Under review as a conference paper at ICLR 2020

A BI-DIFFUSION BASED LAYER-WISE SAMPLING
METHOD FOR DEEP LEARNING IN LARGE GRAPHS

Anonymous authors
Paper under double-blind review

ABSTRACT

The Graph Convolutional Network (GCN) and its variants are powerful models for
graph representation learning and have recently achieved great success on many
graph-based applications. However, most of them target on shallow models (e.g.
2 layers) on relatively small graphs. Very recently, although many acceleration
methods have been developed for GCNs training, it still remains a severe chal-
lenge how to scale GCN-like models to larger graphs and deeper layers due to
the over-expansion of neighborhoods across layers. In this paper, to address the
above challenge, we propose a novel layer-wise sampling strategy, which samples
the nodes layer by layer conditionally based on the factors of the bi-directional
diffusion between layers. In this way, we potentially restrict the time complexity
linear to the number of layers, and construct a mini-batch of nodes with high local
bi-directional influence (correlation). Further, we apply the self-attention mech-
anism to flexibly learn suitable weights for the sampled nodes, which allows the
model to be able to incorporate both the first-order and higher-order proximities
during a single layer propagation process without extra recursive propagation or
skip connection. Extensive experiments on three large benchmark graphs demon-
strate the effectiveness and efficiency of the proposed model.

1 INTRODUCTION

In recent years, extending deep learning approaches to graph domain has attracted increasing re-
search attention. One of the successful attempts is the Graph Convolutional Network (GCN) (Kipf]
& Welling}, |2016)), which has become a crucial tool for representation learning of graph nodes. Given
a graph, GCN applies the connectivity structure of the graph as the convolution filter (also known
as the neighborhood aggregator (Hamilton et al.| 2017)) to compute node representations layer by
layer. At each layer, the representation of each node is obtained by mixing the features of its neigh-
bors. Then, the final output representations can be used for various downstream applications. There
have been many GCN-based attempts in the literature which have achieved the state-of-the-art per-
formance on many graph-based applications, such as node classification (Kipf & Welling} 2016
Hamilton et al.l 2017} Velickovic et al.l [2017)), link prediction (Zhang & Chenl 2018)), and recom-
mender systems (Ying et al., 2018), etc.

Although numerous GCN-like models have been developed, most of them only focus on shallow
models (e.g. 2 layers) on relatively small graphs. In practice, it still remains a severe challenge how
to scale GCN-like models to larger graphs and deeper layers, due to the uncontrollable neighborhood
expansion across layers. On the one hand, since the graph convolution (or say neighborhood aggre-
gation) on each node needs to gather the features of its neighbors, and recursively the convolution
computation on each of these neighbors also requires to gather the features of their own neighbors,
it will incur the “neighbor-explosion” problem. When training a deep-layers model, the number
of “neighbors” (and thus the training time) can grow exponentially with respect to the number of
layers. Even with a usual mini-batch training, it will also involve a large amount of data for every
batch and make the training computationally infeasible. On the other hand, the graph convolution is
essentially a smoothing operation (Li et al., 2018 Xu et al., 2018a)) by mixing the features of a node
and its nearby neighbors, and thus makes the representations of nodes in the same cluster similar.
However, the recursively expansion of neighborhoods layer by layer will quickly cover a large por-
tion of the graph, leading many distant nodes from irrelevant clusters to be overly smoothed. Such

Under review as a conference paper at ICLR 2020

“over-smoothing” problem makes it hard for GCN-like models to maintain consistently resonable
results in deep layers.

To mitigate the neighborhood expansion, some state-of-the-art methods (e.g., (Hamilton et al., 2017
Chen et al.||2018a};[Ying et al.| [2018))) use the stochastic mini-batch training and node-wise sampling
optimization, which ensure that only a small fixed number of neighbors are selected by one node
in each layer. While these methods significantly speed up the GCNs training on large-scale graphs,
the time complexity still grows exponentially with the GCN depth even if the sampling number is
small, and thus the overhead of these methods can be very large when the layers go deep. Further,
Chen et al.| (2018b) and Huang et al.| (2018) propose to accelerate the training of GCNs by using
the layer-wise sampling instead of node-wise sampling, which ensures a total fixed number of nodes
are sampled together by each layer instead of each node, restricting the time complexity linear to
the GCN depth. However, although efficiently solving the “neighbor explosion” problem, these
existing layer-wise sampling algorithms still suffer from the “over-smoothing” issue in practice.
Their constructed mini-batches potentially become too sparse to achieve high accuracy (see Section
[3for details).

In this paper, to address the above challenges, we first show that a desirable layer-wise sampler
should simultaneously considers both the influence of parent nodes of upper layer on the candidate
nodes of lower layer and the reverse influence of lower candidates on the upper parents. Motivated by
that, we then propose a novel layer-wise sampling strategy, which samples the nodes layer by layer
conditionally based on the factors of the bi-directional diffusion between layers. By sampling nodes
with high bi-directional influence between neighbor layers, our layer-wise sampler tends to con-
struct a closely-associated mini-batch, and thus elegantly and naturally tackles both the “neighbor
explosion” and “over-smoothing” problem, as well as the sparsity issue suffered in current layerwise
sampling algorithms. Furthermore, since the layer-wise sampler mixes different-hop neighborhoods
in each single layer, we apply the self-attention mechanism as the aggregator to flexibly learn suit-
able weights for different-hop neighbors during the training, which allows the model to be able to in-
corporate both the first-order and higher-order proximities during a single layer propagation process
without extra recursive propagation or skip connection. Finally, we conduct extensive experiments
on three large benchmark graphs under the inductive, supervised learning setting. The experimental
results demonstrate that our proposed model consistently and considerably outperforms the compar-
ative state-of-the-art baselines and exhibit that our model can be efficiently and effectively scaled to
very deep layers on very large graphs.

2 RELATED WORK

In the past few years, inspired by the convolutional neural network (CNN), which has revolution-
ized various machine learning tasks with grid-like data, how to extend the convolution operation on
graph-structured data has attracted increasing research attention. Among the existing graph-based
convolution network models, an important stream of work is built on spectral graph theory (Bruna
et al.| [2013). The pioneer spectral approach proposed by Bruna et al.| (2013) first defines the pa-
rameterized convolution operation in Fourier domain, inspired by graph Fourier transform. Later,
Henaff et al.| (2015) apply efficient spectral filter to realize localized filtering operation, and |Deffer-
rard et al.| (2016) further speed up the graph convolution computation by fast localized filters based
on Chebyshev expansion of the graph Laplacian. Recently, GCN (Kipf & Welling, 2016) is proposed
to simplify the aforementioned spectral methods with first-order expansion and re-parameterization
trick, which has achieved state-of-the-art performance on supervised/semi-supervised node classifi-
cation task and has motivated many GCN-based variants and applications. For example, |Velickovi¢
et al.| (2017) replace the convolution operation by applying the attention mechanism (Vaswani et al.,
2017) as the aggregator to capture neighbor features with adjustable trainable weights. |Klicpera
et al. (2018) combine PageRank with GCN to enable efficient information propagation from mul-
tiple hops away. [Xu et al.| (2018b) borrow the idea of “skip-connection” (He et al., 2016)) into the
GCN context to improve the accuracy of GCNs with more than two layers.

Although numerous GCN variants have been developed, most of them conduct the training in full
batch, which limits the application of these methods only to small graphs. In order to scale GCNs
to large graphs, the sampling-based algorithms have been recently proposed for efficient mini-batch
training. For example, the node-wise sampling based algorithm GraphSAGE proposed by [Hamilton

Under review as a conference paper at ICLR 2020

et al.|(2017) computes node representations by randomly sampling neighborhoods of each node and
performing a specific aggregator for information smoothing, in which the neighborhood aggregation
operation can be regarded as an another perspective of graph convolution. |Ying et al.|(2018) enhance
the sampler of GraphSAGE by introducing an importance score to each neighbor node, and thus lead
to less information loss due to the preference towards influential neighbors. Although these methods
ensure that only a small fixed number of neighbors are selected for each node in the next layer, they
still require the recursive expansion of neighborhoods across layers, which leads to the total number
of support nodes (and thus the training time) exponential with the GCN depth. To further restrict the
neighborhood size of deep layers, |Chen et al.| (2018a)) propose to use the historical activations in the
previous layer to avoid redundant re-evaluation and thus reduce to only two neighbors to support the
computation of next layer activations. However, it requires storing all the intermediate embeddings
of all the nodes in memory, leading hefty memory requirement. (Chen et al|(2018b) interpret graph
convolutions as integral transforms of embedding functions and sample the nodes in each layer
independently. They apply importance sampling for explicit variance reduction, and remarkably,
their method leads to constant number of samples in all layers. Then, [Huang et al.| (2018]) follow the
idea of layer-wise sampling proposed in (Chen et al.l 2018b) to extend to use an additional sampling
neural network to sample nodes for the lower layer conditionally based on the nodes of upper layer
instead of sampling independently. However, these layerwise sampling based methods potentially
build up very sparse mini-batchs, especially when the GCN layers grow deeply. In addition, |[Zeng
et al.[(2019a)) present a subgraph based training algorithm that is scalable with respect to GCN depth,
and|Chiang et al.|(2019) propose to build mini-batches based on (topological) clusters of the training
graph. These subgraph based methods, although empirically demonstrate the effectiveness on deep
models, essentially tackle the scalability issue by dividing the original large graph into a series of
small graphs, which inherently results in biased estimation of the full batch loss. In summary, with
numerous GCN variants being developed, it still remains a question how to train these models (with
very deep layers) efficiently on very large graphs.

3 NOTATIONS AND PRELIMINARIES

In this section, we first introduce some notations used throughout this paper and then explain the
problem our model solves.

This paper mainly focuses on undirected attributed graphs. Let G = (V, £) denote the undirected
graph with nodes v; € V, edges (v;,v;) € £, and n = |V| defines the number of the nodes, m = |£|
defines the number of the edges. Let A € R™*™ denote the adjacency matrix of the graph with each
entry A; ; equaling to 1 if there is an edge between v; and v; and O otherwise. A = A + I,, denotes
the adjacency matrix with added self-loops. Also, the graph G is attributed by a feature/attribute
matrix X € R™*? with X; denoting the d-dimensional feature/attribute vector for node v;.

Given the undirected attributed graph, the problem we consider in this paper is representation learn-
ing for graph nodes by aggregating (or propagating) their features/attributes. The closest work to
this vein is the Graph Convolution Network (GCN) (Kipf & Welling} 2016) and its variants. A GCN
is a kind of multi-layer convolutional network, and it uses the connectivity structure of the graph
as the convolution filter to perform neighborhood aggregation/propagation layer by layer. At each
layer, the hidden representation of a node is obtained by aggregating the last hidden representations
of its neighbors (and itself), followed by one or a few layers of linear transformations and nonlinear
activations. The final output representations can then be used for downstream tasks. For example, in
node classification task, the final output representations are fed to a classifier to predict node labels,
and thus the parameters of GCN can be trained in an end-to-end manner. Let hq(Jl) S Rle(l) denote
the hidden representation (with dimensionality d¥)) of node v in the I-th layer, the feed forward
propagation rule of single layer in GCN is defined as follows:

W =o(> A h7OWD), wev, 1=1,2-- L, (1)

uEN (v)
where N (v) is the set ofA neighbors of node v, and note that we always consider the node itself as
its self-loop neighbor; A =D 2AD" % is the symmetrically normalized adjacency matrix with
self-loops, with the diagonal degree matrix ﬁ” => j /L—_j; WO e RV x4 g the trainable
weight matrix in the [-th layer; o(-) is the activation function (e.g. ReLU). Note that we use the

Under review as a conference paper at ICLR 2020

graph attributes as the initial representations, i.e. h,(,o) = X,. As a result, both the input graph

attributes and structure are “embedded” into the final output representations in the L-th layer.

Since the GCN needs to recursively perform neighborhood aggregation across layers, there is an
obvious challenge for applying current GCN model with deep layers—over-expansion of neigh-
borhoods. In practice, the “over-expansion” issue incurs two severe problems in GCN training:
“neighbor explosion” and “over-smoothing”. First, considering the width of the neighborhood ex-
pansion layer by layer, it will incur the neighbor explosion problem. As the representation of a node
at layer [is computed recursively by aggregating the representations of its neighbors at layer [— 1,
it is easy to see that the more layers we applied, the more multi-hop neighbors we need to support
the computation of the root node. The number of support nodes can grow exponentially with respect
to the number of layers. Particularly for dense graphs and powerlaw graphs, the expansion of the
neighborhoods for a single root node will quickly involve a large number of support nodes, and thus
incur expensive computations and memory footprints. Second, considering the depth of the over-
expansion, it will lead to the over-smoothing problem. As highlighted in (Li et al., |2018) and (Xu
et al.,[2018al), the graph convolution (neighborhood aggregation) in GCN is simply a special form of
Laplacian smoothing, which mixes the features of a node and its nearby neighbors. The smoothing
operation makes the features of nodes in the same cluster similar, thus greatly easing the classifica-
tion task. However, adding more layers to a GCN will make more distant “neighbors” to be mixed,
which actually are irrelevant nodes. Even for a single node, it will quickly cover a large portion of
the graph due to the neighborhood expansion layer by layer. As a result, the output representations
with too many layers in GCN may be over-smoothed and nodes from different clusters may become
indistinguishable.

To mitigate the above “over-expansion” issue, many sampling-based algorithms are very recently
proposed to control the expansion of the neighborhoods. [Hamilton et al.| (2017) firstly attempt to
use a nodewise sampling strategy to approximate the GCN model. Instead of the full expansion
of neighborhoods for the feed forward computation of each node, the nodewise sampling strategy
uniformly samples a small number of neighbors for each node at each layer. Then, the propagation
rule of Eq. is approximated as:

W _ 1IN i Do 19T)
hv U(|NS(U)|u€NZS(U) ’U>uh’u W)a ’UEV,Z)) 9 ()

where each element u € N(v) is uniformly sampled from the whole neighbor set N (v). Although
clearly reduces the receptive field size of graph convolution and achieves competitive performance,
such nodewise sampling is still computationally expensive for deep networks, because the number
of sampled neighbors still grows exponentially with the number of layers. Assuming the sample size
for all layers is fixed as s, the number of sampling neighbors in the I-th layer will increase to O(s'),
Even with a very small s, this will also lead to significant computational burden for large [.

FastGCN (Chen et al., 2018b) and AS-GCN (Huang et al.l [2018) are another state-of-the-art
sampling-based algorithms, which use a layerwise sampling strategy to avoid the neighborhood ex-
pansion. As opposed to the nodewise method in Eq. (2) which samples a fixed-size set of neighbors
N (v) for each parent node v of upper layer independently, the layerwise sampling directly samples
a fixed number of nodes for each layer altogether, i.e., the sampling for all the parent nodes of upper
layer is jointly performed only once, and the sampled nodes are shared by all upper parent nodes.
Formally, let V(=1) denote the set of nodes of (I —1)-th layer, which are generated by layerwise
sampling to support the computations of nodes V() of I-th layer, and the top layer nodes V(*) are
the pre-selected nodes (e.g. the stochastic mini-batch of nodes) whose final representations are used
in downstream tasks. The propagation rule of GCN based on layerwise samlping is defined as:

W _ _IN)| 5 D) (-1 D\ 119
hv - 0(|V(l,1)| V; N Av,uhu W)7 V Q(UW)7 l - 17 27 7L7 (3)
ue -

where ¢(u|V(")) is defined as the probability of sampling u given all the parent nodes of upper layer
(i.e. V), and VU1 are all the nodes of lower layer sampled according to ¢(u|V")). In FastGCN,
q(u]YW) is simply designed as: ¢(u[V?) o m > aeN(w) m In AS-GCN, q(u|V®) =
2 ev®) Luen () |9(Xu)l
> ey INWIg(X)T

where g(X,,) is a linear function to compute the self-dependent factor based

Under review as a conference paper at ICLR 2020

on the node feature X,. Simply, FastGCN contructs each layer independently according to an
identical distribution, AS-GCN builds up the network layer by layer in a top-down way, where the
nodes in the lower layer are sampled conditionally based on the upper layer’s.

Based on the layerwise sampling, it is easy to fix the size of each layer to avoid the “neighbor
explosion”, as the total number of nodes only grows linearly with the network depth. Nonetheless,
the current layerwise sampling strategies used in FastGCN and AS-GCN still confront the “over-
smoothing” problem and potentially build up very sparse mini-batchs. Formally, FastGCN and AS-
GCN only sparsely subsample the potential “neighbors” during the expansion of the neighborhood
across layers. As a result, although the neighbor explosion problem is easily solved by potentially
restricting the factor of the width of expansion to 1, it can also quickly reach the very deep part of the
graph due to the “over expansion” of the depth layer by layer, and thus overly smooth the irrelevant
nodes from distant clusters. Moreover, by only subsampling the potential neighbors in each layer
without controlling the depth of “over-expansion”, the above layerwise sampling strategies will
contruct very sparse minibatchs in practice. As the correlations among nodes will decrease rapidly
with the increasing of the depth, in very deep layers, the between-layer connectivity will be very
sparse and many parent nodes of upper layer may have no connected neighbors, which makes the
GCN difficult to achieve high accuracy.

In the rest of this paper, we present a desirable layerwise sampling algorithm, elegantly and naturally
tackling the above problems of existing layerwise samping.

4 PROPOSED METHOD: BLS-GAN

To mitigate the over-expansion issue in deep graph neural networks, in this section, we present a
novel layerwise sampling strategy, which samples the nodes layer by layer conditionally based on
the factors from the bi-directional diffusion processes between layers. Next, we leverage the self-
attention mechanism to flexibly aggregate the sampled nodes in each layer with adaptive learnable
weights, and finally propose our Bi-diffusion guided Layer-wise Sampling based Graph Attention
Network (called BLS-GAN) model.

4.1 BI-DIFFUSION BASED LAYERWISE SAMPLING

As analyzed in Section[3] a desirable sampling algorithm should not only control the width of neigh-
borhood expansion across layers, i.e., the size of sampled nodes in each layer to avoid the “neighbor
explosion”, but also restrict the depth of neighborhood expansion, i.e., the distance among nodes
of inter-layers to avoid the “over-smoothing” and the “sparse-connectivity”. The idea of layerwise
sampling naturally meets the first requirement, as the nodes of the lower layer are sampled as a
whole. However, the current layerwise sampling strategies either contruct each layer independently
according to an identical distribution (Chen et al., 2018b)), or one-sidedly sample nodes in the lower
layer proportionally to the connections to the upper layer’s (Huang et al.| 2018)). Such layer samplers
could not satisfy the second requirement and potentially return overly sparse minibatchs when the
network is deep (Zeng et al., [2019b). To address the above problems, in this paper, we present a
novel desirable layerwise sampling strategy, which satisfies both the two requirements.

To control the depth of neighborhood expansion in layerwise sampling, it is natural and reasonable to
sample nodes with high local correlation. However, we highlight that, the connected edges, which
used in current layerwise sampling algorithms, do not proportionally reflect the real correlation
among nodes. When sampling nodes in the lower layer conditioned on the upper layer’s, the cur-
rent start-of-the-art layer sampler usually uses higher probabilities to sample nodes who have more
connected edges to the parent nodes of upper layer. However, the sampled nodes with many con-
nections can have weak correlation. For example, in biological and citation networks, the majority
of the nodes have few connections, whereas some core nodes and hub nodes are usually connected
to many other nodes. That is, such cores or hubs, although have many connected edges to the parent
nodes of upper layer, do not have a strong correlation with the upper layer’s, because there is few
“influence” of the upper parent nodes on those cores or hubs. In practice, due to the weak influence
(i.e. correlation), such cores or hubs are not worthwhile candidates. Specially, if sampling them,
in next layers, the sampler will quickly expand onto a very large portion of the graph, where many
nodes are irrelevant.

Under review as a conference paper at ICLR 2020

The bias between the correlation and connections is due to the fact that correlation (or say influ-
ence) is bi-directional. The aforementioned connections to the parent nodes of upper layer can only
indicate the influence from the sampling nodes of lower layer to the upper layer’s, but not reflect
the reverse influence. Therefore, a desirable layer sampler should select nodes in the lower layer
conditionally based on the bi-directional influences on the parent nodes of upper layer. Below we
describe a principled way to achieve it.

We define the “influence” (also corelation) from the graph connectivity perspective and estimate it
by developing the diffusion process (i.e. the random walk simulation) on the graph. Formally, Let
P € R™ " denote the diffusion matrix (i.e. the transition probability matrix of random walk) of the
graph, we have P = D~! A where A is the adjacency matrix of the graph, D is the diagonal degree
matrix with D; ; = > j A; ;. Then, given all the parent nodes in the upper layer (denoted as V1), the

diffusion factor from an arbitrary node u in the lower layer to the upper nodes V' is defined as:

> oevw Puo
W V) = TS = Y P 4)
VEV I ey
Inversely, the diffusion factor from V! to the candidate node w is defined as:
AV,) = 2oeve Pou_ Psevw Pou 5)
2oev® 2ovey Pow Vo

Intuitively, the diffusion factor from the candidate node of lower layer to the parent nodes of upper
layer indicates the influence from the upper layer nodes to the candidate node. The larger the factor,
the higher the influence of the upper layer’s on the candidate. Reversely, the diffusion factor from
the parent nodes of upper layer to a candidate node reflects the influence from the candidate to the
upper layer’s, and the larger the factor, the higher the influence of the candidate on the upper layer’s.
Clearly, a desirable layerwise sampler should incorporate the factors in the above bi-directional
diffusion processes to sample nodes with high bi-directional influence on each other. Therefore, we
define the probability distribution of sampling a node u in the lower layer given all the nodes V() of
the upper layer as:
7(”7 V(l))) /\(V(l)7 u)

ZﬁGV ’7(’&7 V(l)) : /\(V(l)7 ’LAL) .
Then, according to this probability distribution, we can easily sample an arbitrary number of nodes

to build up the lower layer, and the feed forward propagation between layers can be consistently
computed as the Eq. (3) by updating the g(u|V®) in Eq. (3) as the P(u[V®) of Eq. ().

We term the above sampling as the bi-diffusion (bi-directional diffusion) based layerwise sam-
pling strategy. By sampling the nodes layer by layer according to the bi-diffusion factors between
layers, the sampler tends to construct a mini-batch of nodes with high local bi-directional influ-
ence/correlation, and thus naturally tackle the “over-expansion” issue across layers, in view of both
the width and the depth of neighborhood expansion. The former view can speed up training of a
deep-layers model by avoiding the “neighbor-explosion”; The latter view potentially enhances the
model’s performance by mitigating the “over-smoothing” and the ““sparse-connectivity”.

Puy®) = 6)

4.2 SELF-ATTENTION AGGREGATOR

Although the idea of training by the layerwise sampling is applicable to many GCN variants, in this
section, we leverage the self-attention mechanism to flexibly aggregate the sampled nodes in each
layer with adaptive learnable weights, which allows the model to be able to simultaneously exploit
both the first-order and higher-order proximities during a single layer propagation process.

By applying the layer-wise sampling layer by layer, the nodes of lower layer are sampled together
and the sampled nodes are shared by all parent nodes of upper layer. That is, the sampled nodes
are not always the 1-hop neighbors (with direct connnections) of the upper parent nodes. There-
fore, the bi-diffusion based layerwise sampling proposed in Section[d.1] is essentially a bi-diffusion
based mix-hop sampling approach, which samples the highly relevant nodes from both 1-hop and
multi-hop neighborhoods by jointly treating the upper parent nodes as a whole. As a result, the
higher-order proximity is maintained in each single layer without extra recursive propagation or skip
connection. When we perform bottom-up propagations to update the hidden features for the nodes of

Under review as a conference paper at ICLR 2020

upper layers (like Eq. (3)), the updater for each node in each layer always simultaneously aggregates
messages passed from both 1-hop neighborhood and multi-hop neighborhood, thus enabling more
efficient layer propagation and model training. Further, considering that the proximities of different
orders measure the corelation of nodes from different levels of scope, the neighbors of different hops
should not be treated equivalently durmg the layer aggregation. However, the aggregation weight

in GCN aggregator (i.e. the term Av « in Eq. I| is strictly demgned as some normalization of
the graph adjacency matrix, which can be only suitable for expressing the first-order proximity. In-
tuitively, the aggregation weights for k-hop neighbors are supposed to be some normalization of
the k-th power of the adjacency matrix, which is computationally infeasible. Therefore, to avoid
the expensive computation of mixing powers of the adjacency matrix, we follow (Velickovic et al.,
2017) to apply the self-attention mechanism as the aggregator, which is able to flexibly learn suitable
welghts for different-hop nodes during the training. Concisely, we replace the aggregation weight

A, « 1n Eq. 1I| with specific self-attention scores, and update the propagation rule as:

WD =o(> ad{VaRIw®) v Py) 1=1,2,-- L, ()
ueVi-bu{v}

where a(h(l 2 h(l 1)) measures the self-attention scores between the parent node v and the layer-
wise sampled node u according to their hidden features in layer [— 1, and is defined as:

exp(LeakyReLU([n" VW || b~V W10))
Y uevi-nogey exp(LeakyReLU ([~ W || i~V We))”

a(hg)l—l)’ h(l—l)) —

u

®)

. . . (=1) gt=1) -1 .
where || is the concatenation operation, W € R®"xd and © € R24""*! gre trainable
parameters.

Overall, given a mini-batch of nodes as the top layer and the number of layers L, we can apply the
bi-diffusion based layerwise sampling (Eq. (6)) to recursively construct L layers of support nodes
in a top-down way, and then stack L self-attention aggregators (Eq. (7)) between each two layers to
perform bottom-up propagations. At each layer, the hidden representation of a node is updated by
flexibly aggregating the features of its multi-hop neighbors (and itself) with trainable weights. The
final output representations in the top layer are then used for downstream applications. As a result,
we obtain a novel deep graph neural network model, which could efficiently and effectively embed
both the graph attributes and structure into the output representations. We call the proposed model
as BLS-GAN (Bi-diffusion guided Layer-wise Sampling based Graph Attention Network). Finally,
as an example in practice, we apply the BLS-GAN for node classification in this paper, which is the
most popular application of graph neural network. In this setting, the final output representations of
nodes are fed to a classifier to predict node labels, and the parameters of BLS-GAN are trained in an
end-to-end manner by using iterative algorithms (e.g. mini-batch SGD) to minimize the following

loss function:
W Z Le(yo, F(hE)), ©)
veyY

where hE,L) is the final output representation of node v learned by BLS-GAN, f(-) is a simple single-

layer feed-forward neural network classifier, L. is the classification loss (e.g., the crossing entropy)
for node v to predict its ground-truth label y,,.

5 EXPERIMENTS

In this section, we report experimental results to demonstrate the effectiveness and efficiency of
our proposed BLS-GAN model. The code will be released in the camera-ready version due to the
double-blind review policy.

5.1 EXPERIMENTAL SETUP

We follow the experiment setup in GraphSAGE (Hamilton et al.,|2017) and FastGCN (Chen et al.|
2018b) to compare with the state-of-the-art GCN training algorithms under the inductive, supervised
learning setting. We use three large graph datasets: Reddit, PPI, and Pubmed, which are publicly

Under review as a conference paper at ICLR 2020

Table 1: Statistics of the datasets used in our experiments.

Dataset ~ Nodes Edges Classes Features Training/Validation/Test
Reddit 232,965 11,606,919 41 602 152,410/23,699/55,334
PPI 56,944 818,716 50 121 44,906/6,514/5,524

Pubmed 19,717 44,338 3 500 18,217/500/1,000

available in the aforementioned references. In the Reddit graph, a node represents a post on Reddit,
and an edge is formed if the posts share a common user in their comments. The node features
(attributes) are the concatenation of word vectors of their title and comments. The classes are the
community of the posts. In the PPI (protein-protein interaction) graph, the features correspond to
positional gene sets, motif gene sets and immunological signatures (Zitnik & Leskovecl 2017). The
classes are gene ontology sets. In the Pubmed dataset, nodes are documents, edges are citation
links, and classes are research topics of documents. Node features correspond to elements of a bag-
of-words representation of documents. Under the inductive setting, all three datasets are splited into
three partitions (training/validation/test), and such a split is coherent with that used in GraphSAGE
and FastGCN. Critically, all the testing nodes (including their edges and features) remain completely
unobserved during training. Under the supervised learning (node classification) setting, all labels of
the training nodes are used for training. The statistic of the datasets are summarized in Table|[T]

We compare the proposed BLS-GAN model with five state-of-the-art baselines, including the vanilla
GCN (Kipf & Welling, [2016) and GAT (Velickovi€ et al.l 2017) models (with their mini-batched
implementations), the nodewise sampling based method: GraphSAGE (Hamilton et al.| 2017), and
the layer-wise sampling based algorithms: FastGCN (Chen et al. [2018b) and AS-GCN (Huang
et al.l 2018). As introduced in Section [3] GraphSAGE randomly samples fixed-size neighbors for
each node at each layer, FastGCN contructs each layer independently according to an identical
distribution, AS-GCN samples nodes of lower layer conditionally based on the upper layer’s. Note
that to make the comparisons more fair, we re-implement all the baselines based on our framework
and all the codes will be released after reviw.

For all datasets, we train both our BLS-GAN and the baselines by minimizing the cross-entropy on
the training nodes using the mini-batch Adam SGD optimizer with the batch size of 256 and the ini-
tial learning rate of 0.005. We set the maximum of training epochs as 200 and use an early stopping
strategy with a window size of 10 on the Micro-F1 scores on the validation nodes. After training,
we compare BLS-GAN with baselines by evaluating the Micro-F1 scores of classification/prediction
on the test nodes. For all models, we implement them with adjustable depth (layers) of [2,3,4,5] to
detailly demonstrate their performance by stacking different layers. The hidden dimensions in all
layers are fixed as 256. We also equalize the sample size on all layers: the nodewise sample size
for each node in GraphSAGE is fixed as 10, the layerwise sample size for each layer in our BLS-
GAN and FastGCN and AS-GCN is fixed as 100. Specially, we follow GAT to employ multi-head
attention to stabilize the learning process of self-attention, and the head size are set as 4.

5.2 RESULTS

We compare our proposed BLS-GAN model with the state-of-the-art baselines by evaluating both
the effectiveness (classification Micro-F1 score) and efficiency (training time) on all the three bench-
mark datasets. The results are shown in Table 2| and Table

Table [2] shows the Micro-F1 scores for node classification using different models with different lay-
ers. We can observe that the proposed BLS-GAN consistently outperforms all the start-of-the-art
baselines on all datasets, and particularly in deep layers (e.g. 5), BLS-GAN achieves significant
gains compared to other approaches. In most cases, the deeper the layers, the greater the gains.
For example, on the Reddit dataset, BLS-GAN achieves the improvements by 0.01-0.04 (relatively
1%-5%) over all the five start-of-the-art baselines in the setting of 2 layers, and by 0.03-0.08 (rel-
atively 3%—10%) over all baselines in the setting of 5 layers. Consistently, on the PPI dataset,
among different layers, we can find that BLS-GAN improves the Micro-F1 scores by 0.20-0.25
(relatively 26%—35%) over GCN, by 0.005-0.08 (relatively 0.5%—9%) over GAT, by 0.20-0.30 (rel-
atively 26%—45%) over GraphSAGE, by 0.30-0.46 (relatively 47%—87%) over FastGCN, and by
0.21-0.24 (relatively 28%-33%) over AS-GCN. Specially, it is easy to see that by stacking more

Under review as a conference paper at ICLR 2020

Table 2: The Micro-F1 scores for node classification using different models with different layers.

Dataset | #Layers | GCN | GAT | GraphSAGE | FastGCN | AS-GCN | BLS-GAN

| 2 | 09381 | 09356 | 09297 | 09109 | 09289 | 0.9507
Reddit | 3 | 09468 | 0.9485 | 09386 | 09023 | 09307 | 09542
| 4 09335 [09423 | 09312 | 08809 | 09247 | 09564
|5 09020 | 09264 | 09185 | 08732 | 09138 | 0.9569
| 2 [07130 | 0.8851 | 0.6671 | 06539 | 07325 | 0.9637
PPI | 3 | 07541 [09547 | 07191 | 0.6260 | 07619 | 0.9755
|4 07780 | 09779 | 0.7789 | 0860 | 07675 | 0.9835
|5 | 07407 | 09461 | 07520 | 05256 | 0.7408 | 0.9850
| 2 | 0878 | 0.8786 | 0.8765 | 08582 | 0.8724 | 0.8856
Pubmed | 3 | 0.8854 | 0.8863 | 0.8843 | 08512 | 0.8815 | 0.8923
| 4 | 08714 | 0.8894 | 08746 | 08491 | 08755 | 0.8977
|5 | 08546 | 0.8769 | 08718 | 08173 | 08621 | 0.8981

Table 3: The speedups compared with GCN on the three benchmark datasets.

Dataset | #Layers | GCN | GAT | GraphSAGE | FastGCN | AS-GCN | BLS-GAN

|2 | 100 | 089 | 432 | 350 | 379 | 3.3
Reddit | 3 | 1.00 | 090 | 316 | 1108 | 1167 | 1026
|4 | 100 | 093 | 298 | 3456 | 3048 | 2875
|5 | 100 | 092 | 153 | 6688 | 5336 | 4891
| 2] 100 [094 | 100 | 081 | 074 | 071
PPI | 3 | 100 [097 | 076 | 198 | 162 | 153
| 4 | 100 [096 | 070 | 916 | 743 | 690
|5 | 100 [095 | 043 | 3191 | 258 | 2276
| 2 | 100 |08 | 075 | 075 | 067 | 067
Pubmed | 3 | 1.00 | 091 | 047 | 124 | L1l | 105
| 4 | 100 | 08 | 018 | 207 | 187 | 181
|5 | 100 | 087 | 007 | 421 | 38 | 362

layers, the baseline models (including the current layerwise sampling methods FastGCN and AS-
GCN) can hardly maintain consistently resonable results, and their results drop significantly in deep
layers. Their performances are in concordance with our expectations as analyzed in Section 3] which
provides the possible explanations. Overall, the comparation results in Table 2] clearly demonstrate
the effectiveness of our proposed BLS-GAN model and especially exhibit that our model has the
elegant potential to be applied with very deep layers.

Table [3] shows the speedups of all the comparative methods on all the three benchmark datasets by
comparing with the training time per epoch of GCN (One training epoch means a complete pass of
all training nodes). We can find that by using the idea of layerwise sampling, our proposed BLS-
GAN model is computationally efficient with the training time growing linearly with the depth of
layers. In detail, on the Reddit dataset, compared with the vanilla models (GCN and GAT) and the
nodewise sampling based model (GraphSAGE), our BLS-GAN can achieve about 3x-53x speedup
in terms of the training time with different depths of propagation layers, and the deeper the layers,
the greater the speedup. Compared with the existing layerwise sampling based models (FastGCN
and AS-GCN)), although the training time of our model has a slight increase, it is desirable to achieve
significant improvements in effectiveness with a slight decrease in efficiency, especially when the
model layer is deep.

5.3 CASE STUDY

The proposed method BLS-GAN consists of two cores: the bi-diffusion based layer-wise sampling
(abbreviated as BLS) and the learnable aggregator based on graph attention mechanism (abbreviated

Under review as a conference paper at ICLR 2020

Table 4: The Micro-F1 scores for node classification by using the bi-diffusion based layer-wise sampling
(abbreviated as BLS) and the learnable aggregator based on graph attention mechanism (abbreviated as GAN),
respectively.

Dataset | Reddit | PPI | Pubmed
#Layers | BLS-GCN | AS-GAN | BLS-GCN | AS-GAN | BLS-GCN | AS-GAN
2 | 09457 | 09384 | 08928 | 09243 | 0.8864 | 0.8825
3 | 09498 | 09434 | 09378 | 09551 | 0.8905 | 0.8866
4 | 09512 | 09448 | 0.9602 | 09489 | 0.8926 | 0.8865
5 | 09536 | 0.9402 | 09668 | 09027 | 0.8942 | 0.8809

as GAN). In this section, we conduct extra experiments to disentangle the effects of the two parts of
BLS-GAN. We implement two variants of the proposed BLS-GAN: BLS-GCN(using bi-diffusion
based sampling, but the constant weights of GCN instead of the attention mechanism) and AS-
GAN(using the adaptive sampling of AS-GCN instead of the bi-diffusion based sampling, but the
learnable weights of graph attention mechanism). The results are shown in Table 4]

We can see that both the bi-diffusion based sampling and the graph attention mechanism can improve
the performance of graph neural networks. For the bi-diffusion based sampling, we can observe
that BLS-GCN could achieve significant gains compared to all the baselines on all the datasets,
particularly if the layers go deeply. In most cases, the deeper the layers, the greater the gains. For
example, compared with the Micro-F1 scores of all the five baselines on the Reddit dataset (as
shown in Table [2), BLS-GCN achieves the improvements by about 1%-7% with the setting of 4
layers, and about 3%—8% with the setting of 5 layers. The bi-diffusion based sampling strategy has
the elegant potential to be applied with very deep layers. For the graph attention mechanism, we can
see that compared with other approaches, AS-GAN can only achieve slight improvements on the
Reddit dataset and Pubmed dataset, but can achieve significant gains on the PPI dataset. The results
indicate that the attention mechanism is obviously helpful for the embedding learning but the effect
may depend on the peculiarity of target dataset. Nonetheless, we can find that the graph attention
mechanism is desirable because it can consistently alleviate the decline of results in deep layers on
all the three datasets.

6 CONCLUSION

In this paper, we first present a novel “bi-diffusion” based layerwise sampling strategy. Distinguish-
ing from existing layerwise sampling algorithms, we sample the nodes layer by layer conditionally
based on the factors of the bi-directional diffusion between layers, considering both the influence
of parent nodes of upper layer on the candidate nodes of lower layer and the reverse influence of
lower candidates on the upper parents. As a result, the sampler tends to construct a mini-batch
of nodes with high local bi-directional influence/correlation and thus elegantly and naturally mit-
igates both the “neighbor explosion” and “over-smoothing” problem, as well as the sparsity issue
of current layerwise sampling algorithms. After sampling, we also apply the self-attention mecha-
nism as the aggregator to flexibly learn suitable weights for different-hop nodes during the training,
which allows the model to be able to simultaneously exploit both the first-order proximity and the
higher-order proximity during a single layer propagation process. Finally, we conduct extensive
experiments on three large graphs and the results demonstrate the superiority of our model.

REFERENCES

Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and locally connected
networks on graphs. arXiv preprint arXiv:1312.6203, 2013.

Jianfei Chen, Jun Zhu, and Le Song. Stochastic training of graph convolutional networks with variance reduc-
tion. In ICML, pp. 941-949, 2018a.

Jie Chen, Tengfei Ma, and Cao Xiao. Fastgcn: fast learning with graph convolutional networks via importance
sampling. arXiv preprint arXiv:1801.10247, 2018b.

Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh. Cluster-gcn: An efficient
algorithm for training deep and large graph convolutional networks. In KDD, pp. 257-266, 2019.

10

Under review as a conference paper at ICLR 2020

Michaél Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on graphs with
fast localized spectral filtering. In NeurIPS, pp. 3844-3852, 2016.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. In NeurIPS,
pp- 1024-1034, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
CVPR, pp. 770-778, 2016.

Mikael Henaff, Joan Bruna, and Yann LeCun. Deep convolutional networks on graph-structured data. arXiv
preprint arXiv:1506.05163, 2015.

Wenbing Huang, Tong Zhang, Yu Rong, and Junzhou Huang. Adaptive sampling towards fast graph represen-
tation learning. In NeurIPS, pp. 45584567, 2018.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. arXiv
preprint arXiv:1609.02907, 2016.

Johannes Klicpera, Aleksandar Bojchevski, and Stephan Giinnemann. Personalized embedding propagation:
Combining neural networks on graphs with personalized pagerank. arXiv preprint arXiv:1810.05997, 2018.

Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks for semi-
supervised learning. In AAAI pp. 3538-3545, 2018.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser,
and Illia Polosukhin. Attention is all you need. In NeurIPS, pp. 5998-6008, 2017.

Petar Velickovi¢, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua Bengio.
Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and Stefanie Jegelka.
Representation learning on graphs with jumping knowledge networks. In ICML, pp. 5449-5458, 2018a.

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and Stefanie Jegelka.
Representation learning on graphs with jumping knowledge networks. arXiv preprint arXiv:1806.03536,
2018b.

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and Jure Leskovec. Graph
convolutional neural networks for web-scale recommender systems. In KDD, pp. 974-983. ACM, 2018.

Hanging Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor K. Prasanna. Accurate,
efficient and scalable graph embedding. In IPDPS, pp. 462-471, 2019a.

Hanging Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor K. Prasanna. Graphsaint:
Graph sampling based inductive learning method. arXiv preprint arXiv:1907.04931, 2019b.

Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks. In NeurlPS, pp. 5165-5175,
2018.

Marinka Zitnik and Jure Leskovec. Predicting multicellular function through multi-layer tissue networks. Bioin-
Sformatics, 33(14):1190-i198, 2017.

11

	Introduction
	Related Work
	Notations and Preliminaries
	Proposed Method: BLS-GAN
	Bi-diffusion based Layerwise Sampling
	Self-Attention Aggregator

	Experiments
	Experimental Setup
	Results
	Case Study

	Conclusion

