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ABSTRACT

Reinforcement learning (RL) often requires large numbers of trials to solve a sin-
gle specific task. This is in sharp contrast to human and animal learning: humans
and animals can use past experience to acquire an understanding about the world,
which they can then use to perform new tasks with minimal additional learning. In
this work, we study how an unsupervised exploration phase can be used to build
up such prior knowledge, which can then be utilized in a second phase to perform
new tasks, either directly without any additional exploration, or through minimal
fine-tuning. A critical question with this approach is: what kind of knowledge
should be transferred from the unsupervised phase to the goal-directed phase? We
argue that model-based RL offers an appealing solution. By transferring models,
which are task-agnostic, we can perform new tasks without any additional learn-
ing at all. However, this relies on having a suitable exploration method during
unsupervised training, and a model-based RL method that can effectively utilize
modern high-capacity parametric function classes, such as deep neural networks.
We show that both challenges can be addressed by representing model-uncertainty,
which can both guide exploration in the unsupervised phase and ensure that the
errors in the model are not exploited by the planner in the goal-directed phase.
We illustrate, on simple simulated benchmark tasks, that our method can perform
various goal-directed skills on the first attempt, and can improve further with fine-
tuning, exceeding the performance of alternative exploration methods.

1 INTRODUCTION

Phase I:
Unsupervised Exploration

Phase II:
Task-specific adaptation

Learned 
Dynamics

Model

Figure 1: The unsupervised model-based
RL setting. An unsupervised phase is
used to build a predictive model using our
proposed exploration criterion. When a
task is then specified, the agent can imme-
diately perform with no further training.

Many mammals, including humans, are incapable after
birth of providing for themselves for extended periods
of time (years in the case of humans). This behavior is
in stark contrast with other species that are born with
complex motor skills already available to them. One
hypothesis is that this forced developmental period pro-
vides a safe environment for the infant to perform un-
supervised (i.e., task-agnostic) exploration in order to
acquire more flexible skills and enhanced adaptation ca-
pabilities that will prove useful in the long term. This
hypothesis is at least partially supported by the obser-
vation that reduced exploration in the early periods (7-9
months) of infancy is correlated with long-term poorer
cognitive and language outcomes (Ruff et al., 1984;
Muentener et al., 2018).

From a machine learning perspective on reinforcement
learning, this hypothesis raises intriguing questions.
The predominant formalization of RL is concerned with
solving a single task. Is learning to solve a single task
“in the void” without any context and prior knowledge truly the right benchmark to develop intel-
ligent and efficient algorithms? Can human-like learning capabilities be attained through iterative
progress in such simplified settings? Or can we formulate a problem statement that more closely
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matches the one outlined above, where an unsupervised critical period is used to acquire knowledge
about the world, and that knowledge is then used for goal-directed task acquisition later?

Guided by these overwhelming questions, in this paper we do a timid step towards better under-
standing the importance of unsupervised exploration and reinforcement learning. To do so, we
consider a setting composed of a first unsupervised exploration phase where the agent can interact
with the environment – but without having any specific task defined – and a second phase which
require the agent to quickly adapt to solve multiple tasks not previously known. We then address
a specific piece of the critical questions: if we are to use an unsupervised exploration phase to
learn about the world, what sort of knowledge about the world should we retain that will be helpful
for then achieving specific goals? The particular hypothesis that we explore in this regard is that
model-based reinforcement learning offers a promising solution, if it is augmented with an appro-
priate unsupervised exploration strategy. In contrast to model-free reinforcement learning, which
learns task-specific policies or value functions, model-based reinforcement learns to predict the fu-
ture – specifically, to predict the next state from the previous state and action. This predictive model
can then be used to optimize for near-optimal behavior by planning or offline policy optimization.
Model-based reinforcement learning offers an appealing approach to unsupervised exploration: ex-
plore the environment to acquire a good model, in effect learning how the world works, and then
simply use this model to achieve new user-specified tasks. In contrast, model-free unsupervised rein-
forcement learning methods require considerable additional machinery to extract useful knowledge
from unsupervised exploration.

While this basic principle is simple and well known, to our knowledge no prior work has proposed an
unsupervised approach to exploration in model-based reinforcement learning with expressive deep
neural network models. This formulation raises several challenges. First, model-based RL with deep
neural networks is inherently challenging because high-capacity models have a tendency to overfit
in the model-based RL setting, leading to poor performance. The optimization over actions or
policies exacerbates this issue, since a model that overfits to data will be easy for a strong optimizer
to “exploit” and discover erroneously optimistic outcomes. Second, unsupervised reinforcement
learning requires an effective exploration procedure to achieve good coverage of the state, and while
exploration for model-free RL has been studied extensively, as we discuss in the following section,
exploration for model-based RL has been studied substantially less.

In this work, we use model uncertainty to address both of these issues. By formulating an
uncertainty-aware deep neural network dynamics model, we show that we can both obtain a readily
usable exploration criterion for the unsupervised training phase and produce a model-based RL pro-
cedure that can remain robust to “exploitation” when presented with goals at test-time. Our primary
contributions are the formulation of the unsupervised deep model-based RL learning procedure, and
the introduction of a practical algorithm for tackling this problem. Our experimental results show
that our method can provide excellent performance in terms of achieving new goals, even without
any additional training beyond the unsupervised exploration phase, and can substantially improve
performance through additional finetuning. We compare to alternative exploration heuristics from
the model-free RL literature, as well prior baseline methods that do not perform explicit exploration.

2 RELATED WORK

Exploration generally aims to acquire information about an environment to help an agent better
optimize its reward function. A large number of exploration techniques have been proposed in
the reinforcement learning literature suited for continuous state-action environments, from simple
inefficient methods to complex methodical exploration strategies. Simple but computationally-cheap
methods used to increase training data diversity include occasionally selecting random actions (ε-
greedy) for discrete actions, additional Gaussian noise for continuous actions, and policy parameters
perturbations (Plappert et al., 2017; Fortunato et al., 2017). A disadvantage of ε-greedy exploration
is even actions that are known to have low Q-values are executed with the same probability as
other actions. Exploration can instead be biased towards actions of higher expected value using
Boltzman exploration or maximum entropy methods (Haarnoja et al., 2018). However the robot
may still repeatedly ‘explore’ actions whose values it is already certain. Information value theory
defines the value of exploration as the additional rewards we expect to obtain given the expected
information of taking an action (Howard, 1966). In reinforcement learning, the value of exploration
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(information) can be formulated with Bayesian method by first placing a prior over the space of
MDPs and treating all subsequent observations as likelihoods. This Bayesian reinforcement leaning
transforms the MDP learning problem into a POMDP planning problem: a POMDP whose state is
a hybrid of dynamics function parameters (that are partially observed, or uncertainty) and the robot
state (Duff & Barto, 2002). Whilst treating RL as a POMDP defines exploratory value in MDP
environments, computing values is almost always intractable. Instead approximate myopic and
‘optimistic’ exploration strategies can form effective explorers in model-free or model-based RL
(Dearden et al., 1998; 1999; Ghavamzadeh et al., 2015). Such frameworks reason probabilistically
about plausible value functions or dynamics functions respectively. Directing exploration towards
such known-unknowns yields exponentially faster learning in discrete spaces (Thrun, 1992). For
continuous state-action spaces, an effective method periodically samples value function or dynamics
function, acting greedily w.r.t. the sample for a period of time, achieving temporarily-extended (or
deep) exploration Thompson (1933); Osband et al. (2017); Touati et al. (2018).

An alternate definition of data-efficiency for exploration is minimizing the number of episodes that
the agent fails to perform within a specified bound of the optimal performance. Algorithms which
address this alternate criteria are PAC-MDP (probably approximately correct Markov decisions pro-
cess) methods which aim to discover ‘near-optimal’ policies with high-probability within time poly-
nomial to the number of states and actions. Examples include R-max Brafman & Tennenholtz
(2003), E3 Kearns & Singh (2002), and delayed Q-learning Strehl et al. (2006). PAC-MDP meth-
ods provide powerful probabilistic-guarantees on the data-complexity required before asymptotic
convergence to an optimal policy. However, such strong guarantees are only possible by systematic
over-exploration of the complete state-space Delage & Mannor (2007); Kolter & Ng (2009).

In the context of model-based RL, uncertainty has been previously used both to encourage explo-
ration in states of high-uncertainty (Depeweg et al., 2017), and to perform risk-sensitive control by
avoiding states with high uncertainty (Buechler et al., 2018).

Whilst the aforementioned Bayesian methods are typically effective in typical RL problems where
the reward function or reward samples are accessible, this paper considers the problem an initial
exploration training phase that is unsupervised w.r.t. the reward. Hence our problem setting is more
akin to using state-uncertainty-based exploration methods (Bellemare et al., 2016; Houthooft et al.,
2016; Tang et al., 2017), model error (Pathak et al., 2017), and novelty-based exploration (Fu et al.,
2017). However, in contrast to all of these prior methods, which are concerned either with explor-
ing to maximize a reward on a single specific task, or else exploring with no task reward at all and
without any downstream tasks (Pathak et al., 2017), our method is concerned with transfer: using
unsupervised exploration to acquire knowledge about the world that can help to perform down-
stream tasks. We therefore employ model-based reinforcement learning, in contrast to all of these
prior methods that are based on model-free RL. We show that, in the model-based RL setting, trans-
fer is straightforward, and uncertainty-aware models directly provide a readily usable exploration
criterion.

To purposefully explore a state space, model-based RL can be used to intentionally plan towards
uncertainty regions. Probabilistic model-based RL learns particularly fast, being robust to overfitting
to small datasets during the early stages of learning (Deisenroth & Rasmussen, 2011; Chua et al.,
2018). In addition, probabilistic models are well suited to exploration problems since an agent
can methodically plan actions sequences of maximal trajectory uncertainty. Such behavior yields
temporarily-extended (or deep) exploration as opposed to myopic exploration which only considers
what act be learned within one future transition.

3 UNSUPERVISED EXPLORATION WITH DEEP MODEL-BASED RL

We consider the class of learning tasks, shown in Figure 1, that have two phases:

1. A longer unsupervised exploration phase, without any reward feedback.

2. A supervised phase, where the agent is provided with a goal, and must achieve that goal
either immediately or after a small amount of fine-tuning.

In order to transfer knowledge from phase 1 to phase 2, we propose to use model-based reinforce-
ment, which learns to predict the outcomes of actions in the environment. The dynamics model
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learned in model-based RL is, insofar as it is globally accurate, agnostic to the particular task,
making it ideal for transferring to phase 2. However, model-based RL with high-capacity function
approximators, such as deep neural network models, is prone to overfitting, which can lead to poor
results in practice. Furthermore, the unsupervised phase requires an objective to ensure the learner
can visit a wide variety of states in the environment. To address both of these challenges, we extend
the PETS algorithm (Chua et al., 2018), which estimates model uncertainty using an ensemble of
dynamics models. While PETS has been previously demonstrated to achieve good performance on
purely goal-directed tasks, prior work used simple random exploration, and did not study the un-
supervised reinforcement learning setting. Since a probabilistic models predict distributions over
future states, we extend PETS to explore by selecting action sequences that lead to a wide distri-
bution over possible states. Through recursive prediction of state distributions, this method can
consider the fact that multiple deterministic transitions may be required to reach novel states with
uncertain dynamics. Such temporally extended exploration (also called deep, or non-myopic explo-
ration) is desirable to learn complex sequential decisions making problems like walking or running.
During phase 2, we propose that our algorithm act in a greedy fashion: simply maximizing the ex-
pected rewards without further consideration of exploration. If the exploration phase was successful,
this will result in good performance. If performance is insufficient, several additional episodes can
provide enough data to finetune the model, as we illustrate in our experiments.

3.1 MODEL-BASED REINFORCEMENT LEARNING

In this section, we describe the model-based reinforcement learning (MBRL) framework and rele-
vant notation. Framing reinforcement learning as finding an optimal policy for a Markov decision
process (MDP) (Bellman, 1957), we let st ∈ S and at ∈ A denote the state of the system and action
taken at time t, respectively. The dynamics of the MDP are governed by a probabilistic transition
function f : S×A → S such that st+1 ∼ f(st,at), and the task on the MDP is defined by a reward
function r(s,a) such that the optimal action sequence is given by

argmax
a1,a2,...

T∑
t=0

r(st,at) subject to st+1 ∼ f(st,at) , t = 0, . . . , T .

In model-based reinforcement learning, data from interactions with the environment is used to learn
a model f̃ of the MDP dynamics. This model can be used to make predictions about how the system
will evolve over time when acting with respect to a policy π : S → A. One can then predict the
distribution over returns when acting under a specific policy, and optimize the policy being used.
In the following section, we describe an algorithm adhering to this framework that is central to our
method.

3.2 PROBABILISTIC ENSEMBLES WITH TRAJECTORY SAMPLING (PETS)

PETS is a model-based deep reinforcement learning algorithm which was recently shown by Chua
et al. (2018) to achieve state-of-the-art results on several continuous control benchmark tasks. In
PETS, an ensemble of neural networks whose outputs parametrize distributions is taken to be the
model of environment dynamics. This choice of model is accompanied by a trajectory prediction
method which uses several particles independently propagated through the model to approximate
the trajectory distribution induced by an action sequence.

This choice of model and propagation method was shown to have resulted in performance rival-
ing that of several prior model-based and model-free RL approaches. Beyond performance gains,
however, this choice of model and propagation method is amenable to exploration in that it isolates
two kinds of uncertainty in the dynamics - aleatoric uncertainty, or inherent stochasticity in the
environment, and epistemic uncertainty, or subjective uncertainty due to lack of data. Our method
takes advantage of this separation by constructing a reward function which drives the agent towards
regions in the state space of high epistemic uncertainty. By encouraging the agent to seek out states
where the model has insufficient data, the global dynamics model acquired should in theory be able
to model a larger part of the state space, making adaptation to specific tasks easier.

Let f̃θ : Rds+da 7→ Rds denote a neural network with parameters θ whose outputs parametrize a
distribution, which we take to be Gaussian. We consider this neural network to be an approximation
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of the true dynamics f , and treat it as a mapping (st,at) 7→ st+1. As in PETS, we obtain a
set of b parametrizations {θ1, . . . , θb} for f̃ by training several copies of the same network from
subsets D1, . . . ,Db sampled with replacement from a dataset D of transitions seen so far in the
environment. These networks are trained discriminatively by optimizing the parameters to maximize
the log-likelihood of their corresponding sampled datasets.

Upon training the ensemble, PETS uses the model to plan by using a particle propagation method to
estimate the distribution over trajectories induced by any action sequence. Let (at, . . . ,at+T ) be a
length-T action sequence, and assume that the agent is currently at state st. Then, PETS initializes
p particles s1t , . . . , s

p
t , all initialized to st, and predicts trajectories by recursively sampling the

next state as spt+1 ∼ f̃θb(p)(s
p
t ,at), where b(p) is uniformly sampled from {1, . . . , b}. That is, the

bootstrap corresponding to each particle is chosen and fixed at the beginning of trajectory prediction.
To select an action, PETS uses model predictive control, or MPC, optimizing a length-T action
sequence at every time step using the cross-entropy method (CEM) and selecting the first action.

3.3 STATE UNCERTAINTY-DRIVEN EXPLORATION

While PETS can achieve good results on conventional goal-directed model-based reinforcement
learning problems, it does not by itself provide any mechanism for exploration other than adding
random noise. As we will show in our experimental evaluation, this is usually insufficient to extract
sufficient knowledge about the environment during the unsupervised training phase. In this section,
we propose a novel exploration method that can be combined readily with PETS to achieve good
coverage of the state space and lead to good performance on downstream tasks in phase 2, even
without any additional training. The key insight in this method is that PETS already provides us
with the facilities for estimating the uncertainty of state transitions, and we simply need to construct
a reward function to induce PETS to visit the states where it itself thinks transitions are uncertain.
Since PETS plans for maximization of the reward over the entire horizon, this automatically causes
it to take sequences of actions, each of which might have low uncertainty, if in the end it can reach
a state with high uncertainty.

We can estimate uncertainty at a state with PETS as following. At every time step t, we compute
the average over all the particles assigned to each bootstrap, and compute the variance vt over these
computed means. This computed variance encapsulates epistemic uncertainty, since disagreement
across models in ensemble is correlated with this variance. However, it is quite difficult to utilize vt
directly as a measure of epistemic uncertainty, since each component of vt will have different units
and magnitudes depending on how the state st is defined. Therefore, we divide vt by some baseline
variance wbase component-wise in order to eliminate units and allow the resulting components to be
of the same magnitude relative to each other. In our case, we set wbase to be the maximum aleatoric
variance, a trainable parameter of the PETS model that is present for model prediction stability. We
then set the reward at time step t to be

rt =
1

ds

ds∑
k=1

√
vit
wibase

.

With our choice of wbase, we can view the reward as encouraging the agent to move towards regions
where its predicted noise at a single time step is larger than what the model has seen in the training
data. Pretraining is then achieved by using the reward function defined above together with the
PETS algorithm described in the previous section.

4 EXPERIMENTAL RESULTS

In our experimental evaluation, we evaluate how well our two-phase unsupervised exploration algo-
rithm can transfer knowledge from the unsupervised phase to succeed on downstream tasks. We use
the HalfCheetah OpenAI gym environment, which we modify to obtain four distinct downstream
tasks: running forward to maximize lateral velocity, running backward to maximize negative lat-
eral velocity, tumbling forward to maximize angular velocity, and tumbling backward to maximize
negative angular velocity. As an example, Figure 2 shows rewards encouraging high velocities and
angular velocities in both directions. We first execute the exploration phase, which consists of 60
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Figure 2: Examples of learned gaits. top to bottom: Back flip, Front flip, Running backwards,
Running forwards.

Table 1: Improvement in performance after unsupervised learning for each method.

Task count random SU-PETS (ours) PETS-oracle
cheetah-forward 798 2813 3890 6238
cheetah-backward 990 582 3831 512
cheetah-forward-flip 1561 129 5916 2532
cheetah-backward-flip 699 369 5093 1843

episodes (60k time steps). Note that this number of time steps is substantially lower than the sam-
ple of complexity of deep reinforcement learning methods based on model-free learning, and was
selected because it is roughly on par with the number of time steps needed for PETS alone to learn
the forward running task when provided with the ground truth reward function. Recall that, during
our unsupervised learning phase, no reward information whatsoever is provided to the agent. All
experiments were repeated with three random seeds due to computational and time constraints, and
additional seeds will be evaluated for the final.

4.1 COMPARISONS TO OTHER METHODS
Task Reward Function

Running Forward vforward − 0.1 ||a||22
Running Backwards −vforward − 0.1 ||a||22

Back flips ω − 0.1 ||a||22
Front flips −ω − 0.1 ||a||22

Figure 3: Reward functions.

In order to provide a comparatively evaluation
of our approach, we three methods and one ora-
cle baseline. The methods we consider are: our
method, based on state uncertainty estimation, stan-
dard PETS with random exploration, and a modi-
fied version of PETS that uses the “#Exploration”
algorithm proposed by Tang et al. (2017), which is based on estimating pseudo-counts for each
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(b) Halfcheetah backward running task
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(c) Halfcheetah forward flipping task
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Figure 4: Results on four different Halfcheetah tasks: forwards running, backwards running, for-
ward flipping, and backwards flipping. For each of the four experiments, we show performance
during unsupervised training (left), which generally stays at zero for all methods, since they are not
attempting to perform the task, except for the oracle (PETS). Once provided with the task reward
(right), our method (state-uncertainty) achieves the best reward in all cases, except when compared
to the oracle on the forward task.

state and visiting states with low pseudo-count. Although this algorithm is designed to provide
exploration bonuses for model-free reinforcement learning, we found it to be straightforward to re-
purpose to the model-based setting. We used a static hashing method as proposed by Tang et al.
(2017), where the state space is discretized by using a hash function φ : S → Z, as done by Tang
et al. (2017). Let g : S → RD be any function and A ∈ Rk×D a matrix whose entries are sampled
from a standard Gaussian. If we let n(z) denote how many states seen so far hashes to z, then we
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define φ as

φ(s) =
1√

1 + n(sgn Ag(s))
,

where sgn Ag(s) ∈ {1,−1}k is interpreted as a binary integer. For our implementation, we define
g to be a function that normalizes s according to the statistics of the current dataset. Counts are
recomputed for all states with the addition of every new trajectory to account for the change in g.
Furthermore, counts are only updated once a trajectory is completed. We then use φ in place of
the previously described state uncertainty-based reward. This method is broadly representative of
novelty-seeking and count-based exploration methods in the literature.

Finally, we compare to an oracle baseline, which we label as “PETS (oracle),” which consists of the
PETS algorithm provided with the ground truth reward for the forward task. This oracle baseline
is provided as a point of comparison for the random method, which tends to stay very close to the
initial state.

The “jump-start” performance, calculated when the agent is first provided with a new task and
before any additional learning has taken place, is provided in Table 1 for all methods. Naturally,
the PETS (oracle) baseline performs the best on the forward task, since its “unsupervised” phase
directly provides the ground truth reward for this task as input. In all other cases, our method,
labeled SU-PETS, achieves substantially better performance, in many cases several times larger
than the alternative approaches. We also note that the pseudo-count based method often provides a
small improvement over random exploration, but not consistently. This supports the hypothesis that
exploration methods designed for model-free RL do not necessarily transfer effectively to model-
based RL, motivating the development of dedicated model-based exploration methods. Finally, we
note that actual performance of our method on the forward HalfCheetah task, which corresponds
to the standard benchmark task in the literature, is on par with good model-free methods (see, e.g.,
the comparisons from Haarnoja et al. (2018) and Chua et al. (2018)). This is despite the fact that
the algorithm has never before seen the reward function for this task, and was provided with only
60k steps of unsupervised training – far fewer than what model-free methods typically require even
when provided with the true reward function.

The plots in Figure 4 further illustrate learning curves for supervised finetuning, starting from the
“jump-start” performance reported in Table 1. The horizontal axis denotes the number of trials,
each of which consists of 1000 time steps. The axis starts at 60, to denote that 60 unsupervised
trials were used for pre-training, but the learner did not have access to task reward during these
trials. All methods improve rapidly due to the efficiency of model-based RL, but we see that the
pre-trained SU-PETS can successfully incorporate even small amounts of additional experience,
improving performance within just a couple of trials.

5 CONCLUSION

In this paper, we proposed an unsupervised reinforcement learning formulation consisting of two
phases: an exploration phase where the agent can acquire a model of the environment, and an eval-
uation phase where it is provided with a task reward, and must either achieve high performance on
this task immediately or after a short fine-tuning period. The same unsupervised exploration phase
can be used across multiple downstream tasks. In order to transfer knowledge from the unsuper-
vised phase, our method makes use of the framework of model-based RL. However, model-based
RL presents two major challenges in this setting: the model-based RL procedure itself must succeed
for new tasks, and the unsupervised phase must be provided with an adequate exploration objective
to facilitate good state coverage, such that the learned model is accurate in wide regions of the state
space. We show that both of these criteria can be fulfilled by using an uncertainty-aware model: the
uncertainty estimates prevent the planner from visiting parts of the state where the model is uncer-
tain during the second phase, and during the first phase it can be used to explicitly guide the agent
to visit diverse parts of the state space.

Although transfer in reinforcement learning has been a subject of extensive study in recent years,
to our knowledge our work is the first to formalize the unsupervised reinforcement learning prob-
lem in the context of model-based RL. We show that in fact this is a natural fit: the model is a
task-agnostic representation of the agent’s knowledge about the world, making it ideal to transfer
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from the unsupervised exploration phase to downstream tasks. Our method suggests a number of
promising directions for future work. First, we utilize a simple ensemble-based uncertainty estima-
tion technique. More sophisticated methods based on Bayesian neural networks might yield better
performance. Second, our fine-tuning phase naı̈ve utilizes greedy planning – if the agents knows
that it has a particular budget of trials for adaptation to a new task, these trials can also be used to
explore more carefully. By improving on these dimensions of our method, future work might enable
effective unsupervised reinforcement learning techniques that can solve new tasks with minimal or
no training for each one.
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