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Abstract. Color consistency is crucial to developing robust deep learn-
ing methods for histopathological image analysis. With the increasing
application of digital histopathological images, the deep learning meth-
ods are likely developed based on the data from multiple medical cen-
ters. This requirement makes it a challenge task to normalize the color
variance of histopathological images from different medical centers. In
this paper, we proposed a novel color standardization module named
stain standardization capsule (SSC) based on the paradigm of capsule
network and the corresponding dynamic routing algorithm. The pro-
posed module can learn and generate uniform stain separation outputs
for histopathological images in various color appearance without the ref-
erence to manually selected template images. The SSC module is light
and can be trained end-to-end with the application-driven CNN model.
The proposed method was validated on two public datasets and com-
pared with the state-of-the-art methods. The experimental results have
demonstrated that the SSC module is effective in color normalization
for histopathological images and achieves the best performance in the
compared methods.
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1 Introduction

Based on the widespread application of digital pathology (DP) in cancer research
and clinical diagnosis, an increasing number of methods for histopathological
image analysis (HIA) have been proposed. In practice, color appearance of digital
whole slide images (WSI) varies due to the diversity in the section fabrication
and digitization, which makes it a challenge task to establish robust analysis
frameworks for digital histopathological images from different medical centers.
Generally, stain standardization (or normalization) is the main approach to solve
the problem of stain color variances.
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The early studies utilized the color style transformation methods in nat-
ural scene image processing and concentrated on matching the color of one
histopathological image patch to another one [7,5]. With the development of
whole slide imaging techniques, the requirement of computer-aided diagnosis has
changed from histopathological image patches to WSIs. Simultaneously, the stain
transformation algorithms for WSIs are developed [1, 15, 16]. The color transform
parameters were estimated or optimized with abundant pixels sampled from the
entire WSI. The robustness of stain normalization has been greatly improved
compared to the patch-based transformation methods [7, 5, 3]. However, the de-
pendence of abundant pixels and whole slide images meanwhile narrowed the
scope of application.

Recently, the data-driven deep-learning methods, especially the convolutional
neural networks (CNNs), have become the major basics of emerging HIA re-
searches. Correspondingly, the requirement of data standardization is further
promoted to adapt multiple stain domains from different datasets provided by
different medical centers. One popular scheme to solve the dataset-wise color
variance is color domain transfer, where the algorithms based on generative
adversarial networks (GANSs) are widely studied [14, 10]. Instead of estimating
transform parameters between image pairs or WSI pairs, these methods estab-
lished a GAN structure to learn the data adaption principle between the training
dataset and application (testing) dataset. The performance of stain standardiza-
tion has proven very promising. Nevertheless, the present GAN-based methods
require to know the full data distribution of the application dataset and the
transform model is required to be trained in pairs if there are more than two
medical centers providing the data. Another scheme to solve the problem is color
augmentation. Tellez et al. [11] proposed a stain augmentation strategy based
on CD theory to simulate different staining situations, which has proven effec-
tive in improving the generalization ability of the CNN model for stain variance.
However, the stain information is extracted using fixed model parameters that
estimated under ideal dyeing case. When facing the samples in non-ideal sit-
uation, the augmented samples would be out of the distribution of real cases.
Another study [12] constructed an U-Net model to learn an uniform color style
from images with random color biases. The trained network is powerful in the
color normalization of unseen histological images. While, the network contains
millions of parameters, which makes it less efficient in computation.

Facing the current issues in the multiple stain domain standardization, we
proposed a novel stain standardization module for CNN-based histopathological
image analysis, which is named as stain standardization capsule (SSC). The
basic theory of SSC is the stain separation in optical density space [8]. The
structure of the module is modified from the Capsule Network [9] and the stain
standardization is realized referring to the dynamic routing (DR) operations in
the capsule network (as shown in Fig. 1). The contribution of this paper and
novelty to the existing methods can be summarized as follows.

1) We brings the insight of dynamic routing into histopathological image
standardization. Beyond optimizing the normalization parameters for specific
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Fig. 1. Structure of the proposed SSC module, where the input RGB-format images
are first converted to the optical density space, then projected into M groups of S
stain channels via linear transformations, and finally assembled to obtain the stain
separation results via the designed sparsity routing algorithm.

image (or WSI) [5,1, 13, 16] or estimating the color transfer model depending on
plenty of samples from the application dataset [14, 10], the proposed SSC module
automatically summarizes a set of candidate ways to stain separation based on
the training data that involves various color appearance. In the application stage,
the stain standardization is achieved by optimizing the forward route within the
pre-trained candidate ways via the designed sparsity routing process. It prevents
the standardization results from serious artifacts and even failures.

2) The SSC module is much lighter (containing only tens of parameters)
than CNN-based methods [12, 14, 10] and can be trained end-to-end with specific
HIA tasks. Furthermore, the module does not need manually selected template
images, which determines the SSC module is easy-to-use in both the development
and deployment of HIA applications.

3) The proposed method is evaluated on two public datasets and compared
with the sate-of-the-art methods. The experimental results have demonstrated
the effectiveness and advantages in developing HIA applications.

2 Method

The approach of the proposed SSC module to stain standardization is achieved
by generating uniform stain separation tensors for images in various color ap-
pearance. A set of stain separation candidates are first constructed and the
separation result is obtained by a weighted sum of these candidates.

2.1 Stain separation candidates

Color deconvolution (CD) [8] is a popular stain separation method for digital
slides where the staining dyes obey Beer-Lambert law. CD is utilized as the
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basic theory of popular stain standardization methods [5, 13, 16]. Referring to [8],
independent stain components can be extracted through linear transformation
in the optical density (OD) space. Hence, we constructed a CNN structure with
linear projection operations to learn possible stain extraction principles in OD-
space based on all the training images. Then, we assigned the stain extraction
layers into M groups with the same structures, generating M stain separation
candidates. The detail of the SSC structure is illustrated in Fig. 1.

Letting o € R™*"*3 denote the optical density of an image in size of m x n
pixels 4 | the grouped linear projections can be represented as

u; = C’onv(o,WEl)) € Rmxnx N

a; = Conv(ui,W@)) e R™*XmXS i =12, ..., M,

7

where C'onv represents a convolution operation followed by a leakly-relu activa-
tion, ng) and Wz@) are the convolutional weights, and M, N and S denotes
the number of groups, the number of channels in the first convolution and the
number of stains involved in the images, respectively.

2.2 Sparsity routing

Capsule Network is a new paradigm of artificial neural networks proposed by
Hinton et al. [9], in which the input of the neurons are defined as a set of
vectors, rather than scalars that defined in traditional neural networks. The set
of vectors are assembled by a weighted sum operation and then activated. And
the weights of the input vectors for ensemble are decided by the dynamic routing
(DR) algorithm.

Motivated by the insight of capsule network, we propose assembling the stain
candidates {@;]i = 1,..., M} through DR. The aim of the routing is to find
the most appreciate stain separation result for each specific image from the M
candidates in the forward way of the network.

Generally, a good stain separation should exclusively assign the value of a
pixel to one stain channel, i.e. the separated result is desired to be pixel-wise
sparse [5, 1, 16]. Therefore, we designed a novel Sparsity Routing (SR) algorithm
by modifying the agreement scoring in DR. The pseudo-code of SR is given
in Algorithm 1. The score of the pixel-wise sparsity is calculated based on the
sparseness measure defined in [4]:

np(x) = % Z Z \/§ — Zk: |xijk\‘/|’§5|/\1/m’

where x € R™*"*5 denotes the tensor to score. To avoid all the image data
being assigned to a single stain channel, a channel-wise sparseness is additionally

to=—log (I+ €)/Imaz, where I represents a RGB-format image, Imq. is the upper

intensity for the digitization and € is a small scalar to protect the log operation.



Stain Standardization Capsule 5

defined:

1 vmn =323 ik + €|/\/ZZ >, (wijn + €)2
e E,; Vvmn — 1 :

U]

Then, the sparsity score is formulated as 7n(x) = n,(x) + 1.(x) and referred as
SparseScore(x) in Algorithm 1. After SR, the output of SSC is calculated by
equation

M
S = E Ci~ﬁl‘.
i=1

The SR process allows SSC generating refined stain separation results by tun-
ing the weights {c¢;} and then allows the following CNNs concentrate on the
structural variances of tissue images.

Data: {0i;|¢ = 1, ..., M} + The grouped outputs of the candidate layer;
R < The number of routings;
SparseRouting ({1}, R):
for all the group ¢ in the candidate layer: b; + 0, ¢; < 1/M;
for r =1 to R do
S ZZ Ci - ﬁi;
for all the group 4 in the candidate layer: b; < b; + SparseScore(ii; + §);
for all the group 4 in the candidate layer: ¢; < exp (b;)/>", exp (b;);
end
return {c; }1%;
Algorithm 1: The algorithm of sparsity routing.

2.3 Training and Application of SSC

The SSC module is essentially a convolutional neural network. Therefore, it can
be directly equipped to an application-driven CNN and trained end-to-end along
with the target of the CNN. The assembled stain separation result s is the output
of the SSC module and meanwhile the input of the following CNN. To ensure
s preserves the structural information of the histopathological image, a recon-
struction layer is appended to the end of SSC and a mean square error (MSE)
loss is considered between the original image and the reconstructed results. The
MSE loss is merged to the loss of the following CNN in the training stage. Note
that the SR only processes in the forward stage and the scalars ¢; are constant
in the backward stage [9].
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3 Experiment

3.1 Experimental settings

The proposed SSC module was validated on Camelyon16° and ACDC-LungHPS®
datasets [2, 6] via histopathological image classification tasks. Regions with can-
cer in the WSIs are annotated by pathologists. Image patches in size of 224 x 224
were randomly sampled from the WSIs. Patches containing above 75% cancerous
pixels according to the annotation were labeled as positive and containing none
cancerous pixels were labeled as negative. The other patches were not used in
the experiments.

The DenseNet-121 CNN structure with softmax output was employed for
classification. The sensitivity, specificity, accuracy and the area under ROC
carve were used for evaluation metrics. 20% samples in the training set were
spared for validation and the remainders were used to train the model. The
hyper-parameters M, N, R in SSC were tuned in the training set and deter-
mined according to the classification error of the validation samples. Specifi-
cally, (M, N, R) is determined as (5, 3, 3) for Camelyon16 and (4, 3, 4) for ACDC-
LungHP. S is set to 2 because the images are all from H&E-stained histology.

3.2 Results and discussion

The classification performance in the Camelyonl6 testing set are presented in
Table 1, where three state-of-the-art methods [11,12,16] are compared”. Table
1 also provides a summary on the dependence and the property of each com-
pared method. Overall, our SSC module is the most effective in improving the
classification performance. The performance of data standardization appeared
to be less effective in ACDC-lungHP dataset than in Camelyonl6 dataset since
the color consistency in the former dataset is relatively better than the latter.
Stain augmentation [11] utilized the prior knowledge of slide staining to aug-
ment the color allocation of training images. Therefore, the classification net-
work using Stain augmentation [11] achieved better classification metrics than
that using a common Color augmentation (including random illumination, sat-
uration, hue and contrast transfers in the experiment) method. However, the
method would generate images with unreasonable color styles. These samples
would perform as noises in the CNN training and reduce the classification accu-
racy when the color distribution is originally consistent (referring to results in
ACDC-lungHP dataset). ACD [16] and CNN-norm [12] have achieved competi-
tive results. Nevertheless, ACD requires individually estimating standardization
parameters for specific testing image and relies on the context information of
the corresponding WSI. CNN-norm learned a general principle for images in

® https://camelyonl6.grand-challenge.org/

5 https://acdc-lunghp.grand-challenge.org/. Since the annotations of testing part of
the data set are not yet accessible, only the 150 training WSIs of the data were used
in this paper.

" the compared methods have been introduced in brief in section 1.
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Table 1. Standardization performance for histopathological image patch classifica-
tion, where the model properties, including the number of model parameters (nparam ),
whether to rely on manually selected templates (T.) and whether the model parameters
for testing images require to be estimated (E.) are compared.

Methods Camelyonl6 ACDC-LungHP Dependence
Sen Spe. Acc AUC| Sen Spe. Acc AUC npamm| T./E.
Origin 0.851 0.969 0.910 0.957]0.822 0.779 0.801 0.882 -

Color Aug  [0.868 0.950 0.909 0.958|0.836 0.760 0.798 0.881 | None | No/No
Stain Aug[11] [0.875 0.946 0.911 0.967|0.819 0.778 0.799 0.882 | None | No/No
ACDI[16] 0.892 0.944 0.918 0.968|0.836 0.776 0.805 0.886 | < 10" |Yes/Yes
CNN-norm([12](0.875 0.970 0.922 0.971|0.821 0.788 0.804 0.886 | > 107 | Yes/No
SSC (Ours)  |0.894 0.966 0.930 0.975/0.840 0.778 0.805 0.887| < 10° | No/No

Original

Reconstructed

Fig. 2. Joint display of the original images and the reconstructed images.

different color styles with millions of model parameters (> 107). The computa-
tion amount of CNN-norm is comparable or even more than the following HIA
application.

In comparison, our SSC module involves only tens of model parameters, does
not rely on contextual information out the scope of the testing image, has no
additional parameter estimation process in the prediction stage, and can be
trained in end-to-end fashion. These properties determine the SSC module is
more efficient and convenient than the present methods in both the training
and deployment for HIA applications. Figure 2 illustrated original images and
the corresponding reconstructed images from Camelyonl6 dataset. Without any
template images, SSC appears to have learned a ”Mean” stain style in the recon-
struction layer for images in diverse color appearance. It indicates an uniform
representation of the SSC output layer, which has allowed the following CNN
concentrating on structural discrimination in histopathological images and thus
has improved the performance of the HIA application.

4 Conclusion

In this paper, we proposed a novel stain standardization module named stain
standardization capsule for histopathological image analyis based on the op-
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tical properties of tissue section staining and the insight of dynamic routing
from capsule network. The proposed module is implemented in the domain of
convolutional neural network and therefore can be directly equipped to CNN-
based HIA application. The proposed method was evaluated with application of
histopathological image classification on two public datasets. The results have
demonstrated the effectiveness and robustness of the proposed methods.

Acknowledgment

This work was supported by the National Natural Science Foundation of China
(No. 61901018, 61771031 and 61906058), China Postdoctoral Science Foundation
(No. 2019M650446) and Motic-BUAA Image Technology Research Center.

References

1. Bejnordi, B.E., Litjens, G., Timofeeva, N., Otte-Holler, I., Homeyer, A., Karssemei-
jer, N., Laak, J.A.V.D.: Stain specific standardization of whole-slide histopatho-
logical images. IEEE Transactions on Medical Imaging 35(2), 404-415 (2016)

2. Bejnordi, B.E., Veta, M., Van Diest, P.J., Van Ginneken, B., Karssemeijer, N.,
Litjens, G.J.S., Der Laak, JJA.W.M.V., Hermsen, M., Manson, Q.F., Balkenhol,
M., et al.: Diagnostic assessment of deep learning algorithms for detection of lymph
node metastases in women with breast cancer. JAMA 318(22), 2199-2210 (2017)

3. Hidalgo-Gavira, N., Mateos, J., Vega, M., Molina, R., Katsaggelos, A.K.: Fully au-
tomated blind color deconvolution of histopathological images. In: International
Conference on Medical Image Computing and Computer-Assisted Intervention
(MICCAI). pp. 183-191. Springer (2018)

4. Hoyer, P.O.: Non-negative matrix factorization with sparseness constraints. Jour-
nal of Machine Learning Research 5(11), 1457-1469 (2004)

5. Khan, A.M., Rajpoot, N.M., Treanor, D., Magee, D.R.: A nonlinear mapping ap-
proach to stain normalization in digital histopathology images using image-specific
color deconvolution. IEEE Transactions on Biomedical Engineering 61(6), 1729—
1738 (2014)

6. Li, Z., Hu, Z., Xu, J., Tan, T., Chen, H., Duan, Z., Liu, P., Tang, J., Cai,
G., Ouyang, Q., et al.: Computer-aided diagnosis of lung carcinoma using deep
learning-a pilot study. arXiv preprint arXiv:1803.05471 (2018)

7. Macenko, M., Niethammer, M., Marron, J.S., Borland, D., Woosley, J.T., Guan, X.,
Schmitt, C., Thomas, N.E.: Colour normalisation in digital histopathology images.
In: IEEE International Symposium on Biomedical Imaging (ISBI). pp. 1107-1110
(2009)

8. Ruifrok, A.C., Johnston, D.A.: Quantification of histochemical staining by color
deconvolution. Analytical and Quantitative Cytology and Histology 23(4), 291-299
(2001)

9. Sabour, S., Frosst, N., Hinton, G.E.: Dynamic routing between capsules. In: Ad-
vances in Neural Information Processing Systems (NeurIPs). pp. 3856-3866 (2017)

10. Shaban, M.T., Baur, C., Navab, N., Albarqouni, S.: Staingan: Stain style transfer
for digital histological images. In: 2019 IEEE 16th International Symposium on
Biomedical Imaging (ISBI 2019). pp. 953-956. IEEE (2019)



11.

12.

13.

14.

15.

16.

Stain Standardization Capsule 9

Tellez, D., Balkenhol, M., Otte-Hoéller, 1., van de Loo, R., Vogels, R., Bult, P.,
Wauters, C., Vreuls, W., Mol, S., Karssemeijer, N., et al.: Whole-slide mitosis
detection in h&e breast histology using phh3 as a reference to train distilled stain-
invariant convolutional networks. IEEE Transactions on Medical Imaging 37(9),
21262136 (2018)

Tellez, D., Litjens, G., Bandi, P., Bulten, W., Bokhorst, J.M., Ciompi, F., van der
Laak, J.: Quantifying the effects of data augmentation and stain color normaliza-
tion in convolutional neural networks for computational pathology. arXiv preprint
arXiv:1902.06543 (2019)

Vahadane, A., Peng, T., Sethi, A., Albarqouni, S., Wang, L., Baust, M., Steiger, K.,
Schlitter, A.M., Esposito, 1., Navab, N.: Structure-preserving color normalization
and sparse stain separation for histological images. IEEE Transactions on Medical
Imaging 35(8), 1962-1971 (2016)

Zanjani, F.G., Zinger, S., Bejnordi, B.E., van der Laak, J.A., de With, P.H.: Stain
normalization of histopathology images using generative adversarial networks. In:
IEEE International Symposium on Biomedical Imaging (ISBI). pp. 573-577. IEEE
(2018)

Zheng, Y., Jiang, Z., Zhang, H., Xie, F., Ma, Y., Shi, H., Zhao, Y.: Histopatho-
logical whole slide image analysis using context-based cbir. IEEE Transactions on
Medical Imaging 37(7), 1641-1652 (2018)

Zheng, Y., Jiang, Z., Zhang, H., Xie, F., Shi, J., Xue, C.: Adaptive color decon-
volution for histological wsi normalization. Computer Methods and Programs in
Biomedicine 170, 107-120 (2019)



