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ABSTRACT

Deep models are state-of-the-art for many computer vision tasks including im-
age classification and object detection. However, it has been shown that deep
models are vulnerable to adversarial examples. We highlight how one-hot encod-
ing directly contributes to this vulnerability and propose breaking away from this
widely-used, but highly-vulnerable mapping. We demonstrate that by leveraging a
different output encoding, multi-way encoding, we can make models more robust.
Our approach makes it more difficult for adversaries to find useful gradients for
generating adversarial attacks. We present state-of-the-art robustness results for
black-box, white-box attacks, and achieve higher clean accuracy on four bench-
mark datasets: MNIST, CIFAR-10, CIFAR-100, and SVHN when combined with
adversarial training. The strength of our approach is also presented in the form of
an attack for model watermarking, raising challenges in detecting stolen models.

1 INTRODUCTION

Deep learning models are vulnerable to adversarial examples [Szegedy et al. (2013)]. Evidence
shows that adversarial examples are transferable [Papernot et al| (2016)); Liu et al.| (2016)]. This
weakness can be exploited even if the adversary does not know the target model under attack, posing
severe concerns about the security of the models. This is because an adversary can use a substitute
model for generating adversarial examples for the target model, also known as black-box attacks.

Black-box attacks such as|Goodfellow et al. (2014) rely on perturbing input by adding an amount
dependent upon the gradient of the loss function with respect to the input of a substitute model. An
example adversarial attack is 299" = x + esign(V,Loss(f(x)), where f(z) is the model used to
generate the attack. This added “noise” can fool a model although it may not be visually evident to
a human. The assumption of such gradient-based approaches is that the gradients with respect to the
input, of the substitute and target models, are correlated.

Our key observation is that the setup of conventional deep classification frameworks aids in the
correlation of such gradients. Typically, a cross-entropy loss, a soft-max layer, and a one-hot vector
encoding for a target label are used when training deep models. These conventions make a model
more vulnerable to black-box attacks. This setting constrains the encoding length, and the number
of possible non-zero gradient directions at the encoding layer. This makes it easier for an adversary
to pick a harmful gradient direction and perform an attack.

We aim to increase the adversarial robustness of deep models. Our multi-way encoding representa-
tion relaxes the one-hot encoding to a real number encoding, and embeds the encoding in a space
that has dimension higher than the number of classes. These encoding methods lead to an increased
number of possible gradient directions, as illustrated in Figure[I] This makes it more difficult for
an adversary to pick a harmful direction that would cause a misclassification of a correctly classi-
fied point, generating a targeted or untargeted attack. Untargeted attacks aim to misclassify a point,
while targeted attacks aim to misclassify a point to a specific target class. Multi-way encoding also
helps improve a model’s robustness in cases where the adversary has full knowledge of the target
model under attack: a white-box attack. The benefits of multi-way encoding are demonstrated in
experiments with four benchmark datasets: MNIST, CIFAR-10, CIFAR-100, and SVHN.

We also demonstrate the strength of our approach by introducing an attack for the recent model
watermarking algorithm of [Zhang et al.| (2018)), which deliberately trains a model to misclassify
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Figure 1: Demonstration of the benefit of relaxing and increasing the encoding dimensionality, for
a binary classification problem at the final encoding layer. C; is the codebook encoding for class ¢,
axis s; represents the output activation of neuron i in the output encoding layer, where ¢ = 1,...,!
and [ is the encoding dimensionality. The depicted points are correctly classified points of the green
and blue classes. The arrows depict the possible non-zero perturbation directions sign(ag%;“). (a)
2D 1ofK softmax-crossentropy setup: Only two non-zero gradient directions exist for a lof K
encoding. Of these two directions, only one is an adversarial direction, depicted in red. (b) 2D
multi-way encoding: Four non-zero perturbation directions exist. The fraction of directions that now
move a point to the adversarial class (red) drops. (¢) 3D multi-way encoding: A higher dimensional
encoding results in a significantly lower fraction of gradient perturbations whose direction would
move an input from the green ground-truth class to the blue class, or vice versa.

certain watermarked images. We interpret such watermarked images as adversarial examples. We
demonstrate that the multi-way encoding reduces the transferability of the watermarked images,
making it more challenging to detect stolen models.

‘We summarize our contributions as follows:

1. We show that the traditional lofK mapping is a source of vulnerability to adversarial
gradients.

2. We propose a novel solution using multi-way encoding to alleviate the vulnerability caused
by the 1o f K mapping.

3. We empirically show that the proposed approach improves model robustness against both
black-box and white-box attacks.

4. We also show how to apply our encoding framework in attacking the recently proposed
model watermarking scheme of Zhang et al.| (2018).

2 RELATED WORK

A wide range of work on adversarial attacks and defenses is presented in |Akhtar & Mian| (2018).
We review recent attacks and defenses that are closely related to our work and present how alternate
output encoding schemes have been utilized in deep classification models.

Attacks. Adversarial examples are crafted images for fooling a classifier with small perturbations.
Recently, many different types of attacks have been proposed to craft adversarial examples. We
focus on gradient-based attacks such as [Goodfellow et al.| (2014); Kurakin et al| (2016)); |Athalye
et al.|(2018)] which deploy the gradient of the loss with respect to the input. |Goodfellow et al.[(2014)
propose the Fast Gradient Sign Method (FGSM) which generates adversarial images by adding the
sign of the input gradients scaled by €, where the € restricts £, of the perturbation. |[Kurakin et al.
(2016) propose the Basic Iterative Method (BIM), which is an iterative version of FGSM and is also
called Projected Gradient Descent (PGD). Madry et al.|(2017) show that PGD with randomly chosen
starting points within allowed perturbation can make an attack stronger.

Defenses. Most of the state-of-the-art adversarial defenses rely on gradient masking [Papernot et al.
(2017)] by designing a defense that makes it more difficult for an adversary to find useful gradients to
generate adversarial examples. However, |Athalye et al.| (2018) show that works including Buckman
et al.| (2018); |Guo et al.| (2017); Dhillon et al.| (2018); |Xie et al.| (2017); |Song et al.| (2017) which
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use obfuscated gradients, a special case of gradient masking, are vulnerable to the Backward Pass
Differentiable Approximation Attack (BPDA). Defenses that do not use obfuscated gradients, but
rely on adversarial training instead [Madry et al.|(2017); Kannan et al.| (2018))], are robust to BPDA
attack. These methods are most similar to our approach because they do not rely on obfuscated
gradients. However, Madry et al.| (2017) and |Kannan et al.| (2018) use the conventional one-hot
(lof K) encoding for both source and target models, while we propose a higher dimensional multi-
way encoding that obstructs the adversarial gradient search.

Output encoding. There have been attempts to use alternate output encodings, also known as target
encodings, for image classification in deep models. For example, Yang et al.|(2015) and [Rodriguez
et al.| (2018)) use an output encoding that is based on Error-Correcting Output Codes (ECOC), for
increased performance and faster convergence, but not for adversarial defense. In contrast, we use an
alternate output encoding scheme, multi-way encoding, to make models more robust to adversarial
attacks.

3 OUR APPROACH

In this section we will explain our approach using the following notation: g(z) is the target model
to be attacked, and f(z) is the substitute model used to generate a black-box attack for g(x). In
the case of a white-box attack, f(x) is g(«). Canonical state-of-the-art attacks like FGSM and PGD
are gradient-based methods. Such approaches perturb an input x by an amount dependent upon
sign(VLoss(f(z))). An adversarial example 2% is generated as follows:

2" = g 4 esign(V,Loss(f(z))), (1)

where e is the strength of the attack. Therefore £V would be a translated version of z, in a vicinity
further away from that of the ground-truth class, and thus becomes more likely to be misclassified,
resulting in a successful adversarial attack. If the attack is a targeted one, = could be deliberately
moved towards some other specific target class. This is conventionally accomplished by using the
adversarial class as the ground truth when back-propagating the loss, and subtracting the perturba-
tion from the original input. The assumption being made in such approaches is:

V.Loss(f(z)) =~ VLoss(g(z)). ()

‘We now present the most widely used setup for state-of-the-art deep classification networks. Let the
output activation of neuron ¢ in the final encoding (fully-connected) layer be s;, where i = 1,2, ...,
and [ is the encoding length. Then, the softmax prediction y; of s;, and the cross-entropy loss are:

esi k

yi=—7——, and Loss=— ZtiZOQ(yi)» €)
ZCZI ese i=1

respectively, where k is the number of classes. The partial derivative of the loss with respect to the
pre-softmax logit output is:
0Loss
831-
Combined with the most widely used one-hot (1lof K) encoding scheme, the derivative in Eqn.
makes the gradients of substitute and target models more correlated. We demonstrate this as
follows: Given a ground-truth example belonging to class [1,0,...,0], non-zero gradients of neuron
1 of the encoding layer will always be negative, while all other neurons will always be positive
since 0 < y; < 1. So, regardless of the model architecture, the signs of the partial derivatives
are determined by the category, and thus the gradients for that category only lie in a hyperoctant
(see Fig.[I] for the 2D case). This constraint causes strong correlation in gradients in the final layer
for different models using the 1o f K encoding. Our experiments suggest that this correlation can be
carried all the way back to the input perturbations, making these models more vulnerable to attacks.

In this work, we aim to make V,Loss(f(x)) and VLoss(g(x)) less correlated. We do this by
proposing multi-way encoding instead of the conventional 1o f K encoding used by deep models for
classification. Multi-way encoding significantly reduces the correlation between the gradients of the
substitute and target models, making it more challenging for an adversary to create an attack that is
able to fool the classification model.
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The multi-way encoding we propose in this work is Random Orthogonal (RO) output vector
encoding generated via Gram-Schmidt orthogonalization. Starting with a random matrix A =
[ai]as] ... |a,] € REX! the first, second, and k*" orthogonal vectors are computed as follows:

Uy

uyp =ai, €1 = [

up = ag — (ag - e1)er, ez = M2 5)

up = ar — (ax - e1)eq — -+ — (ar - ex—1)er—1, €x = 7.

For a classification problem of k classes, we create a codebook Cro € R**!, where C* = Se; is a
length [ encoding for class ¢, and i € 1,...,k, and (3 is a scaling hyper-parameter dependent upon
l. A study on the selection of the length [ is presented in the experiments section.

By breaking-away from the lof K encoding, softmax and cross-entropy become ill-suited for the
model architecture and training. Instead, we use the loss between the output of the encoding-layer
and the RO ground-truth vector, Loss(f(z),tro), where f(z) € R!. In our multi-way encoding
setup, s and f(z) become equivalent. Classification is performed using arg min; Loss(f(z), t%0)-
We use Mean Squared Error (MSE) Loss.

Figure |1| illustrates how using a multi-way and longer encoding results in an increased number of
possible gradient directions, reducing the probability of an adversary selecting a harmful direction
that would cause misclassification. For simplicity we consider a binary classifier. Axis s; in each
graph represents the output activation of neuron ¢ in the output encoding layer, where ¢ = 1,... 1.
The depicted points are correctly classified points for the green and blue classes. The arrows depict
the sign of non-zero gradients 357;“. (a) Using a lof K encoding and a softmax-cross entropy
classifier, there are only two directions for a point to move, a direct consequence of 1lof K encoding
together with Eqn. i} Of these two directions, only one is an adversarial direction, depicted in red.
(b) Using 2-dimensional multi-way encoding, we get four possible non-zero gradient directions. The
fraction of directions that now move a correctly classified point to the adversarial class is reduced. (c)
Using a higher dimension multi-way encoding results in a less constrained gradient space compared
to that of lof K encoding. In the case of attacks formulated following Eqn. |1} this results in 2!
possible gradient directions, rather than [ in the case of lof K encoding. The fraction of gradients
whose direction would move an input from the green ground-truth class to the blue class, or vice
versa, decreases significantly. In addition, multi-way encoding provides additional robustness by
increasing the gradients’ dimensionality.

We also combine multi-way encoding with adversarial training for added robustness. We use the
following formulation to solve the canonical min-max problem [Madry et al.[(2017), Kannan et al.
(2018)] against PGD attacks:

arggnin[E(z’y)eﬁdam (maxsecsLoss(0,x + 0,y)) + MNE(z, ) epanr. (Loss(0,2,))] (6)

where Pgqtq i the underlying training data distribution, (z,y) are the training points, and A deter-
mines a weight of the loss on clean data together with the adversarial examples at train time.

4 EXPERIMENTS

We conduct experiments on four commonly-used benchmark datasets: MNIST, CIFAR-10, CIFAR-
100, and SVHN. MNIST [LeCun et al.| (1998)] is a dataset of handwritten digits. It has a training
set of 60K examples, and a test set of 10K examples. CIFAR-10 [Krizhevsky & Hinton| (2009)]
is a canonical benchmark for image classification and retrieval, with 60K images from 10 classes.
The training set consists of 50K images, and the test set consists of 10K images. CIFAR-100
[Krizhevsky & Hinton|(2009)] is similar to CIFAR-10 in format, but has 100 classes containing 600
images each. Each class has 500 training images and 100 testing images. SVHN [Netzer et al.
(2011)] is an image dataset for recognizing street view house numbers obtained from Google Street
View images. The training set consists of 73K images, and the test set consists of 26K images.

In this work we define a black-box attack as one where the adversary knows the architecture but not
the weights, and not the output encoding used. This allows us to test the efficacy of our proposed
encoding when the adversary assumes the conventional lofK encoding. We define a white-box
attack as one where the adversary knows full information about our model, including the encoding.
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10 20 40 80 | 200 | 500 | 1000 | 2000 | 3000
Black-box | 454 | 524 | 624 | 713 | 73.7 | 78.0 | 79.6 | 83.7 | 753
Clean 96.8 1 97.0 | 979 | 98.3 | 98.5 | 98.8 | 98.8 | 99.1 | 99.1

Table 1: This table presents the effect of increasing the dimension (10, 20, ..., 3000) of the output
encoding layer on the classification accuracy (%) of a model that uses RO multi-way encoding for
the MNIST dataset on (1) data perturbed using an FGSM black-box attack with e = 0.2 by a model
that uses lof K encoding, and (2) clean data. As the dimension increases, accuracy increases up to
a certain point; We use 2000 for the length of our multi-way encoding layer.

g(@) /(@) Arori Aro Ciofk Cro

Atorc 349 (1.00) * | 93.6 (0.02) | 56.8 (0.25) | 95.5 (0.03)
Aro 88.7 (0.02) 59.1 (1.00) * | 92.5(0.02) 83.4 (0.09)
Crofk 30.1 (0.25) 84.1 (0.02) 22.5(1.00) * | 93.4 (0.01)
Cro 943 (0.03) | 87.8(0.09) | 96.1(0.01) | 70.5(1.00) *

Table 2: This table presents the classification accuracy (%) of MNIST on black-box and white-box
FGSM attacks of strength e = 0.2 using architectures A and C. Every cell in this table generates
attacks from a substitute model f(x) for a target model g(x). We conclude: a) g(x) is more vulnera-
ble to attacks when f(x) uses the same encoding, hence the lower reported accuracy. b) Even when
the source and target models are the same and use the same encoding (¥), i.e. white-box attacks,
RO encoding leads to better accuracy compared to lof K. c) In brackets is the Pearson correlation
coefficient of the gradients of g(x) and f(x) with respect to the input x. Gradients are less correlated
when the source and target models use different encodings. In addition, if the same encoding is used
in the source and target models, RO results in a lower correlation compared to lof K.

4.1 DEFENSES WITHOUT ADVERSARIAL TRAINING

In this section we analyze the case where neither the target nor substitute model undergoes adver-
sarial training. In all experiments we use RO encoding as the multi-way encoding with dimension
2000 determined by Table[T]and 8 = 1000. We first analyze using our multi-way encoding scheme
in-depth using the MNIST dataset (.1.1). We then present results of comprehensive experiments on
white-box and black-box attacks, targeted and untargeted, on the four benchmark datasets {@.1.2).

4.1.1 MULTI-WAY ENCODING

We conduct experiments to examine how multi-way output encodings can increase adversarial ro-
bustness. We compare models trained on lof K encodings (Ai,¢x and C,fx) with models having
the same architecture but trained on Random Orthogonal output encodings (Aro and Crp). Models
A and C are LeNet-like CNNs and inherit their names from [Tramer et al.| (2017)). We use their ar-
chitecture with dropout before fully-connected layers. We trained models A and C on MNIST with
the momentum optimizer and an initial learning rate of 0.01, momentum = 0.5. We generated
adversarial examples using FGSM with an attack strength ¢ = 0.2. All models achieve ~99% on
the clean test set. It should be noted that substitute and target models are trained on clean data and
do not undergo any form of adversarial training.

Table 2] presents the classification accuracy (%) of target models under attack from various substitute
models. Columns represent the substitute models used to generate adversarial examples and rows
represent the target models to be tested on the adversarial examples. The diagonal represents white-
box attacks, i.e. generating attacks from the target model, and others represent black-box attacks.
Every cell in this table generates attacks from a substitute model f(z) for a target model g(x).

It is evident from the results of Table |2| that g(x) is more vulnerable to attacks when f(x) uses
the same encoding, hence the lower reported accuracy. This suggests that a model can be far more
robust if the output encoding is hidden from an adversary.

It is also evident from the results of this experiment in Table [2] that even when the source and
target models are the same, denoted by (*), i.e. white-box attacks, and use the same encoding, RO
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Figure 2: Black-box attacks of varying strength epsilon using lof K and RO encodings for MNIST.
On the left, the substitute model is C, sk, therefore the attacks generated by this model will have a
stronger negative effect on a model trained using lof K, and a less negative effect on a model that
uses a different output encoding, RO. An analogous argument goes for the plot on the right.

encoding leads to better accuracy, and therefore robustness to attack, compared to 1o f K encoding.
We present further ablation studies in Appendix A.

Finally, Table [2| also reports the Pearson correlation coefficient of sign(V,Loss(f(x))) and
sign(VLoss(g(x))) used to perturb an input image x to create an adversarial example z*“V as
shown in Eqn. [T} These gradients are significantly less correlated when the source and target models
use different encodings. In addition, if the same encoding is used in the source and target mod-
els, RO results in a lower correlation compared to 1of K. We report correlation coefficients for all
convolutional layers in Appendix B.

Figure 2] presents black-box FGSM attacks of varying strengths for 1lof K and RO encodings. On
the left is a 1o f K substitute model used to generate attacks for a model originally trained using a
lof K encoding (green), and a model originally trained using a RO encoding (blue). On the right
is a RO substitute model used to generate attacks for a model originally trained using a lof K
encoding (green), and a model originally trained using a RO encoding (blue). This confirms that
using a different encoding for the source and target models makes the target model more robust to
adversarial attacks; Maintaining a higher accuracy even as the strength of the attack increases.

4.1.2 BENCHMARK RESULTS

We now demonstrate how using multi-way encoding helps increase robustness in black-box at-
tacks compared to lof K encoding for both targeted and untargeted attacks on the four benchmark
datasets. Targeted attacks are attacks where an adversary would like to misclassify an example to a
specific incorrect class. Targeted attacks use the sign of the gradients of the loss on the target class
and subtract the perturbation from the original input. We use PGD attacks with a random start, and
follow the PGD parameter configuration of Madry et al.|(2017)), Kannan et al.|(2018), and Buckman
et al|(2018). Black-box attacks are generated from a substitute model independently trained using
a lof K encoding.

For MNIST and Cifar-10, we follow the experimental settings in [Madry et al.| (2017)); for MNIST
we use LeNet, for CIFAR-10 we use a ResNet [He et al.| (2016)] of Madry et al.| (2017). For
Cifar-100 and SVHN we use a WideResNet [Zagoruyko & Komodakis| (2016)] of depth 28 and 16,
respectively, with a width factor 4 and a dropout of 0.3 following [Buckman et al.| (2018)]. We use
the optimizer used by |[Madry et al.[|(2017) and Buckman et al.| (2018)).

The result of this experiment is presented in Table[3] In the first column we present the average clas-
sification accuracy over all classes for untargeted attacks, and find that models using RO encoding
are consistently more resilient to black-box attacks compared to models using lof K encoding. In
the second column we present the average targeted attack success rate over all classes. RO consis-
tently results in a significantly lower attack success rate compared to 1of K for all four benchmark
datasets.
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Dataset  Attack Classiﬁcgtlil(:zriitc(il(il'acy (%) | Attack ;il;cgeztse(lizate (%)
s B o z;;z
T 3
CIFAR-100 Eiiﬁlﬁiﬁﬁi E};(JJC)K) 156.41 163..91
T i

Table 3: RO (target model) consistently results in a significantly higher classification accuracy for
untargeted attacks, and a significantly lower attack success rate compared to lof K for all four
benchmark datasets. The numbers reported in this table are the average classification and attack
success rate over all classes of each dataset. We note that the clean accuracy for MNIST, CIFAR-10,
CIFAR-100, and SVHN is, 99.1, 94.3, 74.5, 96.2, respectively (£0.1 for RO or lof K).

4.2 DEFENSES WITH ADVERSARIAL TRAINING

In this section we analyze the case where target models undergo adversarial training. This is when
adversarial examples are injected in the training data of the target model, making it more difficult for
a substitute model to attack. We compare against state-of-the-art methods, which also use adversarial
training. All black-box attacks in this section are generated from an independently trained copy
of Madry et al.| (2017) (substitute model). For adversarial training, we use a mix of clean and
adversarial examples for MNIST, CIFAR-10, and CIFAR-100, and adversarial examples only for
SVHN following the experimental setup used by [Madry et al.|(2017) and Buckman et al.| (2018)).

We compare against state-of-the-art defense methods |[Madry et al.| (2017) and |Kannan et al.| (2018)).
Both approaches use a LeNet for MNIST. Madry et al| (2017)) presents results for Cifar-10 on a
WideResNet (He et al.| (2016))), we implement the approach of Kannan et al.| (2018) on the same
architecture and compare both against our approach. We implement Madry et al.|(2017) and|Kannan
et al.| (2018) on WideResNet [Zagoruyko & Komodakis| (2016))] following [Buckman et al.| (2018))
and compare against our approach for CIFAR-100 and SVHN.

Table[d] presents the results of combining our multi-way encoding formulation with adversarial train-
ing. We obtain state-of-the-art robustness for white-box and black-box attacks, while at the same
time increasing the accuracy on the clean dataset for all four benchmark datasets. (*) indicates our
replication of |Kannan et al.| (2018) using the experimental setting of [ Madry et al.|(2017) on MNIST,
also used by ours, that uses only 90% of the training set.

5 APPLICATION: ATTACKING MODEL WATERMARKING

Zhang et al.| (2018)) introduced an algorithm to detect whether a model is stolen or not. They do so
by adding a watermark to sample images of specific classes and deliberately training the model to
misclassify these examples to other specific classes. This work has demonstrated to be robust even
when the model is fine-tuned on a different training set.

We introduce an attack for this algorithm using our multi-way encoding, making it more challenging
to detect whether a model is stolen or not. We do this by fine-tuning the stolen model using multi-
way encoding, rather than the encoding used in pre-training the model. We interpret the watermarked
image used to deliberately cause a misclassification as an adversarial example. When the encoding
of the substitute and target models is different, adversarial examples become less transferable.

We follow the same CIFAR-10 experimental setup for detecting a stolen model as [Zhang et al.
(2018)): We split the test set into two halves. The first half is used to fine-tune pre-trained networks,
and the second half is used to evaluate new models. When we fine-tune the 1of K model, we re-
initialize the last layer. When we fine-tune the RO model we replace the output encoding layer with
our 2000-dimension fully-connected layer, drop the softmax, and freeze convolutional weights.
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Accuracy (%)
Dataset Attack Madry et al.|(2017) | Kannan et al.[(2018) | Ours
White-box 932 | 96.4(932%) | 954
MNIST Black-box 96.0 97.5 (96.4%) 97.1
Clean 98.5 98.8 (98.9%) 99.0
White-box 50.0 52.9 54.1
CIFAR-10  Black-box 64.2 66.0 67.2
Clean 87.3 86.8 88.5
White-box 16.2 21.5 28.5
CIFAR-100 Black-box 38.2 429 45.6
Clean 553 60.1 62.5
White-box 41.9 46.6 49.1
SVHN Black-box 55.6 57.0 57.6
Clean 90.8 90.4 91.4

Table 4: Comparison against state-of-the-art defense approaches on white-box and black-box PGD
attacks, and on clean data. We observe that our approach is more resilient to both types of attacks,
while simultaneously improving accuracy on clean data. (*) indicates our replication of |[Kannan
et al.| (2018)) using the experimental setting of Madry et al|(2017) on MNIST, also used by Ours,
that uses only 90% of the training set.

Trained from scratch? Test Accuracy | Watermarking Detection
(%) (%)
StolenNet, s - v 84.7 98.6
NetlofK v 48.3 6.1
Netro v 48.0 10.0
Neti,rx fine-tuned from StolenNet 85.6 87.8
Netro fine-tuned from StolenNet 80.2 12.9

Table 5: Our attack is capable of fooling the watermarking detection algorithm. Fine-tuning a stolen
model using RO encoding remarkably reduces the watermarking detection accuracy, and makes it
comparable to the accuracy of models trained from scratch and do not use the stolen model. The
accuracy of fine-tuned models benefits significantly from the pre-trained weights of the stolen model.

We present results on the CIFAR-10 dataset in Table[5] When the fine-tuning was performed using
the lof K encoding (also used in pre-training the model), watermarking detection is 87.8%, and
when the fine-tuning was performed using the multi-way RO encoding the watermarking detection
is only 12.9%. The watermark detection rate of the model fine-tuned using RO is significantly lower
than that fine-tuned using lof K encoding, and is more comparable to models that are trained from
scratch and do not use the stolen model (6.1% and 10.0%). The accuracy of the fine-tuned models
benefits significantly from the pre-trained weights of the stolen model.

6 CONCLUSION

By relaxing the lof K encoding to a real number encoding, together with increasing the encoding
dimensionality, our multi-way encoding confounds an attacker by making it more difficult to per-
turb an input in gradient direction(s) that would result in misclassification of a correctly classified
example, for a targeted or untargeted attack. We present state-of-the-art results on four benchmark
datasets for both black and white-box attacks and achieve higher classification accuracy on clean
data. We also demonstrate the strength of our approach by introducing an attack for model water-
marking, making it more difficult to detect stolen models.
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Appendix

A ABLATION STUDY ON ENCODINGS

We perform ablation studies to further investigate the effectiveness of our RO encoding. We train
the model used in Table 2 with two different combinations of encodings and loss functions.

A.1 ALTERNATIVE APPROACH

A1l ROgoftman

We evaluate a network that uses RO encoding, a softmax layer, and cross-entropy loss. We compute
the probability of i*" class as follows:

exp(s'ei)
> j-1exp(s'ey)

where s is the normalized final layer representation, e; is the RO encoding vector (ground-truth
vector) from the codebook, and n is the number of classes.

P(i]s) =

A.1.2 lofK]wSE

We also evaluate a network that uses mean-squared error (MSE) loss with the 1of K encoding.

A.2 EVALUATION

We generate FGSM attacks with ¢ = 0.2 from substitute models A;,¢x and Ci,5x on MNIST to
evaluate the models of Section[A.T.1] and Section[A.T.2l We also measure a correlation coefficient
of the sign of the input gradients between target and substitute models as explained in Sectiond.1.1]
Tables [6] and [7] demonstrate that RO, among the different target models, achieves the highest accu-
racy and the lowest input gradient correlation with the substitute model.

Target A C

Model ROsoftmar 10fKIWS'E RO ROsoftmax 10fK]WSE RO
Accuracy (%) 48.7 434 88.7 53.7 42.1 94.3
Correlation 0.14 0.15 0.02 0.1 0.13 0.03
Coefficient

Table 6: This table presents black-box attacks from the substitute model A;,7x on various tar-
get models. RO achieves the highest accuracy and the lowest input gradient correlation with the
substitute model among the different target models.

Target A C

Model ROsoftmaa: 10fK]MSE RO Rosoftmaa; lofKJWSE RO
Accuracy (%) 67.4 55.9 92.5 62.6 58.8 96.1
Correlation 0.08 0.09 0.02 0.08 0.1 0.01
Coefficient

Table 7: This table presents black-box attacks from the substitute model C'y,¢x on various target
models. RO achieves the highest accuracy and the lowest input gradient correlation with the substi-
tute model among the different target models.
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B CORRELATION OF CONVOLUTIONAL LAYERS

In response to the reviewer, we measure the correlation of gradients between all convolutional layers
of the different models. We first compute the gradients of the loss with respect to intermediate
features of Convl and Conv2. Then, we compute the Pearson correlation coefficient of the sign of
the gradients with respect to such intermediate features between models. For further comparison,
we train models A/ FK and A’,,, that are independently initialized from A;,fx and Aro.

Layer Input | Convl | Conv2
Correlation
Coefficient 0.35 0.29 0.25

Table 8: Correlation between Aj,fx and A’ PK

Layer Input | Convl | Conv2
Correlation
Coefficient

0.1 0.008 0.13

Table 9: Correlation between Aro and A’y

Layer Input | Convl | Conv2

Correlation
Coefficient 0.02 | 0.005 0.01

Table 10: Correlation between Aro and A5k

In order to measure proper correlations, we average gradients of convolutional layers over channels
similar to the way used to generate a gradient-based saliency map Selvaraju et al.| (2017). Other-
wise, the order of convolutional filters affects the correlations and makes it hard to measure proper
correlations between models. In this sense, the correlations at FC1 (before the last layer) may not
give meaningful information since neurons in the FC layer do not have a strict ordering.

In Table 8 and 9, we find that the correlations of Conv1 and Conv2 between 10fK models are much
higher than those of RO models. In addition, even though RO models used the same output encoding,
they are not highly correlated. Table 10 shows that the correlations between RO and 1ofK are also
low.
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