm is described in Algorithm 1.

5 EXPERIMENTS

Data Our graph-to-graph translation models are evaluated on three molecular optimization tasks.
Following standard practice in MMPA, we construct training sets by sampling molecular pairs
(X,Y ) with significant property improvement and molecular similarity sim(X,Y ) ≥ δ. The sim-
ilarity constraint is also enforced at evaluation time to exclude arbitrary mappings that completely
ignore the input X . We measure the molecular similarity by computing Tanimoto similarity over
Morgan fingerprints (Rogers & Hahn, 2010). Next we describe how these tasks are constructed.

• Penalized logP We first evaluate our methods on the constrained optimization task proposed by
Jin et al. (2018). The goal is to improve the penalized logP score of molecules under the similarity
constraint. Following their setup, we experiment with two similarity constraints (δ = 0.4 and 0.6),
and we extracted 99K and 79K translation pairs respectively from the ZINC dataset (Sterling &
Irwin, 2015; Jin et al., 2018) for training. We use their validation and test sets for evaluation.

• Drug likeness (QED) Our second task is to improve drug likeness of compounds. Specifically,
the model needs to translate molecules with QED scores (Bickerton et al., 2012) within the range
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Table 1: Translation performance on penalized logP task. GCPN results are copied from You et al.
(2018a). We rerun JT-VAE under our setup to ensure all results are comparable.

Method δ = 0.6 δ = 0.4

Improvement Diversity Improvement Diversity
MMPA 1.65± 1.44 0.329 3.29± 1.12 0.496
JT-VAE 0.28± 0.79 - 1.03± 1.39 -
GCPN 0.79± 0.63 - 2.49± 1.30 -
VSeq2Seq 2.33± 1.17 0.331 3.37± 1.75 0.471
VJTNN 2.33± 1.24 0.333 3.55± 1.67 0.480

[0.7, 0.8] into the higher range [0.9, 1.0]. This task is challenging as the target range contains only
the top 6.6% of molecules in the ZINC dataset. We extracted a training set of 88K molecule pairs
with similarity constraint δ = 0.4. The test set contains 800 molecules.

• Dopamine Receptor (DRD2) The third task is to improve a molecule’s biological activity against
a biological target named the dopamine type 2 receptor (DRD2). We use a trained model from
Olivecrona et al. (2017) to assess the probability that a compound is active. We ask the model
to translate molecules with predicted probability p < 0.05 into active compounds with p > 0.5.
The active compounds represent only 1.9% of the dataset. With similarity constraint δ = 0.4, we
derived a training set of 34K molecular pairs from ZINC and the dataset collected by Olivecrona
et al. (2017). The test set contains 1000 molecules.

Baselines We compare our approaches (VJTNN and VJTNN+GAN) with the following baselines:

• MMPA: We utilized (Dalke et al., 2018)’s implementation to perform MMPA. Molecular transfor-
mation rules are extracted from the ZINC and Olivecrona et al. (2017)’s dataset for corresponding
tasks. During testing, we translate a molecule multiple times using different matching transfor-
mation rules that have the highest average property improvements in the database (Appendix B).

• Junction Tree VAE: Jin et al. (2018) is a state-of-the-art generative model over molecules that ap-
plies gradient ascent over the learned latent space to generate molecules with improved properties.
Our encoder-decoder architecture is closely related to their autoencoder model.

• VSeq2Seq: Our second baseline is a variational sequence-to-sequence translation model that
uses SMILES strings to represent molecules and has been successfully applied to other molecule
generation tasks (Gómez-Bombarelli et al., 2016). Specifically, we augment the architecture of
Bahdanau et al. (2014) with stochastic latent codes learned in the same way as our VJTNN model.

• GCPN: GCPN (You et al., 2018a) is a reinforcement learning based model that modifies a
molecule by iteratively adding or deleting atoms and bonds. They also adopt adversarial training
to enforce naturalness of the generated molecules.

Model Configuration Both VSeq2Seq and our models use latent codes of dimension |z| = 8,
and we set the KL regularization weight λKL = 1/|z|. For the VSeq2Seq model, the encoder is a
one-layer bidirectional LSTM and the decoder is a one-layer LSTM with hidden state dimension
600. For fair comparison, we control the size of both VSeq2Seq and our models to be around 4M
parameters. Due to limited space, we defer other hyper-parameter settings to the appendix.

5.1 RESULTS

We quantitatively analyze the translation accuracy, diversity, and novelty of different methods.

Translation Accuracy We measure the translation accuracy as follows. On the penalized logP task,
we follow the same evaluation protocol as JT-VAE. That is, for each source molecule, we decode K
times with different latent codes z ∼ N (0, I), and report the molecule having the highest property
improvement under the similarity constraint. We set K = 20 so that it is comparable with the
baselines. On the QED and DRD2 datasets, we report the success rate of the learned translations.
We define a translation as successful if one of the K translation candidates satisfies the similarity
constraint and its property score falls in the target range (QED ∈ [0.9, 1.0] and DRD2 > 0.5).

Tables 1 and 2 give the performance of all models across the three datasets. Our models outper-
form the MMPA baseline with a large margin across all the tasks, clearly showing the advantage
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Table 2: Translation performance on QED and DRD2 task. JT-VAE and GCPN results are computed
by running Jin et al. (2018) and You et al. (2018a)’s open-source implementations.

Method QED DRD2
Success Diversity Novelty Success Diversity Novelty

MMPA 32.9% 0.236 99.9% 46.4% 0.275 99.9%
JT-VAE 8.8% - - 3.4% - -
GCPN 9.4% 0.216 100% 4.4% 0.152 100%
VSeq2Seq 58.5% 0.331 99.6% 75.9% 0.176 79.7%
VJTNN 59.9% 0.373 98.3% 77.8% 0.156 83.4%
VJTNN+GAN 60.6% 0.376 99.0% 78.4% 0.162 82.7%

Figure 4: Examples of diverse translations learned by VJTNN+GAN on QED and DRD2 dataset.

of molecular translation approach over rule based methods. Compared to JT-VAE and GCPN base-
lines, our models perform significantly better because they are trained on parallel data that provides
direct supervision, and therefore more sample efficient. Overall, our graph-to-graph approach per-
forms better than the VSeq2Seq baseline, indicating the benefit of graph based representation. The
proposed adversarial training method also provides slight improvement over VJTNN model. The
VJTNN+GAN is only evaluated on the QED and DRD2 tasks with well-defined target domains that
are explicitly constrained by property ranges.

Diversity We define the diversity of a set of molecules as the average pairwise Tanimoto distance
between them, where Tanimoto distance dist(X,Y ) = 1− sim(X,Y ). For each source molecule,
we translate it K times (each with different latent codes), and compute the diversity over the set of
validly translated molecules.2 As we require valid translated molecules to be similar to a given com-
pound, the diversity score is upper-bounded by the maximum allowed distance (e.g. the maximum
diversity score is around 0.6 on the QED and DRD2 tasks). As shown in Tables 1 and 2, our meth-
ods achieve higher diversity score than MMPA and VSeq2Seq on two and three tasks respectively.
Figure 4 shows some examples of diverse translation over the QED and DRD2 tasks.

Novelty Lastly, we report how often our model discovers new molecules in the target domain that
are unseen during training. This is an important metric as the ultimate goal of drug discovery is
to design new molecules. Let M be the set of molecules generated by the model and S be the
molecules given during training. We define novelty as 1 − |M ∩ S|/|S|. On the QED and DRD2
datasets, our models discover new compounds most of the time, but less frequently than MMPA and
GCPN. Nonetheless, these methods have much lower translation success rate.

6 CONCLUSION

In conclusion, we have evaluated various graph-to-graph translation models for molecular optimiza-
tion. By combining the variational junction tree encoder-decoder with adversarial training, we can
generate better and more diverse molecules than the baselines.

2To isolate the translation accuracy from the diversity measure, we exclude the failure cases from diversity
calculation, namely excluding molecules that have no valid translation. Otherwise models with lower success
rates will always have lower diversity.
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A MODEL ARCHITECTURE

Tree and Graph Encoder For the graph encoder, functions g1(·) and g2(·) are parameterized as a
one-layer neural network (τ(·) represents the ReLU function):

ν(t)
uv = τ

(
W g

1 fu +W
g
2 fuv +

∑
w∈N(u)\v

W g
3 ν

(t−1)
wu

)
(17)

xu = τ

(
Ug

1 fu +
∑

v∈N(u)
Ug

2 ν
(T )
vu

)
(18)

For the tree encoder, since it updates the messages with more iterations, we parameterize function
g1(·) as a tree GRU function for learning stability (edge features fuv are omitted because they are
always zero). We keep the same parameterization for g2(·), with a different set of parameters.

ν(t)
uv = GRU

(
fu, {ν(t−1)

wu }w∈N(u)\v

)
(19)

Tree Gated Recurrent Unit The tree GRU function GRU(·) for computing message hij in Eq.(3)
is defined as follows (Jin et al., 2018):

sij =
∑

k∈N(i)\j
hki (20)

zij = σ(W zfi +U
zsij + b

z) (21)
rki = σ(W rfi +U

rhki + b
r) (22)

h̃ij = tanh

Wfi +U
∑

k∈N(i)\j

rki � hki + b

 (23)

hij = (1− zij)� sij + zij � h̃ij (24)

Tree Decoder Attention The attention mechanism is implemented as a bilinear function between
decoder state ht and source tree and graph vectors normalized by the softmax function:

αTi,t =
exp(htAT x

T
i )∑

k exp(htAT x
T
k )

αGi,t =
exp(htAT x

G
i )∑

k exp(htAT x
G
k )

(25)

Graph Decoder We use the same graph neural architecture (Jin et al., 2018) for scoring candidate
attachments. Let Gi be the graph resulting from a particular merging of cluster Ci in the tree with
its neighbors Cj , j ∈ NT̂ (i), and let u, v denote atoms in the graph Gi. The main challenge of
attachment scoring is local isomorphism: Suppose there are two neighbors Cj and Ck with the same
cluster labels. Since they share the same cluster label, exchanging the position of Cj and Ck will
lead to isomorphic graphs. However, these two cliques are actually not exchangeable if the subtree
under j and k are different (Illustrations can be found in Jin et al. (2018)). Therefore, we need to
incorporate information about those subtrees when scoring the attachments.

To this end, we define index αv = i if v ∈ Ci and αv = j if v ∈ Cj \ Ci. The index αv is used
to mark the position of the atoms in the junction tree, and to retrieve messages hi,j summarizing
the subtree under i along the edge (i, j) obtained by running the tree encoding algorithm. The tree
messages are augmented into the graph message passing network to avoid local isomorphism:

µ(t)
uv = τ(W a

1 fu +W
a
2 fuv +W

a
3 µ̃

(t−1)
uv ) (26)

µ̃(t−1)
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w∈N(u)\v µ
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wu αu = αv

hαu,αv
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wu αu 6= αv

(27)

The final representation of graph Gi ismGi
=
∑
v µ

Gi
v , where

µGi
u = τ
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2µ
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)
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Adversarial Scaffold Regularization Algorithm 2 describes the tree decoding algorithm for adver-
sarial training. It replaces the ground truth input f∗ with predicted label distributions q∗, enabling
gradient propagation from the discriminator.
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Algorithm 2 Soft Tree Decoding for Adversarial Regularization

Require: Source tree and graph vectors {xT∗ }, {xG∗ }
1: Initialize: Tree T̂ ← ∅; Global counter t← 0
2: function DecodeTree(i)
3: repeat
4: t← t+ 1
5: Predict topology score pt with Eq.(6), replacing fi with predicted label distribution qi.
6: if pt ≥ 0.5 then
7: Create a child j and add it to tree T̂ .
8: Predict the node label distribution qj with Eq.(9)
9: Compute message hi,j with Eq.(15)

10: DecodeTree(j)
11: end if
12: until pt < 0.5
13: Let j be the parent node of i. Compute message hi,j with Eq.(15)
14: end function

B EXPERIMENTAL DETAILS

Training Details We elaborate on the hyper-parameters used in our experiments. For our models,
the hidden state dimension is 300 and latent code dimension |z| = 8. The tree encoder runs mes-
sage passing for 6 iterations, and graph encoder runs for 3 iterations. The entire model has 3.9M
parameters. For VSeq2Seq, the encoder is a one-layer bidirectional LSTM and the decoder is a
one-layer uni-directional LSTM. The attention scores are computed in the same way as Bahdanau
et al. (2014). We set the hidden state dimension of the recurrent encoder and decoder to be 600, with
4.2M parameters in total.

All models are trained with the Adam optimizer for 20 epochs with learning rate 0.001. We anneal
the learning rate by 0.9 for every epoch. For adversarial training, our discriminator is a three-layer
feed-forward network with hidden layer dimension 300 and LeakyReLU activation function. The
discriminator is trained for N = 5 iterations with gradient penalty weight β = 10.

Property Calculation The penalized logP is calculated using You et al. (2018a)’s implementation,
which utilizes RDKit (Landrum, 2006) to compute clogP and synthetic accessibility scores. The
QED scores are also computed using RDKit’s built-in functionality. The DRD2 activity predic-
tion model is downloaded from https://github.com/MarcusOlivecrona/REINVENT/
blob/master/data/clf.pkl.

MMPA Procedure We utilized the open source toolkit mmpdb (Dalke et al., 2018) to perform
matching molecular pair (MMP) analysis (https://github.com/rdkit/mmpdb). On the
logP and QED tasks, we constructed a database of transformation rules extracted from the ZINC
dataset (with test set molecules excluded). On the DRD2 task, the database is constructed from both
ZINC and the dataset from Olivecrona et al. (2017). During testing, each molecule is translated
K = 20 times with different matching rules. When there are more than K matching rules, we
choose those with the highest average property improvement. This statistic is calculated during
database construction.

Dataset Curation The training set of the penalized logP task is curated from the ZINC dataset of
250K molecules (Jin et al., 2018). A molecular pair (X,Y ) is selected into the training set if the
Tanimoto similarity sim(X,Y ) ≥ δ and the property improvement is significant enough (greater
than certain threshold). On the QED and DRD2 tasks, we select training molecular pairs (X,Y ) if
sim(X,Y ) ≥ 0.4 and both X and Y fall into the source and target property range. For each task,
we ensured that all molecules in validation and test set had never appeared during training.
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