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ABSTRACT

In this paper, we focus on two challenges which offset the promise of sparse signal
representation, sensing, and recovery. First, real-world signals can seldom be de-
scribed as perfectly sparse vectors in a known basis, and traditionally used random
measurement schemes are seldom optimal for sensing them. Second, existing
signal recovery algorithms are usually not fast enough to make them applicable to
real-time problems. In this paper, we address these two challenges by presenting
a novel framework based on deep learning. For the first challenge, we cast the
problem of finding informative measurements by using a maximum likelihood
(ML) formulation and show how we can build a data-driven dimensionality reduc-
tion protocol for sensing signals using convolutional architectures. For the second
challenge, we discuss and analyze a novel parallelization scheme and show it
significantly speeds-up the signal recovery process. We demonstrate the significant
improvement our method obtains over competing methods through a series of
experiments.

1 INTRODUCTION

High-dimensional inverse problems and low-dimensional embeddings play a key role in a wide range
of applications in machine learning and signal processing. In inverse problems, the goal is to recover
a signal X ∈ RN from a set of measurements Y = Φ(X) ∈ RM , where Φ is a linear or non-linear
sensing operator. A special case of this problem is compressive sensing (CS) which is a technique for
efficiently acquiring and reconstructing a sparse signal (Donoho, 2006; Candès et al., 2006; Baraniuk,
2007). In CS Φ ∈ RM×N (M � N ) is typically chosen to be a random matrix resulting in a random
low-dimensional embedding of signals. In addition, X is assumed to be sparse in some basis Γ, i.e.,
X = ΓS, where ‖S‖0 = K � N .

While sparse signal representation and recovery have made significant real-world impact in various
fields over the past decade (Siemens, 2017), arguably their promise has not been fully realized.
The reasons for this can be boiled down to two major challenges: First, real-world signals are only
approximately sparse and hence, random/universal sensing matrices are sub-optimal measurement
operators. Second, many existing recovery algorithms, while provably statistically optimal, are slow
to converge. In this paper, we propose a new framework that simultaneously takes on both these
challenges.

To tackle the first challenge, we formulate the learning of the dimensionality reduction (i.e., signal
sensing operator) as a likelihood maximization problem; this problem is related to the Infomax prin-
ciple (Linsker, 1989) asymptotically. We then show that the simultaneous learning of dimensionality
reduction and reconstruction function using this formulation gives a lower-bound of the objective
functions that needs to be optimized in learning the dimensionality reduction. This is similar in spirit
to what Vincent et al. show for denoising autoencoders in the non-asymptotic setting (Vincent et al.,
2010). Furthermore, we show that our framework can learn dimensionality reductions that preserve
specific geometric properties. As an example, we demonstrate how we can construct a data-driven
near-isometric low-dimensional embedding that outperforms competing embedding algorithms like
NuMax (Hegde et al., 2015). Towards tackling the second challenge, we introduce a parallelization
(i.e., rearrangement) scheme that significantly speeds up the signal sensing and recovery process. We
show that our framework can outperform state-of-the-art signal recovery methods such as DAMP
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(Metzler et al., 2016) and LDAMP (Metzler et al., 2017) both in terms of inference performance and
computational efficiency.

We now present a brief overview of prior work on embedding and signal recovery. Beyond random
matrices, there are other frameworks developed for deterministic construction of linear (or nonlinear)
near-isometric embeddings (Hegde et al., 2015; Grant et al., 2013; Bah et al., 2013; Tenenbaum et al.,
2000; Weinberger & Saul, 2006; Broomhead & Kirby, 2001; 2005; Verma, 2013; Shaw & Jebara,
2007). However, these approaches are either computationally expensive, not generalizable to out-
of-sample data points, or perform poorly in terms of isometry. Our framework for low-dimensional
embedding shows outstanding performance on all these aspects with real datasets. Algorithms for
recovering signals from undersampled measurements can be categorized based on how they exploit
prior knowledge of a signal distribution. They could use hand-designed priors (Candès & Tao, 2005;
Donoho et al., 2009; Daubechies et al., 2004; Needell & Tropp, 2009), combine hand-designed
algorithms with data-driven priors (Metzler et al., 2017; Borgerding & Schniter, 2016; Kamilov &
Mansour, 2016; Chang et al., 2017; Gregor & LeCun, 2010), or take a purely data-driven approach
(Mousavi et al., 2015; Kulkarni et al., 2016; Mousavi & Baraniuk, 2017; Yao et al., 2017). As
one moves from hand-designed approaches to data-driven approaches, models lose simplicity and
generalizability while becoming more complex and more specifically tailored for a particular class of
signals of interest.

Our framework for sensing and recovering sparse signals can be considered as a variant of a convolu-
tional autoencoder where the encoder is linear and the decoder is nonlinear and specifically designed
for CS application. In addition, both encoder and decoder contain rearrangement layers which
significantly speed up the signal sensing and recovery process, as we discuss later. Convolutional
autoencoder has been previously used for image compression (Jiang et al., 2017); however, our work
is mainly focused on the CS application rather than image compression. In CS, measurements are
abstract and linear whereas in the image compression application measurements are a compressed
version of the original image and are nonlinear. Authors in Jiang et al. (2017) have used bicubic
interpolation for upscaling images; however, our framework uses a data-driven approach for upscaling
measurements. Finally, unlike the image compression application, when we deploy our framework
for CS and during the test phase, we do not have high-resolution images beforehand. In addition
to image compression, there have been previous works (Shi et al., 2017; Kulkarni et al., 2016) to
jointly learn the signal sensing and reconstruction algorithm in CS using convolutional networks.
However, the problem with these works is that they divide images into small blocks and recover
each block separately. This blocky reconstruction approach is unrealistic in applications such as
medical imaging (e.g. MRI) where the measurement operator is a Fourier matrix and hence we cannot
have blocky reconstruction. Since both papers are designed for block-based recovery whereas our
method senses/recovers images without subdivision, we have not compared against them. Note that
our method could be easily modified to learn near-optimal frequency bands for medical imaging
applications. In addition, Shi et al. (2017) and Kulkarni et al. (2016) use an extra denoiser (e.g.
BM3D, DCN) for denoising the final reconstruction while our framework does not use any extra
denoiser and yet outperforms state-of-the-art results as we show later.

Beside using convolutional autoencoders, authors in Wu et al. (2018) have introduced the sparse
recovery autoencoder (SRA). In SRA, the encoder is a fully-connected layer while in this work, the
encoder has a convolutional structure and is basically a circulant matrix. For large-scale problems,
learning a fully-connected layer (as in the SRA encoder) is significantly more challenging than learn-
ing convolutional layers (as in our encoder). In SRA, the decoder is a T -step projected subgradient.
However, in this work, the decoder is several convolutional layers plus a rearranging layer. It should
also be noted that the optimization in SRA is solely over the measurement matrix and T (which is the
number of layers in the decoder) scalar values. However, here, the optimization is performed over
convolution weights and biases that we have across different layers of our network.

2 ARCHITECTURE

In this section, we describe our framework for sparse signal representation and recovery and demon-
strate how we can learn (near-)optimal projections and speed up signal recovery using parallelization
along with convolutional layers. We call our framework by DeepSSRR, which stands for Deep Sparse
Signal Representation and Recovery.
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Figure 1: DeepSSRR uses convolutional layers to learn a transformation from signals to undersampled
measurements and an inverse transformation from undersampled measurements to signals. Note that
operations are performed right to left.

2.1 SENSING AND RECOVERY

DeepSSRR consists of two parts: A linear dimensionality reduction Φ : RN → RM for taking
undersampled measurements and a nonlinear inverse mapping fΛ(.) : RM → RN for recovering
signals from their undersampled measurements. We learn both Φ and fΛ(.) from training data.
DeepSSRR (Figure 1) is based primarily on deep convolutional networks (DCN) as this gives us
two advantages: (a) sparse connectivity of neurons, and (b) having shared weights which increases
learning speed compared to fully-connected networks. Therefore, we impose a convolutional network
architecture on both Φ and fΛ(.) while learning them. Please note that we assume that measurements
are linear; however, it is easy to extend DeepSSRR to adopt nonlinear measurements, i.e., allowing
for Φ(.) to be nonlinear by adding nonlinear units to convolutional layers. Given that the intervening
layers are linear, one might argue that one convolutional layer (i.e., a single circulant matrix) is
enough since we can merge kernel matrices into a single matrix. However, we consider a multi-layer
architecture for learning Φ for two reasons. First, computationally it is cheaper to have separate and
smaller kernels and second, it makes the implementation suitable for adding the aforementioned
nonlinearities.

We previously mentioned that in order to speed up the sensing and recovery process, we add a
parallelization scheme in learning both Φ and fΛ(.) that we describe in the following. Our original
sensing model was Y = ΦX where X ∈ RN and Y ∈ RM . Assume that the undersampling ratio,
i.e., MN is equal to 1

r . The left vector-matrix multiplication in Figure 2(a) denotes a convolution of
zero-padded input signal with size N ′ = rM ′ = r(M + q − 1), filter size rq, stride (i.e., filter shift
at every step) of size r, and output size of M . If we denote the input signal by X(in) and output by
X(out) and filter by W we can write

X
(out)
j =

rq∑
i=1

WiX
(in)
(j−1)r+i =

q−1∑
z=0

 rq∑
i=1

i
q≡z

WiX
(in)
(j−1)r+i

 . (1)

If we concatenate the sub-filters and sub-signals denoted in orange in the left vector-matrix multipli-
cation of Figure 2(a), we derive a new vector-matrix multiplication shown on the right side of Figure
2(a). There the input size is M ′ = (M + q − 1), filter size is q, stride size is 1, and output size is
M . Equation (1) states that the left convolution in Figure 2(a) can be written as the summation of r
separate and parallel convolutions shown on the right side. Much like in the sensing part (i.e., learning
Φ), as shown in Figure 2(b), a large strided deconvolution can be chopped into several parallel smaller
deconvolutions for the recovery part (i.e., learning fΛ(.)). Because of these parallelizations, the
computational complexity of calculating the outputs of layers in DeepSSRR is O(M) which is much
less than the one for typical iterative and unrolled algorithms O(MN) (e.g. DAMP and LDAMP
(Metzler et al., 2016; 2017)) or previous recovery algorithms based on deep learning O(N) (e.g.
DeepInverse (Mousavi & Baraniuk, 2017)).
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Figure 2: Graphical interpretation of convolution parallelization in sensing (right side of Figure 1)
and deconvolution parallelization in recovery (left side of Figure 1): Converting a strided convolution
(deconvolution) into the summation of several parallel convolutions (deconvolutions).

Algorithm 1 Learning a Near-Isometric Embedding

Input: Training Dataset D, Number of Epochs nepochs, Network Parameters Ωe
Output: A near-isometric embedding Φ : RN → RM
for i = 1 to nepochs do

- generate a randomly permuted training set→P(D)
for every batch Bj ∈ P(D) do

- compute embedding Φ(X) for every x ∈ Bj
- compute the loss function corresponding to Bj
as the maximum deviation from isometry

LBj = maxl,k

(
‖Φ(Xl)−Φ(Xk)‖2
‖xl−xk‖2 − 1

)2

end for
- compute the aggregated loss function
L(Ωe) = avgj(LBj )

- use ADAM optimizer and L(Ωe) to update Ωe
end for

As DeepSSRR architecture is shown in Figure 1, For learning Φ, we first divide the input signal (of
size N ) into r (r = N

M ) sub-signals (of size M ) such that all the congruent entries (modulo r) are in
the same sub-signal. Then we run parallel convolutions on r sub-signals and stack the outputs (of size
M ), deriving a tensor of length M and depth r. Through several convolutional layers, we turn this
tensor into a vector of size M which is the measurements vector Y and this completes construction
of Φ. Similarly and for learning fΛ(.), through several convolutional layers, we turn vector Y into a
tensor of length M and depth r. We then unstack channels similar to the sub-pixel layer architecture
(Shi et al., 2016) and derive the final reconstruction X̂ = fΛ(Y ) = fΛ(ΦX). We use MSE as a loss
function and ADAM (Kingma & Ba, 2014) to learn the convolution kernels and biases.
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Theoretical Insights. Notice that CS is the problem of recovering X ∈ RN from Y = ΦX ∈ RM
where M � N . Therefore, an important question is how does one design Φ? Conventional CS is
based on random projections of a signal which means that Φ is a random matrix in conventional CS.
However, since signals are usually structured, random projections are not optimal for successfully
recovering the corresponding signals. In many applications (e.g. medical imaging), we know a lot
about the signals we are acquiring. Hence, given a large-scale dataset of the same type of signals
of interest, we can learn (near-)optimal measurement matrices. As in the usual CS paradigm, if we
assume that the measurement matrix Φ is fixed, each Yi (1 ≤ i ≤M ) is a linear combination of Xjs
(1 ≤ j ≤ N ). We assume the training set Dtrain = {(X(1), Y (1)), (X(2), Y (2)), . . . , (X(`), Y (`))}
consists of ` pairs of signals and their corresponding measurements. Accordingly, we define the
optimal measurement operator Φ̂ as the one which maximizes the probability of training data given
the undersampled projections, Φ̂ = arg maxΦ

∏`
i=1 P(X(i)|Y (i)). According to the law of large

numbers, notice that we can write

Φ̂ = arg max
Φ

lim
`→∞

(∏̀
i=1

P(X(i)|Y (i))

) 1
`

(2)

= arg max
Φ

eE[log(P(X|Y ))]

(a)
= arg max

Φ
I(X,Y ),

where in (a) I denotes the mutual information, and the equality follows since the Shannon entropy
H(X) is constant for every Φ. According to (2), in the asymptotic setting, the measurement matrix
which maximizes the probability of training data given its measurements, maximizes the mutual
information between the input signal and undersampled measurements as well. Equation (2) is the
same as infomax principle first introduced in Linsker (1989).

Now, suppose that we have a function f(.) : RM → RN parametrized by Λ that receives undersam-
pled measurements Y (i) (1 ≤ i ≤ `) and reconstructs input signals as X̂(i) = fΛ(Y (i)) (1 ≤ i ≤ `).
We define the best reconstruction as the one which generates training data with the highest probability.
In other words, we define

Φ̂, Λ̂ = arg max
Φ,Λ

∏̀
i=1

P(X(i)|X̂(i)).

Therefore, in the asymptotic setting and similar to (2) we can write

Φ̂, Λ̂ = arg max
Φ,Λ

lim
`→∞

∏̀
i=1

P(X(i)|Y (i) = ΦX(i); Λ) (3)

= arg max
Φ,Λ

EP(X)[log(P(X|Y = ΦX; Λ))].

In practice and since we do not know the true underlying probability distribution of P(X|X̂), we
maximize a parametric distribution q(X|X̂) instead. In this case, in the asymptotic setting we can
write

Φ′,Λ′ = arg max
Φ,Λ

lim
`→∞

∏̀
i=1

q(X(i)|Y (i) = ΦX(i); Λ) (4)

= arg max
Φ,Λ

EP(X)[log(q(X|Y = ΦX; Λ))].

Therefore, since Kullback–Leibler divergence is bounded above zero we have
EP(X)[log(q(X|Y = ΦX; Λ))] ≤ EP(X)[log(P(X|Y = ΦX; Λ))],

meaning that learning a parametric distribution for reconstructing X from Y is equivalent to maxi-
mizing a lower-bound of true conditional entropy and accordingly, mutual information between the
input signal X and undersampled measurements Y . Hence, although we are not maximizing the
mutual information between X and Y , we are maximizing a lower-bound of it through learning Φ

and Λ. If we assume X = X̂ + ε, where ε and has an isotropic Gaussian distribution, then, since
q(X|X̂ = x̂) = N (x̂, λI), the above maximization may be performed by minimizing the mean
squared error (MSE).
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Table 1: The isometry constant values of DeepSSRR low-dimensional embedding matrix Φ with
different numbers of layers and filter sizes (M = 256).

Num. Layers 1 2 3 4
3× 3 Filters 0.289 0.237 0.186 0.174
5× 5 Filters 0.280 0.199 0.175 0.165

2.2 APPLICATIONS OF LOW-DIMENSIONAL EMBEDDING

DeepSSRR is mainly designed for jointly sensing and recovering sparse signals for CS applications.
However, we can specifically train the sensing part of DeepSSRR (without using the recovery part)
for several important dimensionality reduction tasks. The sensing part of DeepSSRR (i.e., the encoder
or matrix Φ) is a linear low-dimensional embedding that we can apply it to learn a mapping from
a subset of RN to RM (M < N ) that is a near-isometry, i.e., a mapping that nearly preserves all
inter-point distances. This problem has a range of applications, from approximate nearest neighbor
search to the design of sensing matrices for CS. Recall that, for a set Q ⊂ RN and ε > 0, the (linear
or nonlinear) mapping Φ : Q → RM is an ε-isometry w.r.t the `2-norm if for every x and x′ in Q we
have (1− ε)‖X −X ′‖2 ≤ ‖Φ(X)− Φ(X ′)‖2 ≤ (1 + ε)‖X −X ′‖2.
Algorithm 1 demonstrates the use of the low-dimensional embedding matrix Φ of DeepSSRR to
construct a near-isometric embedding. We achieve this by penalizing the maximum deviation from
isometry in several batches of data that are created by permuting the original training data in every
training epoch. In Section 3 we will show how our proposed algorithm works compared to competing
methods.

3 EXPERIMENTAL RESULTS

We now illustrate the performance of DeepSSRR against competing methods in several problems.

3.1 LINEAR LOW-DIMENSIONAL EMBEDDING

We first study the quality of the linear embeddings produced by DeepSSRR and its comparison with
two other linear algorithms – NuMax (Hegde et al., 2015) and random Gaussian projections. To show
the price of linearity, we also pit these against the nonlinear version of DeepSSRR and a DCN (eight
nonlinear convolutional layers + a max-pooling layer). We use the grayscale version of CIFAR-10
dataset (50,000 training + 10,000 test 32× 32 images). We train DeepSSRR and DCN according to
Algorithm 1 by using filters of size 5× 5. For DeepSSRR, depending on the size of the embedding
we use five to seven layers to learn Φ in Algorithm 1.

Figure 3(a) shows the size of embedding M as a function of the isometry constant ε for different
methods. For the random Gaussian projections we have considered 100 trials and the horizontal error
bars represent the deviation from average value. As we can see, the nonlinear version of DeepSSRR
low-dimensional embedding outperforms almost all the other methods by achieving a given isometry
constant with fewer measurements. The only exception is when ε > 0.6 (i.e., a regime where we are
not demanding a good isometry), where the DCN outperforms the nonlinear version of DeepSSRR;
though, with more number of parameters.

Effect of Number of Layers. A convolutional layer is equivalent to the product of a circulant
matrix and the vectorized input. The number of nonzero elements in a circulant matrix depends on
the size of the convolution filter. As the number of such layers grows, so does the number of nonzero
elements in the final embedding matrix. There are lower bounds (Nelson & Nguyen, 2013) on the
number of nonzero elements in a matrix to ensure it is near-isometric. Table 1 shows the isometry
constant value ε of DeepSSRR’s low-dimensional embedding with different number of layers and
different filter sizes. As we can see, ε gets smaller as the final embedding matrix has more nonzero
elements (more layers, larger filters).

Approximate Nearest Neighbors. Finding the closest k points to a given query datapoint is
challenging for high-dimensional datasets. One solution is to create a near-isometric embedding that
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Figure 3: (a) Embedding size M vs. empirical isometry constant ε for CIFAR-10 dataset. DeepSSRR
significantly outperforms other methods for a wide range of ε values. (b) Fraction of k-nearest
neighbors that are preserved in an M -dimensional embedding compared to the N -dimensional data
for CIFAR-10 images. For NuMax and random embedding M = 65 in (i) and M = 289 in (ii). For
deep networks (DeepSSRR and DCN) M = 64 in (i) and M = 256 in (ii).

maps datapoints from RN to RM (M < N ) and solving the approximate nearest neighbors (ANN)
problem in the embedded space. Fig. 3(b) compares the performance of different methods in the ANN
problem. It shows the fraction of k-nearest neighbors that are retained when embedding datapoints in
a low-dimensional space. We have considered two separate embedding problems: First M = 65 for
random embedding and NuMax andM = 64 for DCN and DeepSSRR’s low-dimensional embedding.
Second, M = 289 for random embedding and NuMax and M = 256 for DCN and DeepSSRR’s low-
dimensional embedding. Since the size of the embedding for DCN and DeepSSRR’s low-dimensional
embedding is smaller in both settings, they have a more challenging task to find the nearest neighbors.
As shown in Figure 3(b) DeepSSRR’s low-dimensional embedding outperforms other approaches.

3.2 SIGNAL RECOVERY

We divide the discussion of this section into two parts. In the first part, we study the performance of
DeepSSRR in the sparse signal recovery problem. The discussion of this part along with experimental
results showing the effect of learning a sparse representation and parallelization on different criteria
(e.g. phase transition, recovery accuracy and speed) are provided in Appendix A. In the second part
that we provide in the following, we study the performance of DeepSSRR for the compressive image
recovery problem.

Compressive Image Recovery. In this part, we study the compressive image recovery problem
by comparing DeepSSRR with two state-of-the-art algorithms DAMP (Metzler et al., 2016) and
LDAMP (Metzler et al., 2017). Both DAMP and LDAMP use random Gaussian Φ while DeepSSRR
learns a Φ. Here we run DAMP for 10 iterations and use a BM3D denoiser at every iteration. We
also run LDAMP for 10 layers and use a 20-layer DCN in every layer as a denoiser. For DeepSSRR,
we use 7 layers to learn the Φ and 7 layers to learn the fΛ(.). DeepSSRR is trained with an initial
learning rate of 0.001 that is changed to 0.0001 when the validation error stops decreasing. For
training, we have used batches of 128 images of size 64× 64 from ImageNet (Russakovsky et al.,
2015). Our training and validation sets include 10,000 and 500 images, respectively. Figure 4(a)
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Figure 4: Reconstructions of 512× 512 test images sampled at a rate of MN = 0.25. DeepSSRR does
a better job in recovering fine textures as compared to DAMP and LDAMP.

shows the reconstructions of the Bridge image (MN = 0.25). DeepSSRR outperforms both DAMP and
LDAMP in terms of accuracy (PSNR1). In particular, DeepSSRR does a better job at recovering the
fine textures inside an image. Figure 4(b) presents the reconstructions of the Man image (MN = 0.25).
Although in this example LDAMP outperforms DeepSSRR in terms of PSNR, DeepSSRR does a
better job at recovering fine textures. In this example LDAMP contains 10 unrolled iterations where
each iteration contains a 20-layer DCN. In other words, LDAMP uses 200 convolutional layers in
total. On the other hand, DeepSSRR uses only 7 convolutional layers to recover the Man image which
is significantly smaller compared to LDAMP’s number of layers. Iterative recovery algorithms and
their unrolled versions such as DAMP and LDAMP typically involve a matrix vector multiplication
in every iteration or layer, and hence their computational complexity is O(MN). In DeepSSRR, the
length of feature maps in every convolutional layer is equal to the size of embedding M . Therefore,
computing the output of typical middle layers will cost O(M) that is significantly cheaper than the
one for iterative or unrolled methods such as DAMP and LDAMP.

Effect of the Number of Layers. Our experiments indicate that having more number of layers
does not necessarily result in a better signal recovery performance. This phenomenon is also observed
in Dong et al. (2016) for the image super-resolution problem. The reason for this problem is the
increased non-convexity and non-smoothness of loss function as we add more layers. One way to
mitigate this problem is to add skip connections between layers. As shown in Li et al. (2017), skip
connections smooth the loss surface of deep networks and make the optimization problem simpler.

4 CONCLUSIONS

In this paper we introduced DeepSSRR, a framework that can learn both near-optimal sensing
schemes, and fast signal recovery procedures. Our findings set the stage for several directions for
future exploration including the incorporation of adversarial training and its comparison with other
methods (Bora et al., 2017; Dumoulin et al., 2016; Donahue et al., 2016). Furthermore, a major
question arising from our work is quantifying the generalizability of a DeepSSRR-learned model
based on the richness of training data. We leave the exploration of this for future research.

1PSNR = 10 log10(1/MSE) when the pixel range is 0 to 1.
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APPENDIX

A SPARSE SIGNAL RECOVERY

In this section we study the problem of sparse signal recovery by comparing DeepSSRR to another
DCN called DeepInverse (Mousavi & Baraniuk, 2017) and to the LASSO (Tibshirani, 1996) `1-solver
implemented using the coordinate descent algorithm of Friedman et al. (2010). We assume that
the optimal regularization parameter of the LASSO is given by an oracle in order to obtain its best
possible performance. Also, both training and test sets are wavelet-sparsified versions of 1D signals
of size N = 512 extracted from rows of CIFAR-10 images and contain 100,000 and 20,000 signals,
respectively. While DeepSSRR learns how to take undersampled measurements of data through
its low-dimensional embedding Φ, DeepInverse uses random undersampling (i.e., a random Φ).
DeepSSRR in this section has 3 layers for learning Φ and 3 layers for learning fΛ(.) with filter size
25× 1 while DeepInverse has five layers for learning the inverse mapping with filter size 125× 1.

Figure 5(a) shows the `1 phase transition plot (Donoho et al., 2009). This plot associates each
grid point to an ordered pair (δ, ρ) ∈ [0, 1]2, where δ = M

N denotes the undersampling ratio and
ρ = K

M denotes the normalized sparsity level. Each grid point (δ, ρ) represents the probability of
an algorithm’s success in signal recovery for that particular problem configuration. As the name
suggests, there is a sharp phase transition between values of (δ, ρ) where recovery fails with high
probability to when it succeeds with high probability. In Figure 5(a), the blue curve is the `1 phase
transition curve. The circular points denote the problem instances on which we study the performance
of DeepInverse and the LASSO. The square points denote the problem instances on which we have
trained and tested DeepSSRR. By design, all these problem instances are on the “failure” side of
the `1 phase transition. For DeepSSRR (square points), we have made recovery problems harder
by reducing δ and increasing ρ. The arrows between the square points and circular points in Figure
5(a) denote correspondence between problem instances in DeepSSRR and DeepInverse. Table 2
shows the average normalized MSE (NMSE) for the test signals. While DeepSSRR recovers the
same signals from fewer measurements, it outperforms DeepInverse and the LASSO. DeepSSRR
outperforms DeepInverse while having significantly fewer number of parameters (less than 70,000 vs.
approximately 200,000 parameters). This is mainly due to the fact that DeepSSRR learns Φ instead
of using a random Φ as is the case in DeepInverse and conventional CS.

Fig. 5(b) compares training speed of DeepInverse and DeepSSRR. It shows the MSE of recovering test
signals by DeepInverse and DeepSSRR in different training epochs. While training and test sets are
the same, the configuration for DeepInverse (and LASSO) is (δ, ρ) = (0.7, 0.72) and for DeepSSRR
is (δ, ρ) = (0.5, 1.003) which means we have given DeepSSRR a more challenging problem. As
shown in Fig. 5(b), due to the extra parallelization scheme (i.e., rearrangement layer) convergence is
significantly faster for DeepSSRR compared to DeepInverse. DeepSSRR outperforms the LASSO
after only 4 training epochs while DeepInverse takes 138 epochs. This fast convergence has two
major reasons: First, DeepSSRR has fewer number of parameters to learn. Second, DeepSSRR learns
adaptive measurements (i.e., low-dimensional embedding) instead of using random measurements
(i.e., random embedding).

Fig. 5(c) compares the probability of successful recovery by DeepSSRR and LASSO as measured
by 20,000 Monte Carlo test samples. For each undersampling ratio δ and for the j-th Monte Carlo
sample, we define the success variable ϕδ,j = I

(
‖X̂(j)−X(j)‖22
‖X(j)‖22

≤ 0.01
)

, where X(j) is the j-th

sample, X̂(j) is the recovered signal from measurements of j-th sample, and I(.) is the indicator
function. We denote empirical successful recovery probability by Pδ = 1

q

∑q
j=1 ϕδ,j . In Fig. 5(c),

our test samples are k-sparse where k = 34, and we have considered three different configurations:
M = 64, 128, 256 that correspond to above, on, and below the `1 phase transition, respectively. As
we can see in Fig. 5(c), DeepSSRR significantly outperforms LASSO when the problem configuration
lies above (failure phase) or on the `1 phase transition and LASSO slightly outperforms when the
problem configuration lies below the `1 phase transition (success phase). For a setting below the
`1 phase transition, we expect `1 minimization to behave the same as `0 minimization. However,
DeepSSRR should learn a transformation for transforming measurements back to the original signals.
Furthermore, Fig. 5(c) shows the price we pay for using a linear low-dimensional embedding ΦX
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Table 2: Average NMSE of test set signals recovered with different configurations and methods.

(δ, ρ) LASSO DeepInverse (δ, ρ) Ours

(0.3,0.42) 0.0466 0.0140 (0.25,1.12) 0.0137
(0.7,0.72) 0.0164 0.0104 (0.5,1.003) 0.0057

(a)
0 0.2 0.4 0.6 0.8 1

δ

0

0.2

0.4

0.6

0.8

1

1.2

ρ

(δ, ρ) = (0.5, 1.003)
(δ, ρ) = (0.25, 1.12)

(δ, ρ) = (0.7, 0.72)

(δ, ρ) = (0.3, 0.42)

ℓ1 Phase Transition

(b)
0 50 100 150 200

Training Epoch

0

2

4

6

8

T
es
t
M
S
E

DeepInverse
Ours
LASSO

MSEOurs = MSELASSO = 2.0330

MSEDeepInverse = MSELASSO = 2.0330

(c)

LASSO

Ours (Nonlinear Encoder + Nonlinear Decoder)

Ours (Linear Encoder + Nonlinear Decoder)
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Figure 5: (a) The blue curve is the `1 phase transition. The circular and square points denote problem
instances for DeepInverse and DeepSSRR, respectively. Arrows show different configurations for the
same set of signals. (b) Test MSE of DeepInverse and DeepSSRR during different training epochs.
DeepSSRR outperforms LASSO after significantly fewer training epochs compared to DeepInverse.
(c) Average probability of successful recovery for three different configurations: below, above, and on
the `1 phase transition. (d) Recovery example by DeepSSRR and LASSO (with optimal regularization
parameter). The (δ, ρ) lies on the failure side of `1 phase transition.

instead of a nonlinear one Φ(X). The main message of Figure 5(c) is that by using DeepSSRR we
can have a significantly better phase transition compared to `1-minimization.

Fig. 5(d) shows examples of signal recovery using DeepSSRR and LASSO. The test signal is
k-sparse where k = 64. DeepSSRR and LASSO recover this signal from M = 64 and M = 154
measurements, respectively. DeepSSRR has solved a more challenging recovery problem better than
the LASSO with optimal regularization parameter.

B COMPRESSIVE IMAGE RECOVERY

In this section we study another example of the compressive image recovery problem. The settings
we have used in here is exactly the same as Section 3.2. Fig. 6 shows the reconstruction of the
mandrill image (MN = 0.25). Fig. 6(a) shows the reconstruction of whole face and Fig. 6(b) shows
the reconstruction of nose and cheeks. As we can see, although LDAMP slightly outperforms our
method in Fig. 6(a), our method does a significantly better job in recovering the texture of nose and
cheeks in Fig. 6(b). Not only our method outperforms LDAMP by 0.9 dB, but also it has a better
visual quality and fewer artifacts (e.g. less over-smoothing).
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(i) Original Image (ii) Ours

(24.73 dB)

(iii) DAMP 

(24.68 dB) 

(iv) LDAMP 

(25.11 dB) 

(a) Mandrill’s Face

(i) Original Image (ii) Ours

(33.64 dB)

(iii) DAMP 

(32.37 dB) 

(iii) LDAMP 

(32.74 dB) 

(b) Mandrill’s Cheeks and Nose

Figure 6: (a) Reconstruction of the 512× 512 mandrill image sampled at the rate of MN = 0.25. (b)
Zoomed in reconstruction of mandrill’s nose and cheeks.

Algorithm DAMP LDAMP Ours
Running Time 77.24 sec 1.62 sec 0.41 sec

Table 3: Running time of different algorithms for the reconstruction of a 512 × 512 image where
undersampling ratio, i.e. MN is 0.25.

C RUNNING TIME

In this section we compare the running time of different algorithms. We consider the reconstruction of
a 512×512 image with an undersampling ratio of MN = 0.25. Table 3 shows the comparison between
different algorithms. We should note that authors in Metzler et al. (2017) have used coded diffraction
pattern in DAMP and LDAMP which simplifies the computational complexity of vector-matrix
multiplications in DAMP and LDAMP to O(N log(N)) instead of O(MN). In addition, we should
note that LDAMP uses filters of size 3 × 3 in its convolutional layers while we use filters of size
5× 5 in the convolutional layers of our architecture. Table 3 shows that our method is almost 4 times
faster than the LDAMP method.
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