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Abstract

We present a hybrid framework that leverages the trade-off between temporal and1

frequency precision in audio representations to improve the performance of speech2

enhancement task. We first show that conventional approaches using specific3

representations such as raw-audio and spectrograms are each effective at targeting4

different types of noise. By integrating both approaches, our model can learn multi-5

scale and multi-domain features, effectively removing noise existing on different6

regions on the time-frequency space in a complementary way. Experimental results7

show that the proposed hybrid model yields better performance and robustness8

than using each model individually.9

1 Introduction10

The trade-off between temporal and frequency resolution is a well-known phenomenon in the signal11

processing community, e.g., the window size in discrete Fourier transformation (DFT) [1]. The larger12

the time segment, the more frequencies are extracted, thus giving us higher frequency resolution13

in the expense of temporal resolution. Therefore, it is obvious that time-series and time-frequency14

representations can provide complementary views when investigating a given signal. To the best of15

our knowledge, however, existing deep learning-based approaches proposed for speech enhancement16

have only taken either time-series (i.e., raw-audio) [6, 7] or time-frequency representation (i.e.,17

spectrogram) as an input [4, 10, 15]. In this work, we find that models using different audio18

representations each specialize at tackling specific types of noise, and are also complementary to19

each other. Grounding on this observation, we propose a hybrid framework which enables the model20

to learn multi-scale and multi-domain features, dubbed multi-domain processing via hybrid denoising21

networks (MDPhD). We devise a sequential model integrating two modules of both representations22

by employing auxiliary loss. Experimental results and ablation studies show that the proposed model23

can effectively utilize complementary information of time and time-frequency domains. Although24

our hybridizing strategy is rather straightforward, MDPhD shows better denoising performance than25

other state of the art (SOTA) algorithms across a variety of noises under multiple measures. Note that26

the hybrid framework is general and not restricted to the current specific model. The performance27

can be further improved by employing newly developed models from each domain, by equipping a28

new loss function, or by designing a better hybridizing strategy.29

Our contributions are as follows: 1) We empirically show that the way a model performs denoising30

depends on its input representation. 2) We propose a hybrid framework that can exploit multi-scale31

and multi-domain features. To the best of our knowledge, this is the first hybrid approach, effectively32

utilizing both time and time-frequency domain information. 3) The proposed hybrid model (MDPhD)33

outperforms SOTA algorithms in the speech enhancement task.34
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2 Model Description35

We first describe the objective function and the selected modules that have been reported to show36

competitive performance using either raw-audio [5] or spectrogram input [3]. Selected models are37

each used later as components of our proposed hybrid model.38

2.1 Objective function39

We employ the energy-conserving loss function proposed in [7] which simultaneously considers40

speech and noise signals. Let the noisy input x consist of clean speech s and noise n. The estimated41

speech by the model is referred to as ŝ. Then, our objective function is defined as follows:42

L(x, s, n, ŝ) = ‖s− ŝ‖1 + ‖n− n̂‖1, (1)

where n̂ = x− ŝ represents the estimated noise signal and ‖ · ‖1 denotes `1 norm.43

2.2 Hybrid Model44

We construct the time domain network based on TasNet [5] which employs one-dimensional dilated45

convolution to handle long time sequences of raw-audio. TasNet has shown competitive sample quality46

for speech source separation, which is a similar task to speech enhancement. In our experiments,47

we used a reduced version of TasNet. With a slight abuse of notation, we refer to the network as48

"TasNet" for simplicity. For the time-frequency (T-F) domain network, we employ a U-Net structure49

based on two-dimensional convolutions which has been widely used in various source separation50

tasks [3, 8]. The T-F domain network aims to learn an ideal ratio mask (IRM) of a noisy spectrogram51

input [14]. By multiplying the estimated mask to the noisy spectrogram, the model can remove the52

noise from the time-frequency space.53

We hybridize both time and T-F domain networks in a cascaded way (Fig. 1). To make both54

networks contribute to the denoising task equally well, we devise our model with an auxiliary loss55

L(x, s, n, ŝi,mid) at the intermediate conjunction, where ŝi,mid is the output of the former network. In56

addition, to let both networks have access to the full data information that is not processed (denoised)57

by the other, we train the entire model by alternately switching the sequential order of each component.58

For inference, we can either use a single path or average the results from both paths. Here, we simply59

average the output of the model, which showed the best performance.60
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Figure 1: A schematic illustration of the hybrid system (MDPhD). Note that the network of the same
domain (same color) shares the parameters. For the time-frequency (T-F) domain network, we convert
the time-domain input to a spectrogram using the short time Fourier transform (STFT), whose output
is converted back to a waveform using the inverse short time Fourier transform (iSTFT).

The final objective of the hybrid model with auxiliary loss becomes61

min
θ

∑
i=1,2

L(x, s, n, ŝi,mid) +
∑
i=1,2

L(x, s, n, ŝi), (2)

where θ denotes the network parameter.62

3 Experiments63

3.1 Data and Experimental Setup64

Dataset We used the dataset [12] that has been used in the recent speech enhancement studies65

[6, 7]. The dataset was produced by synthesizing the clean speech of Voice Bank corpus [13] and the66
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noise data of Diverse Environments Multichannel Acoustic Noise Database (DEMAND) [11]. The67

training dataset consists of audio from 28 speakers, and the test dataset is composed of the recordings68

from two speakers. Each speaker’s data contains 400 sentences with four noise levels. To deal with69

signals without voices, we added noise-only data to the training dataset, which is a quarter of the70

total number. In our experiments, all audio samples recorded at 48kHz were subsampled to 16kHz.71

Experimental Setup During training and testing, we split speech waveforms with a sliding window72

of approximately one second (16384 samples) every 500 ms (50% overlap). To obtain the spectro-73

grams, we used the short time Fourier transform (STFT) with 512 window size and 256 hop size.74

The output spectrogram is converted back to the time domain using the inverse STFT. For training,75

we used batch renormalization to cope with a small batch size of 16 and Adam optimizer with the76

initial learning rate of 2e-4. The learning rate was decayed by half every 100,000 iterations. For more77

details, please refer to the supplementary material.78

3.2 Experimental Results79

Hybrid Framework Validation To show the complementary characteristic of the time and T-F80

domain networks, we additionally synthesized noisy signals consisting of speech signals from the test81

dataset and noises which are either babbles (DEMAND), high frequency sinusoidal noise of 1000 ∼82

5000 Hz, or both. Note that the networks did not see any of these noises during the training phase.83

As shown in figure 2, while the spectrogram approach (U-Net) successfully removes high frequency84

noise that is prominent in the spectrogram, it suffers from dealing with babble noise which is hardly85

distinguishable from the frequency components of speech signals. On the other hand, the raw-audio86

approach (TasNet) shows superior results on denoising babble noise, which were even better than87

that of U-Net with doubled parameter size (Table 1). Note that, however, TasNet fails to remove high88

frequency noise, which is supposedly hard to capture in the time domain (Fig. 2 red arrow).89

Table 1 summarizes these observations along with ablation studies. Our hybrid model (MDPhD)90

showed the best performance by combining the strength of each model. While the other methods had91

a noticeable weak domain, MDPhD showed comparable performance across all noise types. Note92

that MDPhD showed the best performance when the noises are mixed, which is more practical in real93

world applications. When we only trained a single path of MDPhD, the model failed to fully utilize94

the complementary information from both domains. Interestingly, we found that the performance of95

the model tends to follow the characteristics of the network that comes first in order. For example,96

the U → D model shares the weakness of U-Net and vice versa. We conjecture that this happens97
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Figure 2: Comparison of denoised results for inputs with babble and high frequency noise. For
clarity, the output results of the boxed region (red dotted line) of the noisy input is demonstrated in
two perspectives. The top row shows the estimated noise and the bottom row displays the estimated
speech signal. Some noticeable distortions of U-Net and TasNet in the spectrogram are marked by
red arrows.
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Table 1: Ablation study performed on various types of noises (babble, high frequency and a mixture
of both) with two signal-to-noise ratios (SNRs) (5 and 10 dB). We evaluated the SNR of each model
output in decibel (dB) scale. D and U denotes TasNet using one-dimensional dilated convolution
and U-Net, respectively. The number of parameters is noted next to the model (e.g., 1.5 M = 1.5
million). U → D and D → U represent single path models without alternately switching training
procedure. Our hybrid model is referred to as H (1.5 M + 1.5 M), where the model exploits both
pathways (U → D and D → U ) during the training and testing. The best result for each noise type
is given in bold style.

babble high freq. babble + high freq.
SNR 5 SNR 10 SNR 5 SNR 10 SNR 5 SNR 10

D (1.5 M) 13.69 16.83 4.86 11.21 11.47 15.23
D∗ (3 M) 14.25 17.12 6.27 11.88 12.74 15.84
U (1.5 M) 10.55 14.51 17.84 20.68 11.44 15.41
U∗ (3 M) 11.48 15.46 17.60 21.03 12.29 16.08
U → D 11.96 15.50 15.08 18.37 12.49 16.01
D → U 14.09 16.97 11.13 17.59 13.42 16.95

H (Ours) 13.81 16.78 15.10 19.09 14.02 17.08

because the latter network cannot reconstruct the information that is already lost from the former98

network. In addition, we tested various objective functions and confirmed that the complementary99

nature of the two approaches does not come from a specific choice of the objective function (see the100

supplementary material).101

3.3 Comparison with Other Methods102

Using the test dataset, we compared our results to recent studies of speech enhancement field.103

Our model showed the best performance quantitatively and qualitatively among the others under104

various measures [2] (Table 2). For the qualitative results, please refer to the web demo page105

(https://mdphdnet.github.io), where we have uploaded several denoised examples using the models106

introduced in the table (except MMSE-GAN whose code is unavailable).107

Table 2: Comparison with other methods. The predicted rating of speech distortion (CSIG), back-
ground distortion (CBAK) and overall quality (COVL) are reported (from 1 to 5, higher is better).
PESQ (from -0.5 to 4.5, higher is better) stands for perceptual evaluation of speech quality and SSNR
(higher is better) is segmental SNR. The best result for each measure is given in bold style.

CSIG CBAK COVL PESQ SSNR
Wiener [9] 3.23 2.68 2.67 2.22 5.07
SEGAN [6] 3.48 2.94 2.80 2.16 7.73
Wavenet [7] 3.62 3.23 2.98 - -
MMSE-GAN [10] 3.80 3.12 3.14 2.53 -
MDPhD (ours, 3 M + 3 M) 3.85 3.39 3.27 2.70 10.22

4 Conclusion108

We demonstrated that the conventional speech enhancement models have limitations due to using109

specific representations. Based on this observation, we proposed a hybrid approach that exploits110

multi-domain features for speech enhancement, dubbed multi-domain processing via hybrid denoising111

networks (MDPhD). With respect to five metrics, MDPhD achieved the best performance compared112

to the other concurrent models. Because MDPhD is a general framework, future work may include113

developing a more elegant way of hybridizing and extending this framework to other signal processing114

tasks, such as music and speech source separation.115
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A More Experimental Results157

To show that the complementary nature of the time domain and T-F domain networks does not158

come from a specific choice of the objective functions, we trained each network module with159

various objective functions. Table 3 summarizes the results. We found that the performance was not160

significantly different.161

Table 3: SNR evaluation of models with various objective functions. D and U denote the TasNet
(reduced) using one-dimensional dilated convolution and U-Net, respectively. The type of objective
functions are noted next to the model name. `1 represents our baseline objective function. `2
represents an objective function that substitutes the `1 term of equation (1) with `2. SNR indicates an
objective function that directly optimizes the SNR. SPEC represents the `2 distance between a clean
speech spectrogram and the estimated spectrogram.

babble noise high frequency band
SNR 5 SNR 10 SNR 15 SNR 5 SNR 10 SNR 15

D-`1 13.69 16.83 19.57 4.96 11.31 16.54
D-`2 13.53 16.57 19.26 6.67 12.82 16.94
D-SNR 13.45 16.71 19.51 4.48 10.90 16.38
U -`1 10.55 14.51 18.11 17.87 20.68 21.92
U -`2 10.54 14.48 17.97 17.89 20.65 22.32
U -SPEC 10.47 14.38 18.01 19.73 21.47 22.27

B Model Architecture162

In this section, we present the detailed configuration of the models we used. In the following figures,163

each block consists of a convolutional operation, normalization and an activation function. Note164

that, normalization is not used at the first and the last layer of each model. The operation � means165

element-wise multiplication and the preceding layer of this operation uses sigmoid as an activation166

function.167

Figure 3: U-Net (1.5M) architecture. 2D Conv means a two-dimensional convolution block consisting
of a two-dimensional convolution operation with filter size F (height, width), stride size S (height,
width) and output channel size C followed by batch renormalization and leaky-RELU activation
function. 2D t-Conv means a two-dimensional transposed convolution block. Our baseline models
used in experiments process the log-magnitude of the input spectrogram.

Figure 4: U-Net (3M) architecture.
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Figure 5: TasNet (1.5M) architecture. 1D Conv means a one-dimensional convolution block and
1D d-Conv stands for a one-dimensional dilated convolution block. The dilation rate of each dilated
convolution block is doubled as it goes forward. The convolution operation of the dilation convolution
block follows the non-causal method, which takes the value of both ahead and back of the current
time step. 1D t-Conv means a one-dimensional transposed convolution block.

Figure 6: TasNet (3M) architecture.

7


	Introduction
	Model Description
	Objective function
	Hybrid Model

	Experiments
	Data and Experimental Setup
	Experimental Results
	Comparison with Other Methods

	Conclusion
	More Experimental Results
	Model Architecture

