
Published as a conference paper at ICLR 2020

ENABLING DEEP SPIKING NEURAL NETWORKS
WITH HYBRID CONVERSION AND SPIKE TIMING
DEPENDENT BACKPROPAGATION

Nitin Rathi1, Gopalakrishnan Srinivasan1, Priyadarshini Panda2 & Kaushik Roy1

1School of Electrical and Computer Engineering, Purdue University
2Department of Electrical Engineering, Yale University
{rathi2, srinivg}@purdue.edu, priya.panda@yale.edu,
kaushik@purdue.edu

ABSTRACT

Spiking Neural Networks (SNNs) operate with asynchronous discrete events (or
spikes) which can potentially lead to higher energy-efficiency in neuromorphic
hardware implementations. Many works have shown that an SNN for inference
can be formed by copying the weights from a trained Artificial Neural Network
(ANN) and setting the firing threshold for each layer as the maximum input
received in that layer. These type of converted SNNs require a large number
of time steps to achieve competitive accuracy which diminishes the energy
savings. The number of time steps can be reduced by training SNNs with
spike-based backpropagation from scratch, but that is computationally expensive
and slow. To address these challenges, we present a computationally-efficient
training technique for deep SNNs1. We propose a hybrid training methodology:
1) take a converted SNN and use its weights and thresholds as an initialization
step for spike-based backpropagation, and 2) perform incremental spike-timing
dependent backpropagation (STDB) on this carefully initialized network to obtain
an SNN that converges within few epochs and requires fewer time steps for
input processing. STDB is performed with a novel surrogate gradient function
defined using neuron’s spike time. The weight update is proportional to the
difference in spike timing between the current time step and the most recent
time step the neuron generated an output spike. The SNNs trained with our
hybrid conversion-and-STDB training perform at 10×−25× fewer number of
time steps and achieve similar accuracy compared to purely converted SNNs. The
proposed training methodology converges in less than 20 epochs of spike-based
backpropagation for most standard image classification datasets, thereby greatly
reducing the training complexity compared to training SNNs from scratch. We
perform experiments on CIFAR-10, CIFAR-100 and ImageNet datasets for both
VGG and ResNet architectures. We achieve top-1 accuracy of 65.19% for
ImageNet dataset on SNN with 250 time steps, which is 10× faster compared
to converted SNNs with similar accuracy.

1 INTRODUCTION

In recent years, Spiking Neural Networks (SNNs) have shown promise towards enabling low-power
machine intelligence with event-driven neuromorphic hardware. Founded on bio-plausibility, the
neurons in an SNN compute and communicate information through discrete binary events (or
spikes) a significant shift from the standard artificial neural networks (ANNs), which process
data in a real-valued (or analog) manner. The binary all-or-nothing spike-based communication
combined with sparse temporal processing precisely make SNNs a low-power alternative to
conventional ANNs. With all its appeal for power efficiency, training SNNs still remains a
challenge. The discontinuous and non-differentiable nature of a spiking neuron (generally, modeled

1https://github.com/nitin-rathi/hybrid-snn-conversion
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as leaky-integrate-and-fire (LIF), or integrate-and-fire (IF)) poses difficulty to conduct gradient
descent based backpropagation. Practically, SNNs still lag behind ANNs, in terms of performance
or accuracy, in traditional learning tasks. Consequently, there has been several works over the
past few years that propose different learning algorithms or learning rules for implementing deep
convolutional SNNs for complex visual recognition tasks (Wu et al., 2019; Hunsberger & Eliasmith,
2015; Cao et al., 2015). Of all the techniques, conversion from ANN-to-SNN (Diehl et al.,
2016; 2015; Sengupta et al., 2019; Hunsberger & Eliasmith, 2015) has yielded state-of-the-art
accuracies matching deep ANN performance for Imagenet dataset on complex architectures (such as,
VGG (Simonyan & Zisserman, 2014) and ResNet (He et al., 2016) ). In conversion, we train an ANN
with ReLU neurons using gradient descent and then convert the ANN to an SNN with IF neurons by
using suitable threshold balancing (Sengupta et al., 2019). But, SNNs obtained through conversion
incur large latency of 2000−2500 time steps (measured as total number of time steps required to
process a given input image2). The term ‘time step’ defines an unit of time required to process a
single input spike across all layers and represents the network latency. The large latency translates
to higher energy consumption during inference, thereby, diminishing the efficiency improvements
of SNNs over ANNs. To reduce the latency, spike-based backpropagation rules have been proposed
that perform end-to-end gradient descent training on spike data. In spike-based backpropagation
methods, the non-differentiability of the spiking neuron is handled by either approximating the
spiking neuron model as continuous and differentiable (Huh & Sejnowski, 2018) or by defining
a surrogate gradient as a continuous approximation of the real gradient (Wu et al., 2018; Bellec
et al., 2018; Neftci et al., 2019). Spike-based SNN training reduces the overall latency by ∼10×
(for instance, 200 − 250 time steps required to process an input (Lee et al., 2019)) but requires
more training effort (in terms of total training iterations) than conversion approaches. A single
feed-forward pass in ANN corresponds to multiple forward passes in SNN which is proportional
to the number of time steps. In spike-based backpropagation, the backward pass requires the
gradients to be integrated over the total number of time steps that increases the computation and
memory complexity. The multiple-iteration training effort with exploding memory requirement (for
backward pass computations) has limited the applicability of spike-based backpropagation methods
to small datasets (like CIFAR10) on simple few-layered convolutional architectures.

In this work, we propose a hybrid training technique which combines ANN-SNN conversion and
spike-based backpropagation that reduces the overall latency as well as decreases the training effort
for convergence. We use ANN-SNN conversion as an initialization step followed by spike-based
backpropagation incremental training (that converges to optimal accuracy with few epochs due
to the precursory initialization). Essentially, our hybrid approach of taking a converted SNN
and incrementally training it using backpropagation yields improved energy-efficiency as well
as higher accuracy than a model trained from scratch with only conversion or only spike-based
backpropagation.

In summary, this paper makes the following contributions:

• We introduce a hybrid computationally-efficient training methodology for deep SNNs.
We use the weights and firing thresholds of an SNN converted from an ANN as the
initialization step for spike-based backpropagation. We then train this initialized network
with spike-based backpropagation for few epochs to perform inference at a reduced latency
or time steps.

• We propose a novel spike time-dependent backpropagation (STDB, a variant of standard
spike-based backpropagation) that computes surrogate gradient using neuron’s spike time.
The parameter update is triggered by the occurrence of spike and the gradient is computed
based on the time difference between the current time step and the most recent time step
the neuron generated an output spike. This is motivated from the Hebb’s principle which
states that the plasticity of a synapse is dependent on the spiking activity of the neurons
connected to the synapse.

• Our hybrid approach with the novel surrogate gradient descent allows training of large-scale
SNNs without exploding memory required during spike-based backpropagation. We
evaluate our hybrid approach on large SNNs (VGG, ResNet-like architectures) on

2SNNs process Poisson rate-coded input spike trains, wherein, each pixel in an image is converted to a
Poisson-distribution based spike train with the spiking frequency proportional to the pixel value
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Imagenet, CIFAR datasets and show near iso-accuracy compared to similar ANNs and
converted SNNs at lower compute cost and energy.

2 SPIKE TIMING DEPENDENT BACKPROPAGATION (STDB)
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Figure 1: Surrogate gradient of the spiking neuron
activation function (Eq. 11). α = 0.3, β = 0.01.
The gradient is computed for each neuron and
∆t defines the time difference between current
simulation time and the last spike time of the
neuron. For example, if a neuron spikes at ts = 12
its gradient will be maximum at t = 12(∆t = 0)
and gradually decrease for later time steps. If the
same neuron spikes later at ts = 24 its previous
spike history will be overwritten and the gradient
computation for t = 24 onward will only consider
the most recent spike. This avoids the overhead of
storing all the spike history in memory.

In this section, we describe the spiking neuron
model, derive the equations for the proposed
surrogate gradient based learning, present
the weight initialization method for SNN,
discuss the constraints applied for ANN-SNN
conversion, and summarize the overall training
methodology.

2.1 LEAKY INTEGRATE
AND FIRE (LIF) NEURON MODEL

The neuron model defines the dynamics of the
neuron’s internal state and the trigger for it to
generate a spike. The differential equation

τ
dU

dt
= −(U − Urest) +RI (1)

is widely used to characterize the
leaky-integrate-and-fire (LIF) neuron model
where, U is the internal state of the neuron
referred as the membrane potential, Urest is
the resting potential, R and I are the input
resistance and the current, respectively. The
above equation is valid when the membrane
potential is below the threshold value (V ). The
neuron geneartes an output spike when U>V
and U is reduced to the reset potential. This representation is described in continuous domain and
more suitable for biological simulations. We modify the equation to be evaluated in a discrete
manner in the Pytorch framework (Wu et al., 2018). The iterative model for a single post-neuron is
described by

uti = λut−1
i +

∑
j

wijo
t
j − vot−1

i (2)

ot−1
i =

{
1, if ut−1

i > v

0, otherwise
(3)

where u is the membrane potential, subscript i and j represent the post- and pre-neuron, respectively,
superscript t is the time step, λ is a constant (< 1) responsible for the leak in membrane potential,
w is the weight connecting the pre- and post-neuron, o is the binary output spike, and v is the firing
threshold potential. The right hand side of Equation 2 has three terms: the first term calculates the
leak in the membrane potential from the previous time step, the second term integrates the input
from the previous layer and adds it to the membrane potential, and the third term which is outside
the summation reduces the membrane potential by the threshold value if a spike is generated. This
is known as soft reset as the membrane potential is lowered by v compared to hard reset where
the membrane potential is reduced to the reset value. Soft reset enables the spiking neuron to carry
forward the excess potential above the firing threshold to the following time step, thereby minimizing
information loss.
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Algorithm 1 ANN-SNN conversion:
initialization of weights and threshold voltages
Input: Trained ANN model (A), SNN model

(N ), Input (X)
// Copy ann weights to snn

for l=1 to L do
Nl.W ← Al.W

end
// Initialize threshold voltage to 0
V ← [0, · · · , 0]L−1

for l=1 to L-1 do
v ← 0

for t=1 to T do
Ot0 ← PoissonGenerator(X)

for k=1 to l do
if k < l then

// Forward (Algorithm 3)

end
else

// Pre-nonlinearity (A)
A← Nl(O

t
k−1)

if max(A) > v then
v ← max(A)

end
end

end
end
V [l]← v

end

Algorithm 2 Initialize the neuron parameters.
Membrane potential (U ), last spike time (S),
dropout mask (M ). The initialization is
performed once for every mini-batch.
Input: Input(X), network model(N )
b size = X.b size
h = X.height
w = X.width
for l=1 to L do

if isintance(Nl, Conv) then
Ul = zeros(b size,Nl.out, h, w)
Sl = ones(b size,Nl.out, h, w) ∗
(−1000)

end
else if isintance(Nl, Linear) then

Ul = zeros(b size,Nl.out)
Sl = ones(b size,Nl.out) ∗ (−1000)

end
else if isintance(Nl, Dropout) then

// Generate the dropout map that will be
fixed for all time steps
Ml = Nl(ones(Ul−1.shape))

end
else if isintance(Nl, AvgPool) then

// Reduce the width and height after
average pooling layer
h = h//kernel size
w = w//kernel size

end
end

2.2 SPIKE TIMING DEPENDENT BACKPROPAGATION (STDB) LEARNING RULE

The neuron dynamics (Equation 2) show that the neuron’s state at a particular time step recurrently
depends on its state in previous time steps. This introduces implicit recurrent connections in the
network (Neftci et al., 2019). Therefore, the learning rule has to perform the temporal credit
assignment along with the spatial credit assignment. Credit assignment refers to the process of
assigning credit or blame to the network parameters according to their contribution to the loss
function. Spatial credit assignment identifies structural network parameters (like weights), whereas
temporal credit assignment determines which past network activities contributed to the loss function.
Gradient-descent learning solves both credit assignment problem: spatial credit assignment is
performed by distributing error spatially across all layers using the chain rule of derivatives, and
temporal credit assignment is done by unrolling the network in time and performing backpropagation
through time (BPTT) using the same chain rule of derivatives (Werbos et al., 1990). In BPTT, the
network is unrolled for all time steps and the final output is computed as the sum of outputs from
each time step. The loss function is defined on the summed output.

The dynamics of the neuron in the output layer is described by Equation (4), where the leak part
is removed (λ = 1) and the neuron only integrates the input without firing. This eliminates the
difficulty of defining the loss function on spike count (Lee et al., 2019).

uti = ut−1
i +

∑
j

wijoj (4)

The number of neurons in the output layer is the same as the number of categories in the classification
task. The output of the network is passed through a softmax layer that outputs a probability
distribution. The loss function is defined as the cross-entropy between the true output and the
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network’s predicted distribution.
L = −

∑
i

yilog(pi) (5)

pi =
eu

T
i∑N

k=1 e
uT
k

(6)

L is the loss function, y the true output, p the prediction, T the total number of time steps, uT
the accumulated membrane potential of the neuron in the output layer from all time steps, and
N the number of categories in the task. For deeper networks and large number of time steps the
truncated version of the BPTT algorithm is used to avoid memory issues. In the truncated version
the loss is computed at some time step t′ before T based on the potential accumulated till t′. The
loss is backpropagated to all layers and the loss gradients are computed and stored. At this point,
the history of the computational graph is cleaned to save memory. The subsequent computation of
loss gradients at later time steps (2t′, 3t′, ...T ) are summed together with the gradient at t′ to get
the final gradient. The optimizer updates the parameters at T based on the sum of the gradients.
Gradient descent learning has the objective of minimizing the loss function. This is achieved by
backpropagating the error and updating the parameters opposite to the direction of the derivative.
The derivative of the loss function w.r.t. to the membrane potential of the neuron in the final layer is
described by,

∂L

∂uTi
= pi − yi (7)

To compute the gradient at current time step, the membrane potential at last time step (ut−1
i in

Equation 4) is considered as an input quantity. Therefore, gradient descent updates the network
parameters Wij of the output layer as,

Wij = Wij − η∆Wij (8)

∆Wij =
∑
t

∂L

∂W t
ij

=
∑
t

∂L

∂uTi

∂uTi
∂W t

ij

=
∂L

∂uTi

∑
t

∂uTi
∂W t

ij

(9)

where η is the learning rate, and W t
ij represents the copy of the weight used for computation at

time step t. In the output layer the neurons do not generate a spike, and hence, the issue of
non-differentiability is not encountered. The update of the hidden layer parameters is described
by,

∆Wij =
∑
t

∂L

∂W t
ij

=
∑
t

∂L

∂oti

∂oti
∂uti

∂uti
∂W t

ij

(10)

where oti is the thresholding function (Equation 3) whose derivative w.r.t to uti is zero everywhere
and not defined at the time of spike. The challenge of discontinuous spiking nonlinearity is resolved
by introducing a surrogate gradient which is the continuous approximation of the real gradient.

∂oti
∂uti

= αe−β∆t (11)

where α and β are constants, ∆t is the time difference between the current time step (t) and the last
time step the post-neuron generated a spike (ts). It is an integer value whose range is from zero to
the total number of time steps (T ).

∆t = (t− ts), 0 < ∆t < T , ∆t ε Z (12)

The values of α and β are selected depending on the value of T . If T is large β is lowered to
reduce the exponential decay so a spike can contribute towards gradients for later time steps. The
value of α is also reduced for large T because the gradient can propagate through many time steps.
The gradient is summed at each time step and thus a large α may lead to exploding gradient. The
surrogate gradient can be pre-computed for all values of ∆t and stored in a look-up table for faster
computation. The parameter updates are triggered by the spiking activity but the error gradients are
still non-zero for time steps following the spike time. This enables the algorithm to avoid the ‘dead
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Algorithm 3 Training an SNN with surrogate gradient computed with spike timing. The network is
composed of L layers. The training proceeds with mini-batch size (batch size)
Input: Mini-batch of input (X) - target (Y ) pairs, network model (N ), initial weights (W ), threshold

voltage (V )
U, S,M = InitializeNeuronParameters(X) [Algorithm 2]

// Forward propagation
for t=1 to T do
Ot0 = PoissonGenerator(X)

for l=1 to L-1 do
if isintance(Nl, [Conv, Linear]) then

// accumulate the output of previous layer in U , soft reset when spike occurs
U tl = λU t−1

l +WlO
t
l−1 − Vl ∗O

t−1
l

// generate the output (+1) if U exceeds V
Otl = STDB(U tl , Vl, t)
// store the latest spike times for each neuron
Stl [O

t
l == 1] = t

end
else if isintance(Nl, AvgPool) then

Otl = Nl(O
t
l−1)

end
else if isintance(Nl, Dropout) then

Otl = Otl−1 ∗Ml

end
end
U tL = λU t−1

L +WLO
t
L−1

end
// Backward Propagation

Compute ∂L
∂UL

from the cross-entropy loss function using BPTT
for t=T to 1 do

for l=L-1 to 1 do
Compute ∂L

∂Ot
l

based on if Nl is linear, conv, pooling, etc.
∂L
∂Ut

l
= ∂L

∂Ot
l

∂Ot
l

∂Ut
l

= ∂L
∂Ot

l
∗ αe−βSt

l

end
end

neuron’ problem, where no learning happens when there is no spike. Fig. 1 shows the activation
gradient for different values of ∆t, the gradient decreases exponentially for neurons that have not
been active for a long time. In Hebbian models of biological learning, the parameter update is
activity dependent. This is experimentally observed in spike-timing-dependent plasticity (STDP)
learning rule which modulates the weights for pair of neurons that spike within a time window (Song
et al., 2000).

3 SNN WEIGHT INITIALIZATION

A prevalent method of constructing SNNs for inference is ANN-SNN conversion (Diehl et al., 2015;
Sengupta et al., 2019). Since the network is trained with analog activations it does not suffer from the
non-differentiablity issue and can leverage the training techniques of ANNs. The conversion process
has a major drawback: it suffers from long inference latency (∼2500 time steps) as mentioned in
Section 1. As there is no provision to optimize the parameters after conversion based on spiking
activity, the network can not leverage the temporal information of the spikes. In this work, we
propose to use the conversion process as an initialization technique for STDB. The converted weights
and thresholds serve as a good initialization for the optimizer and the STDB learning rule is applied
for temporal and spatial credit assignment.
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Algorithm 1 explains the ANN-SNN conversion process. The threshold voltages in SNN needs to
be adjusted based on the ANN weights. Sengupta et al. (2019) showed two ways to achieve this:
weight-normalization and threshold-balancing. In weight-normalization the weights are scaled by
a normalization factor and threshold is set to 1, whereas in threshold-balancing the weights are
unchanged and the threshold is set to the normalization factor. Both have a similar effect and either
can be used to set the threshold. We employ the threshold-balancing method and the normalization
factor is calculated as the maximum output of the corresponding convolution/linear layer in SNN.
The maximum is calculated over a mini-batch of input for all time steps.

 

Input Data
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ReLU/IF

Dropout

Conv (3 3, /1)
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Dropout
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Dropout
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Threshold = 1

Basic Block

Threshold
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Figure 2: Residual architecture for
SNN

There are several constraints imposed on training the ANN
for the conversion process (Sengupta et al., 2019; Diehl et al.,
2015). The neurons are trained without the bias term because
the bias term in SNN has an indirect effect on the threshold
voltage which increases the difficulty of threshold balancing
and the process becomes more prone to conversion loss. The
absence of bias term eliminates the use of Batch Normalization
(Ioffe & Szegedy, 2015) as a regularizer in ANN since it biases
the input of each layer to have zero mean. As an alternative,
Dropout (Srivastava et al., 2014) is used as a regularizer
for both ANN and SNN training. The implementation of
Dropout in SNN is further discussed in Section 5. The pooling
operation is widely used in ANN to reduce the convolution
map size. There are two popular variants: max pooling
and average pooling (Boureau et al., 2010). Max (Average)
pooling outputs the maximum (average) value in the kernel
space of the neuron’s activations. In SNN, the activations are
binary and performing max pooling will result in significant
information loss for the next layer, so we adopt the average
pooling for both ANN and SNN (Diehl et al., 2015).

4 NETWORK ARCHITECTURES

In this section, we describe the changes made to the VGG
(Simonyan & Zisserman, 2014) and residual architecture (He
et al., 2016) for hybrid learning and discuss the process of
threshold computation for both the architectures.

4.1 VGG ARCHITECTURE

The threshold balancing is performed for all layers except the input and output layer in a VGG
architecture. For every hidden convolution/linear layer the maximum input3 to the neuron is
computed over all time steps and set as threshold for that layer. The threshold assignment is
done sequentially as described in Algorithm 1. The threshold computation for all layers can not
be performed in parallel (in one forward pass) because in the forward method (Algorithm 3) we
need the threshold at each time step to decide if the neuron should spike or not.

4.2 RESIDUAL ARCHITECTURE

Residual architectures introduce shortcut connections between layers that are not next to each
other. In order to minimize the ANN-SNN conversion loss various considerations were made by
Sengupta et al. (2019). The original residual architecture proposed by He et al. (2016) uses an
initial convolution layer with wide kernel (7×7, stride 2). For conversion, this is replaced by a
pre-processing block consisting of a series of three convolution layer (3×3, stride 1) with dropout
layer in between (Fig. 2). The threshold balancing mechanism is applied to only these three layers
and the layers in the basic block have unity threshold.

3input to a neuron is the weighted sum of spkies from pre-neurons
∑

j wijoj
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Table 1: Classification results (Top-1) for CIFAR10, CIFAR100 and ImageNet data sets. Column-1
shows the network architecture. Column-2 shows the ANN accuracy when trained under the
constraints as described in Section 3. Column-3 shows the SNN accuracy for T = 2500 when
converted from a ANN with threshold balancing. Column-4 shows the performance of the same
converted SNN with lower time steps and adjusted thresholds. Column-5 shows the performance
after training the Column-4 network with STDB for less than 20 epochs.

Architecture ANN ANN-SNN
Conversion
(T = 2500)

ANN-SNN
Conversion (reduced

time steps)

Hybrid Training
(ANN-SNN Conversion

+ STDB)

CIFAR10

VGG5 87.88% 87.64% 84.56% (T = 75) 86.91% (T = 75)
VGG9 91.45% 90.98% 87.31% (T = 100) 90.54% (T = 100)

VGG16 92.81% 92.48% 90.2% (T = 100) 91.13% (T = 100)
ResNet8 91.35% 91.12% 89.5% (T = 200) 91.35% (T = 200)

ResNet20 93.15% 92.94% 91.12% (T = 250) 92.22% (T = 250)

CIFAR100

VGG11 71.21% 70.94% 65.52% (T = 125) 67.87% (T = 125)

ImageNet

ResNet34 70.2% 65.1% 56.87% (T = 250) 61.48% (T = 250)
VGG16 69.35% 68.12% 62.73% (T = 250) 65.19% (T = 250)

5 OVERALL TRAINING ALGORITHM

Algorithm 1 defines the process to initialize the parameters (weights, thresholds) of SNN based on
ANN-SNN conversion. Algorithm 2 and 3 show the mechanism of training the SNN with STDB.
Algorithm 2 initializes the neuron parameters for every mini-batch, whereas Algorithm 3 performs
the forward and backward propagation and computes the credit assignment. The threshold voltage
for all neurons in a layer is same and is not altered in the training process. For each dropout layer we
initialize a mask (M ) for every mini-batch of inputs. The function of dropout is to randomly drop
a certain number of inputs in order to avoid overfitting. In case of SNN, inputs are represented as
a spike train and we want to keep the dropout units same for the entire duration of the input. Thus,
a random mask (M ) is initialized (Algorithm 2) for every mini-batch and the input is element-wise
multiplied with the mask to generate the output of the dropout layer (Lee et al., 2019). The Poisson
generator function outputs a Poisson spike train with rate proportional to the pixel value in the input.
A random number is generated at every time step for each pixel in the input image. The random
number is compared with the normalized pixel value and if the random number is less than the
pixel value an output spike is generated. This results in a Poisson spike train with rate equivalent
to the pixel value if averaged over a long time. The weighted sum of the input is accumulated in
the membrane potential of the first convolution layer. The STDB function compares the membrane
potential and the threshold of that layer to generate an output spike. The neurons that output a spike
their corresponding entry in S is updated with current time step (t). The last spike time is initialized
with a large negative number (Algorithm 2) to denote that at the beginning the last spike happened
at negative infinity time. This is repeated for all layers until the last layer. For last layer the inputs
are accumulated over all time steps and passed through a softmax layer to compute the multi-class
probability. The cross-entropy loss function is defined on the output of the softmax and the weights
are updated by performing the temporal and spatial credit assignment according to the STDB rule.

6 EXPERIMENTS

We tested the proposed training mechanism on image classification tasks from CIFAR (Krizhevsky
et al., 2009) and ImageNet (Deng et al., 2009) datasets. The results are summarized in Table 1.
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Figure 3: Average number of spikes for each layer in a VGG16 architecture for purely converted
SNN and SNN trained with hybrid technique. The converted SNN and SNN trained with hybrid
technique achieve an accuracy of 89.20% and 91.87%, respectively, for the randomly selected 1500
samples from the test set. Both the networks were inferred for 100 time steps and ‘v’ represents the
threshold voltage for each layer obtained during the conversion process (Algorithm 1).

CIFAR10: The dataset consists of labeled 60, 000 images of 10 categories divided into training
(50, 000) and testing (10, 000) set. The images are of size 32×32 with RGB channels.

CIFAR100: The dataset is similar to CIFAR10 except that it has 100 categories.

ImageNet: The dataset comprises of labeled high-resolution 1.2 million training images and 50, 000
validation images with 1000 categories.

7 ENERGY-DELAY PRODUCT ANALYSIS OF SNNS

A single spike in an SNN consumes a constant amount of energy (Cao et al., 2015). The first order
analysis of energy-delay product of an SNN is dependent on the number of spikes and the total
number of time steps. Fig. 3 shows the average number of spikes in each layer when evaluated for
1500 samples from CIFAR10 testset for VGG16 architecture. The average is computed by summing
all the spikes in a layer over 100 time steps and dividing by the number of neurons in that layer. For
example, the average number of spikes in the 10th layer is 5.8 for both the networks, which implies
that over a 100 time step period each neuron in that layer spikes 5.8 times on average over all input
samples. Higher spiking activity corresponds to lower energy-efficiency. The average number of
spikes is compared for a converted SNN and SNN trained with conversion-and-STDB. The SNN
trained with conversion-and-STDB has 1.5× less number of average spikes over all layers under iso
conditions (time steps, threshold voltages, inputs, etc.) and achieves higher accuracy compared to
the converted SNN. The converted SNNs when simulated for larger time steps further degrade the
energy-delay product with minimal increase in accuracy (Sengupta et al., 2019).

8 RELATED WORK

Bohte et al. (2000) proposed a method to directly train on SNN by keeping track of the membrane
potential of spiking neurons only at spike times and backpropagating the error at spike times based
on only the membrane potential. This method is not suitable for networks with sparse activity due
to the ‘dead neuron’ problem: no learning happens when the neurons do not spike. In our work,
we need one spike for the learning to start but gradient contribution continues in later time steps
as shown in Fig. 1. Zenke & Ganguli (2018) derived a surrogate gradient based method on the
membrane potential of a spiking neuron at a single time step only. The error was backpropagated
at only one time step and only the input at that time step contributed to the gradient. This method
neglects the effect of earlier spike inputs. In our approach, the error is backpropagated for every
time step and the weight update is performed on the gradients summed over all time steps. Shrestha
& Orchard (2018) proposed a gradient function similar to the one proposed in this work. They
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Table 2: Comparion of our work with other SNN models on CIFAR10 and ImageNet datasets
Model Dataset Training

Method
Architecture Accuracy Time-steps

Hunsberger
& Eliasmith
(2015)

CIFAR10 ANN-SNN
Conversion

2Conv,
2Linear

82.95% 6000

Cao et al.
(2015)

CIFAR10 ANN-SNN
Conversion

3Conv,
2Linear

77.43% 400

Sengupta
et al. (2019)

CIFAR10 ANN-SNN
Conversion

VGG16 91.55% 2500

Lee et al.
(2019)

CIFAR10 Spiking BP VGG9 90.45% 100

Wu et al.
(2019)

CIFAR10 Surrogate
Gradient

5Conv,
2Linear

90.53% 12

This work CIFAR10 Hybrid
Training

VGG16 91.13%
92.02%

100
200

Sengupta
et al. (2019)

ImageNet ANN-SNN
Conversion

VGG16 69.96% 2500

This work ImageNet Hybrid
Training

VGG16 65.19% 250

used the difference between the membrane potential and the threshold to compute the gradient
compared to the difference in spike timing used in this work. The membrane potential is a continuous
value whereas the spike time is an integer value bounded by the number of time steps. Therefore,
gradients that depend on spike time can be pre-computed and stored in a look-up table for faster
computation. They evaluated their approach on shallow architectures with two convolution layer for
MNIST dataset. In this work, we trained deep SNNs with multiple stacked layers for complex
calssification tasks. Wu et al. (2018) performed backpropagation through time on SNN with a
surrogate gradient defined on the membrane potential. The surrogate gradient was defined as
piece-wise linear or exponential function of the membrane potential. The other surrogate gradients
proposed in the literature are all computed on the membrane potential (Neftci et al., 2019). Lee et al.
(2019) approximated the neuron output as continuous low-pass filtered spike train. They used this
approximated continuous value to perform backpropagation. Most of the works in the literature on
direct training of SNN or conversion based methods have been evaluated on shallow architectures
for simple classification problems. In Table 2 we compare our model with the models that reported
accuracy on CIFAR10 and ImageNet dataset. Wu et al. (2019) achieved convergence in 12 time
steps by using a dedicated encoding layer to capture the input precision. It is beyond the scope
of this work to compute the hardware and energy implications of such encoding layer. Our model
performs better than all other models at far fewer number of time steps.

9 CONCLUSIONS

The direct training of SNN with backpropagation is computationally expensive and slow, whereas
ANN-SNN conversion suffers from high latency. To address this issue we proposed a hybrid
training technique for deep SNNs. We took an SNN converted from ANN and used its weights and
thresholds as initialization for spike-based backpropagation of SNN. We then performed spike-based
backpropagation on this initialized network to obtain an SNN that can perform with fewer number
of time steps. The number of epochs required to train SNN was also reduced by having a good initial
starting point. The resultant trained SNN had higher accuracy and lower number of spikes/inference
compared to purely converted SNNs at reduced number of time steps. The backpropagation through
time was performed with surrogate gradient defined using neuron’s spike time that captured the
temporal information and helped in reducing the number of time steps. We tested our algorithm on
CIFAR and ImageNet datasets and achieved state-of-the-art performance with fewer number of time
steps.
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A COMPARISONS WITH OTHER SURROGATE GRADIENTS

 

Figure 4: Linear and Exponential approximation
of the gradient of the spiking neuron (step
function).

The transfer function of the spiking neuron
is a step function and its derivative is zero
everywhere except at the time of spike where
it is not defined. In order to perform
backpropagation with spiking neuron several
approximations are proposed for the gradient
function (Bellec et al., 2018; Zenke &
Ganguli, 2018; Shrestha & Orchard, 2018;
Wu et al., 2018). These approximations
are either a linear or exponential function
of (u − Vt), where u is the membrane
potential and Vt the threshold voltage (Fig.
4). These approximations are referred as
surrogate gradient or pseudo-derivative. In this
work, we proposed an approximation that is
computed using the spike timing of the neuron
(Equation 11). We compare our proposed
approximation with the following surrogate gradients:

∂o

∂u
= α max{0, 1− |u− Vt|} (13)

∂o

∂u
= αe−β |u−Vt| (14)

where o is the binary output of the neuron, u is the membrane potential, Vt is the threshold
potential, α and β are constants. Equation 13 and Equation 14 represent the linear and exponential
approximation of the gradient, respectively. We employed these approximations in the hybrid
training for a VGG9 network for CIFAR10 dataset. All the approximations (Equation 11, 13, and
14) produced similar results in terms of accuracy and number of epochs for convergence. This shows
that the term ∆t (Equation 11) is a good replacement for |u − Vt| (Equation 14). The behaviour of
∆t and |u− Vt| is similar, i.e., it is small closer to the time of spike and increases as we move away
from the spiking event. The advantage of using ∆t is that its domain is bounded by the total number
of time steps (Equation 12). Hence, all possible values of gradients can be pre-computed and stored
in a table for faster access during training. This is not possible for membrane potential because it
is a real value computed based on the stochastic inputs and previous state of the neuron which is
not known before hand. The exact benefit in energy from the pre-computation is dependent on the
overall system architecture and evaluating it is beyond the scope of this paper.
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B COMPARISONS OF SIMULATION TIME AND MEMORY REQUIREMENTS

The simulation time and memory requirements for ANN and SNN are very different. SNN requires
much more resources to iterate over multiple time steps and store the membrane potential for each
neuron. Fig. 5 shows the training and inference time and memory requirements for ANN, SNN
trained with backpropagation from scratch, and SNN trained with the proposed hybrid technique.
The performance was evaluated for VGG16 architecture trained for CIFAR10 dataset. SNN trained
from scratch and SNN trained with hybrid conversion-and-STDB are evaluated for 100 time steps.
One epoch of ANN training (inference) takes 0.57 (0.05) minutes and 1.47 (1.15) GB of GPU
memory. On the other hand, one epoch of SNN training (inference) takes 78 (11.39) minutes and
9.36 (1.37) GB of GPU memory for same hardware and mini-batch size. ANN and SNN trained
from scratch reached convergence after 250 epochs. The hybrid technique requires 250 epochs of
ANN training and 20 epochs of spike-based backpropagation. The hybrid training technique is one
order of magnitude faster than training SNN from scratch. The memory requirement for hybrid
technique is same as SNN as we need to perform fine-tuning with spike-based backpropagation.

 

Figure 5: Training and Inference time and memory for ANN, SNN trained with backpropagation
from scratch, and SNN trained with hybrid technique. All values are normalized based on ANN
values. The y-axis is in log scale. The performance was evaluated on one Nvidia GeForce RTX
2080 Ti TU102 GPU with 11 GB of memory. All the networks were trained for VGG16 architecture,
CIFAR10 dataset, 100 time steps, and mini-batch size of 32. ANN and SNN require 250 epochs of
training from scratch, hybrid conversion-and-STDB based training requires 250 epochs of ANN
training followed by 20 epochs of spike-based backpropagation.
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