
One-shot learning: From domain knowledge to action models

Abstract

Most approaches to learning action planning models heav-
ily rely on a significantly large volume of training samples or
plan observations. In this paper, we adopt a different approach
based on deductive learning from domain-specific knowl-
edge, specifically from logic formulae that specify constraints
about the possible states of a given domain. The minimal in-
put observability required by our approach is a single exam-
ple composed of a full initial state and a partial goal state. We
will show that exploiting specific domain knowledge enables
to constrain the space of possible action models as well as to
complete partial observations, both of which turn out helpful
to learn good-quality action models.

Introduction
The learning of action models in planning has been typi-
cally addressed with inductive learning data-intensive ap-
proaches. From the pioneer learning system ARMS (Yang
et al. 2007) to more recent ones (Mourão et al. 2012;
Zhuo and Kambhampati 2013; Kucera and Barták 2018), all
of them require thousands of plan observations or training
samples, i.e., sequences of actions as evidence of the execu-
tion of an observed agent, to obtain and validate an action
model. These approaches return the statistically significant
model that best explains the plan observations by minimiz-
ing some error metric. A model explains an observation if
a plan containing the observed actions is computable with
the model and the states induced by this plan also include
the possibly partially observed states. The limitation of pos-
ing model learning and validation as optimization tasks over
a set of observations is that it neither guarantees complete-
ness (the model may not explain all the observations) nor
correctness (the states induced by the execution of the plan
generated with the model may contain contradictory infor-
mation).

Differently, other approaches rely on symbolic-via learn-
ing. The Simultaneous Learning and Filtering (SLAF) ap-
proach (Amir and Chang 2008) exploits logical inference
and builds a complete explanation through a CNF formula
that represents the initial belief state, and a plan observa-
tion. The formula is updated with every action and state of
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the observation, thus representing all possible transition re-
lations consistent with it. SLAF extracts all satisfying models
of the learned formula with a SAT solver although the algo-
rithm cannot effectively learn the preconditions of actions. A
more recent approach addresses the learning of action mod-
els from plan observations as a planning task which searches
the space of all possible action models (Aineto et al. 2018).
A plan here is conceived as a series of steps that determine
the preconditions and effects of the action models plus other
steps that validate the formed actions in the observations.
The advantage of this approach is that it only requires input
samples of about a total of 50 actions.

This paper studies the impact of using mixed input data,
i.e, automatically-collected plan observations and human-
encoded domain-specific knowledge, in the learning of ac-
tion models. Particularly, we aim to stress the extreme case
of having a single observation sample and answer the ques-
tion to whether the lack of training samples can be over-
come with the supply of domain knowledge. The question
is motivated by (a) the assumption that obtaining enough
training observations is often difficult and costly, if not im-
possible in some domains (Zhuo 2015); (b) the fact that al-
though the physics of the real-world domain being modeled
are unknown, the user may know certain pieces of knowl-
edge about the domain; and (c) the desire for correct action
models that are usable beyond their fitness to a set of test-
ing observations. To this end, we opted for checking our hy-
pothesis in the framework proposed in (Aineto et al. 2018)
since this planning-based satisfiability approach allows us to
configure additional constraints in the compilation scheme,
it is able to work under a minimal set of observations and
uses an off-the-shelf planner1. Ultimately, we aim to com-
pare the informational power of domain observations (infor-
mation quantity) with the representational power of domain-
specific knowledge (information quality). Complementarily,
we restrict our attention to solely observations over fluents
as in many applications the actual actions of an agent may
not be observable (Sohrabi et al. 2016).

Next section summarizes basic planning concepts and
outlines the baseline learning approach (Aineto et al. 2018).
Then we formalize our one-shot learning task with domain

1We thank authors for providing us with the source files of their
learning system.



knowledge and subsequently we explain the task-solving
process. Section 5 presents the experimental evaluation and
last section concludes.

Background
We denote as F (fluents) the set of propositional state vari-
ables. A partial assignment of values to fluents is represented
by L (literals). We adopt the open world assumption (what
is not known to be true in a state is unknown) to implicitly
represent the unobserved literals of a state. Hence, a state s
includes positive literals (f ) and negative literals (¬f ) and it
is defined as a full assignment of values to fluents; |s| = |F |.
We use L(F ) to denote the set of all literal sets on F ; i.e. all
partial assignments of values to fluents.

A planning action a has a precondition list pre(a) ∈ L(F )
and a effect list eff(a) ∈ L(F ). The semantics of an action
a is specified with two functions: ρ(s, a) denotes whether a
is applicable in a state s and θ(s, a) denotes the successor
state that results from applying a in a state s. Then, ρ(s, a)
holds iff pre(a) ⊆ s, i.e. if its preconditions hold in s. The
result of executing an applicable action a in a state s is a new
state θ(s, a) = {s \ ¬eff(a) ∪ eff(a)}, where ¬eff(a) is the
complement of eff(a), which is subtracted from s so as to
ensure that θ(s, a) remains a well-defined state. The subset
of effects of an action a that assign a positive value to a fluent
is called positive effects and denoted by eff+(a) ∈ eff(a)
while eff−(a) ∈ eff(a) denotes the negative effects.

A planning problem is a tuple P = 〈F,A, I,G〉, where I
is the initial state andG ∈ L(F ) is the set of goal conditions
over the state variables. A plan π is an action sequence π =
〈a1, . . . , an〉, with |π| = n denoting its plan length. The ex-
ecution of π in I induces a trajectory 〈s0, a1, s1, . . . , an, sn〉
such that s0 = I and, for each 1 ≤ i ≤ n, it holds ρ(si−1, ai)
and si = θ(si−1, ai). A plan π solves P iff the induced tra-
jectory reaches a final state sn such that G ⊆ sn.

The baseline learning approach our proposal draws upon
uses actions with conditional effects (Aineto et al. 2018).
The conditional effects of an action ac is composed of two
sets of literals: C ∈ L(F ), the condition, and E ∈ L(F ),
the effect. The triggered effects resulting from the action ap-
plication (conditional effects whose conditions hold in s) is
defined as effc(s, a) =

⋃
C�E∈cond(ac),C⊆sE.

Learning action models as planning
The approach for learning STRIPS action models presented
in (Aineto et al. 2018), which we will use as our base-
line learning system (hereafter BLS, for short), is a com-
pilation scheme that transforms the problem of learning
the preconditions and effects of action models into a plan-
ning task P ′. A STRIPS action model ξ is defined as
ξ = 〈name(ξ), pars(ξ), pre(ξ), add(ξ), del(ξ)〉, where
name(ξ) and parameters, pars(ξ), define the header of ξ;
and pre(ξ), del(ξ) and add(ξ)) are sets of fluents that repre-
sent the preconditions, negative effects and positive effects,
respectively, of the actions induced from the action model ξ.

The BLS receives as input an empty domain model,
which only contains the headers of the action models,
and a set of observations of plan executions, and creates

a propositional encoding of the planning task P ′. Let
Ψ be the set of predicates2 that shape the variables F .
The set of propositions of P ′ that can appear in pre(ξ),
del(ξ) and add(ξ) of a given ξ, denoted as Iξ,Ψ, are
FOL interpretations of Ψ over the parameters pars(ξ).
For instance, in a four-operator blocksworld (Slaney
and Thiébaux 2001), the Iξ,Ψ set contains five elements
for the pickup(v1) model, Ipickup,Ψ={handempty,
holding(v1),clear(v1),ontable(v1), on(v1, v1)}
and eleven elements for the model of stack(v1,v2),
Istack,Ψ={handempty, holding(v1), holding(v2),
clear(v1),clear(v2),ontable(v1),ontable(v2),
on(v1, v1),on(v1, v2), on(v2, v1), on(v2, v2)}. Hence,
solving P ′ consists in determining which elements of Iξ,Ψ
will shape the preconditions, positive and negative effects
of each action model ξ.

The decision as to whether or not an element of Iξ,Ψ will
be part of pre(ξ), del(ξ) or add(ξ) is given by the plan
that solves P ′. Specifically, two different sets of actions are
included in the definition of P ′: insert actions, which insert
preconditions and effects on an action model; and apply
actions, which validate the application of the learned action
models in the input observations. Roughly speaking, in the
blocksworld domain, the insert actions of a plan that solves
P ′ will look like (insert pre stack holding v1),
(insert eff stack clear v1),
(insert eff stack clear v2), where the second
action denotes a positive effect and the third one
a negative effect both to be inserted in the model
of stack; and the second set of actions of the
plan that solves P ′ will be like (apply unstack
blockB blockA),(validate 1),(apply putdown
blockB),(validate 2), where the validate actions
denote the points at which the states generated through the
apply actions must be validated with the observations of
plan executions.

In a nutshell, the output of the BLS compilation is a plan
that completes the empty input domain model by specifying
the preconditions and effects of each action model such that
the validation of the completed model over the input obser-
vations is successful.

One-shot learning task
The one-shot learning task to learn action models from
domain-specific knowledge is defined as a tuple Λ =
〈M,O,Φ〉, where:

• M is the initial empty model that contains only the header
of each action model to be learned.

• O is a single learning example or plan observation; i.e. a
sequence of (partially) observable states representing the
evidence of the execution of an observed agent.

• Φ is a set of logic formulae that define domain-specific
knowledge.

2The initial state of an observation is a full assignment of values
to fluents, |s0| = |F |, and so the predicates Ψ are extractable from
the observed state s0.



Combination Meaning
¬pre ξ e ∧ ¬eff ξ e e belongs neither to the preconditions

nor effects of ξ
(e /∈ pre(ξ) ∧ e /∈ add(ξ) ∧ e /∈ del(ξ))

pre ξ e ∧ ¬eff ξ e e is only a precondition of ξ
(e ∈ pre(ξ) ∧ e /∈ add(ξ) ∧ e /∈ del(ξ))

¬pre ξ e ∧ eff ξ e e is a positive effect of ξ
(e /∈ pre(ξ) ∧ e ∈ add(ξ) ∧ e /∈ del(ξ))

pre ξ e ∧ eff ξ e e is a negative effect of ξ
(e ∈ pre(ξ) ∧ e /∈ add(ξ) ∧ e ∈ add(ξ))

Figure 1: Combinations of the fluent propositional encoding and
their meaning

A solution to a learning task Λ = 〈M,O,Φ〉 is a model
M′ s.t. there exists a plan computable withM′ that is con-
sistent with the headers ofM, the observed states of O and
the given domain knowledge in Φ.

The space of STRIPS action models
We analyze here the solution space of a learning task Λ =
〈M,O,Φ〉; i.e., the space of STRIPS action models. In prin-
ciple, for a given action model ξ, any element of Iξ,Ψ can
potentially appear in pre(ξ), del(ξ) and add(ξ). In practice,
the actual space of possible STRIPS schemata is bounded by:

1. Syntactic constraints. The solution M′ must be con-
sistent with the STRIPS constraints: del(ξ) ⊆ pre(ξ),
del(ξ)∩add(ξ) = ∅ and pre(ξ)∩add(ξ) = ∅. Typing con-
straints would also be a type of syntactic constraint (Mc-
Dermott et al. 1998).

2. Observation constraints. The solutionM′ must be con-
sistent with these semantic constraints derived from the
learning samples O, which in our case is a single plan
observation. Specifically, the states induced by the plan
computable with M′ must comprise the observed states
of the sample, which further constrains the space of pos-
sible action models.

Considering only the syntactic constraints, the size of the
space of possible STRIPS models is given by 22×|IΨ,ξ| be-
cause one element in Iξ,Ψ can appear both in the precon-
ditions and effects of ξ. In this work, the belonging of an
e ∈ IΨ,ξ to the preconditions, positive effects or negative
effects of ξ is handled with a refined propositional encoding
that uses fluents of two types, pre ξ e and eff ξ e, instead
of the three fluents used in the BLS. The four possible com-
binations of these two fluents are sumarized in Figure 1. This
compact encoding allows for a more effective exploitation of
the syntactic constraints, and also yields the solution space
of Λ to be the same as its search space.

The sampling space
The single plan observation of O is defined as O =
〈so0, so1 . . . , som〉, a sequence of possibly partially observed
states except for the initial state so0 which is a fully observ-
able state. As commented before, the predicates Ψ and the
objects that shape the fluents F are then deducible from so0.
A partially observed state soi , 1 ≤ i ≤ m, is one in which

|soi | < |F |; i.e., a state in which at least a fluent of F was not
observed. Intermediate states can be missing, meaning that
they are unobservable, so transiting between two consecu-
tive observed states in O may require the execution of more
than one action (θ(soi , 〈a1, . . . , ak〉) = soi+1 (with k ≥ 1
is unknown but finite). The minimal expression of a learn-
ing sample must comprise at least two state observations, a
full initial state so0 and a partially observed final state som so
m ≥ 1.

Figure 2 shows a learning example that contains an initial
state of the blocksworld where the robot hand is empty and
three blocks (namely blockA, blockB and blockC) are on
top of the table and clear. The observation represents a par-
tially observable final state in which blockA is on top of
blockB and blockB on top of blockC.

(:predicates (on ?x ?y) (ontable ?x)
(clear ?x) (handempty)
(holding ?x))

(:objects blockA blockB blockC)

(:init (ontable blockA) (clear blockA)
(ontable blockB) (clear blockB)
(ontable blockC) (clear blockC)
(handempty))

(:observation (on blockA blockB) (on blockB blockC))

Figure 2: Example of a two-state observationn for the learning
STRIPS action models.

The domain-specific knowledge
Our approach is to introduce domain-specific knowledge in
the form of state constraints to further restrict the space of
the action models. Back to the blocksworld domain, one can
argue that on(v1,v1) and on(v2,v2) will not appear in the
pre(ξ), del(ξ) and add(ξ) of any action model ξ because,
in this specific domain, a block cannot be on top of itself.
The notion of state constraint is very general and has been
used in different areas of AI and for different purposes. In
planning, state constraints are compact and abstract repre-
sentations that relate the values of variables in each state tra-
versed by a plan, and allow to specify the set of states where
a given action is applicable, the set of states where a given
axiom or derived predicate holds or the set of states that are
considered goal states (Haslum et al. 2018).

State invariants is a useful type of state constraints for
computing more compact state representations of a given
planning problem (Helmert 2009) and for making satisfia-
bility planning or backward search more efficient (Rintanen
2014; Alcázar and Torralba 2015). Given a planning prob-
lem P = 〈F,A, I,G〉, a state invariant is a formula φ that
holds in I , I |= φ, and in every state s built out of F that is
reachable by applying actions of A in I .

A mutex (mutually exclusive) is a state invariant that takes
the form of a binary clause and indicates a pair of differ-
ent properties that cannot be simultaneously true (Kautz and
Selman 1999). For instance in a three-block blocksworld,
¬on(blockA, blockB)∨¬on(blockA, blockC) is a mutex be-
cause blockA can only be on top of a single block.



Recently, some works point at extracting lifted invariants,
also called schematic invariants (Rintanen 2017), that hold
for any possible state and any possible set of objects. In-
variant templates obtained by inspecting the lifted represen-
tation of the domain have also been exploited for deriving
lifted mutex (Bernardini et al. 2018). In this work we ex-
ploit domain-specific knowledge that is given as schematic
mutex. We pay special attention to schematic mutex because
they identify mutually exclusive properties of a given type
of objects (Fox and Long 1998) and because they enable (1)
an effective completion of a partially observed state and (2)
an effective pruning of inconsistent STRIPS action models.

We define a schematic mutex as a 〈p, q〉 pair where
both p, q ∈ Iξ,Ψ are predicates that shape the precon-
ditions or effects of a given action scheme ξ and they
satisfy the formulae ¬p ∨ ¬q, considering that their cor-
responding variables are universally quantified. For in-
stance, holding(v1) and clear(v1) from the blocksworld
are schematic mutex while clear(v1) and ontable(v1) are
not because ∀v1,¬clear(v1) ∨ ¬ontable(v1) does not hold
for every possible state. Figure 3 shows an example of four
clauses that define schematic mutexes for the blocksworld
domain.

∀x1, x2 ¬ontable(x1) ∨ ¬on(x1, x2).
∀x1, x2 ¬clear(x1) ∨ ¬on(x2, x1).
∀x1, x2, x3 ¬on(x1, x2) ∨ ¬on(x1, x3) such that x2 6= x3.
∀x1, x2, x3 ¬on(x2, x1) ∨ ¬on(x3, x1) such that x2 6= x3.

Figure 3: Schematic mutexes for the blocksworld domain.

Action model learning from schematic mutexes
In this section, we show how to exploit schematic mutexes
for solving the learning task Λ = 〈M,O,Φ〉.

Completing partially observed states with
schematic mutexes
The addition of new literals to complete the partial states
〈so1 . . . , som〉 of an observation O using a set of schematic
mutexes Φ is done in a pre-processing stage.

Let Ω be the set of objects that appear in F as the val-
ues of the arguments of the predicates Ψ, and φ = 〈p, q〉 a
schematic mutex. There exist many possible instantiations
of φ of the type 〈p(ω), q(ω′)〉 with objects of Ω, where
ω ⊆ Ω|args(p)| and ω′ ⊆ Ω|args(q)|. Let us now assume that
the instantiation p(ω) ∈ soj , (1 ≤ j ≤ m), being soj a partially
observed state of O. Then, two situations may occur: (a)
¬q(ω′) ∈ soj , in which case the expression ¬p(ω) ∨ ¬q(ω′)
holds in soj ; or (b) ¬q(ω′) /∈ soj , in which case the literal
has not been observed in soj and so we can safely com-
plete the state with ¬q(ω′) (the same applies inversely, when
q(ω′) ∈ soj but ¬p(ω) /∈ soj ). In other words, if we find that
one component of a schematic mutex is positively observed
in a state and the other component is not observable in such
state, we can complete the state with the missing negative

ID Action New conditional effect
1 (insert pre)ξ,p {pre ξ q}� {invalid}
2 (insert eff)ξ,p {pre ξ q ∧ eff ξ q ∧ pre ξ p}� {invalid}
3 (insert eff)ξ,p {¬pre ξ q ∧ eff ξ q ∧ ¬pre ξ p}� {invalid}
4 (apply)ξ,ω {¬pre ξ p ∧ eff ξ p∧

q(ω) ∧ ¬pre ξ q}� {invalid}
5 (apply)ξ,ω {¬pre ξ p ∧ eff ξ p∧

q(ω) ∧ ¬eff ξ q}� {invalid}

Figure 4: Summary of the new conditional effects added to the
classical planning compilation for the learning of STRIPS action
models.

literal. For instance, if the literal holding(blockA) is ob-
served in a particular state and Φ contains the schematic mu-
tex ¬holding(v1) ∨ ¬clear(v1), we extend the state obser-
vation with literal ¬clear(blockA) (despite this particular
literal being initially unknown).

Pruning inconsistent action models with schematic
mutexes
Our approach to learning action models consistent with the
schematic mutexes in Φ is to ensure that newly generated
states induced by the learned actions do not introduce any
inconsistency. This is implemented by adding new condi-
tional effects to the insert and apply actions of the BLS
compilation. Figure 4 summarizes the new conditional ef-
fects added to the compilation and next, we describe them in
detail:

1-3 For every schematic mutex 〈p, q〉, where both p and q
belong to Iξ,Ψ, one conditional effect is added to the
(insert pre)ξ,p actions to prevent the insertion of two
preconditions that are schematic mutex. Likewise, two
conditional effects are added to the (insert eff)ξ,p ac-
tions, one to prevent the insertion of two positive effects
that are schematic mutex and another one to prevent two
mutex negative effects.

4-5 For every schematic mutex 〈p, q〉, where both p and q
belong to Iξ,Ψ, two conditional effects are added to the
(apply)ξ,ω actions to prevent positive effects that are in-
consistent with an input observation (in (apply)ξ,ω ac-
tions the variables in pars(ξ) are bounded to the objects
in ω that appear in the same position).

In theory, conditional effects of the type 4-5 are suffi-
cient to guarantee that all the states traversed by a plan pro-
duced by the compilation are consistent with the input set of
schematic mutexes Φ (obviously provided that the input ini-
tial state so0 is a valid state). In practice we include also con-
ditional effects of the type 1-3 because they prune invalid ac-
tion models at an earlier stage of the planning process (these
effects extend the insert actions that always appear first in
the solution plans).

Compilation properties
Lemma 1. Soundness. Any classical plan π that solves P ′
(planning task that results from the compilation) produces a
modelM′ that solves the Λ = 〈M,O,Φ〉 learning task.



Proof. According to the P ′ compilation, once a given precondi-
tion or effect is inserted into the domain modelM it cannot be un-
done. In addition, once an action model is applied it cannot be mod-
ified. In the compiled planning task P ′, only (apply)ξ,ω actions
can update the value of the state fluents F . This means that a state
consistent with an observation som can only be achieved executing
an applicable sequence of (apply)ξ,ω actions that, starting in the
corresponding initial state so0, validates that every generated inter-
mediate state sj (0 < j ≤ m), is consistent with the input state
observations and state-invariants. This is exactly the definition of
the solution condition for modelM′ to solve the Λ = 〈M,O,Φ〉
learning task.

Lemma 2. Completeness. Any model M′ that solves the
Λ = 〈M,O,Φ〉 learning task can be computed with a clas-
sical plan π that solves P ′.

Proof. By definition Iξ,Ψ fully captures the set of elements that
can appear in an action model ξ using predicates Ψ. In addition the
P ′ compilation does not discard any model M′ definable within
Iξ,Ψ that satisfies the mutexes in Φ. This means that, for every
model M′ that solves the Λ = 〈M,O,Φ〉, we can build a plan
π that solves P ′ by selecting the appropriate (insert pre)ξ,e and
(insert eff)ξ,e actions for programming the precondition and ef-
fects of the corresponding action models in M′ and then, select-
ing the corresponding (apply)ξ,ω actions that transform the initial
state observation so0 into the final state observation som.

The size of P ′ depends on the arity of the predicates in Ψ,
that shape variables F , and the number of parameters of the
action models, |pars(ξ)|. The larger these arities, the larger
|Iξ,Ψ|. The size of Iξ,Ψ is the most dominant factor of the
compilation because it defines the pre ξ e/eff ξ e fluents,
the corresponding set of insert actions, and the number
of conditional effects in the (apply)ξ,ω actions. Note that
typing can be used straightforward to constrain the FOL in-
terpretations of Ψ over the parameters pars(ξ), which will
significantly reduce |Iξ,Ψ| and hence the size of P ′ output
by the compilation.

Classical planners tend to prefer shorter solution plans, so
our compilation (as well as the BLS) may introduce a bias to
Λ = 〈M,O,Φ〉 learning tasks preferring solutions that are
referred to action models with a shorter number of precondi-
tions/effects. In more detail, all {pre ξ e, eff ξ e}∀e∈Iξ,Ψ
fluents are false at the initial state of our P ′ compilation so
classical planners tend to solve P ′ with plans that require a
smaller number of insert actions.

This bias can be eliminated defining a cost function for
the actions in P ′ (e.g. insert actions have zero cost while
(apply)ξ,ω actions have a positive constant cost). In prac-
tice we use a different approach to disregard the cost of
insert actions since classical planners are not proficient
at optimizing plan cost with zero-cost actions. Instead, our
approach is to use a SAT-based planner (Rintanen 2014) that
can apply all actions for inserting preconditions in a single
planning step (these actions do not interact). Further, the ac-
tions for inserting action effects are also applied in another
single planning step. The plan horizon for programming any
action model is then always bounded to 2. The SAT-based
planning approach is also convenient for its ability to deal

with planning problems populated with dead-ends and be-
cause symmetries in the insertion of preconditions/effects
into an action model do not affect the planning performance.

Evaluation
This section evaluates the improvement when using domain-
specific knowledge for learning action models.

Reproducibility The domains used in the evaluation are
IPC domains that satisfy the STRIPS requirement (Fox and
Long 2003), taken from the PLANNING.DOMAINS reposi-
tory (Muise 2016). For each domain we generated 10 learn-
ing examples of length 10 via random walks and report av-
erage values (only a single example is considered at each
learning episode). We also introduce a new parameter, the
degree of observability σ, which indicates de probability of
observing a literal in an intermediate state. This parameter
is used to build observations with varying degrees of incom-
pleteness. All experiments are run on an Intel Core i5 3.10
GHz x 4 with 16 GB of RAM.

For the sake of reproducibility, the compilation source
code, evaluation scripts, used benchmarks and input
state-invariants are fully available at the repository
https://github.com/anonsub/oneshot-learning.

Metrics The learned models are evaluated using the pre-
cision and recall metrics for action models proposed in
(Aineto et al. 2018), which compare the learned models
against the reference model.

Precision measures the correctness of the learned models.
Formally, Precision = tp

tp+fp , where tp is the number of
true positives (predicates that appear in both the learned and
reference action models) and fp is the number of false posi-
tives (predicates that appear in the learned action model but
not in the reference model). Recall, on the other hand, mea-
sures the completeness of the model and is formally defined
as Recall = tp

tp+fn where fn is the number of false neg-
atives (predicates that should appear in the learned action
model but are missing).

Observability versus Knowledge
In our first experiment, we seek to answer the question as to
whether the plan observation (single learning example) ofO
is replaceable by the domain knowledge encoded in Φ. To
this end, we evaluate the following 4 settings:

1. Minimal observability: This is the baseline setting where
we use the minimal expression of the single learning ex-
ample; i.e., a fully observed initial state and a partially
observed final state. This setting is labeled as σ = 0 with
no Φ.

2. Only knowledge (Φ): In this setting we add domain
knowledge encoded as schematic mutexes to the baseline
scenario (σ = 0 with Φ).

3. Only observability: We use a more complete observation
where intermediate states of the learning example are par-
tially observed (σ = 0.2 with no Φ).

4. Both observability and Φ: We use both a more complete
observation and schematic mutexes (σ = 0.2 with Φ).



setting 1 setting 2 setting 3 setting 4
σ = 0 w/o Φ σ = 0 with Φ σ = 0.2 w/o Φ σ = 0.2 with Φ

|Φ| P R P R P R P R
blocks 9 0.51 0.36 0.54 0.23 0.59 0.49 0.79 0.70
driverlog 8 0.48 0.36 0.34 0.34 0.41 0.31 0.69 0.49
ferry 2 0.47 0.39 0.58 0.43 0.50 0.51 0.61 0.72
floor-tile 7 0.39 0.39 0.48 0.45 0.64 0.48 0.74 0.52
grid 3 0.40 0.31 0.42 0.31 0.43 0.31 0.50 0.37
gripper 5 0.76 0.50 0.77 0.51 0.85 0.74 0.92 0.81
hanoi 3 0.88 0.71 0.73 0.81 0.94 0.78 1.00 0.81
n-puzzle 3 0.94 0.76 0.95 0.81 0.97 0.86 0.97 0.89
parking 8 0.54 0.41 0.60 0.40 0.51 0.40 0.51 0.41
transport 4 0.45 0.45 0.53 0.46 0.49 0.37 0.94 0.75
zeno-travel 4 0.73 0.36 0.80 0.36 0.79 0.36 0.89 0.50

0.60 0.45 0.61 0.46 0.65 0.51 0.78 0.63

Table 1: Observability versus knowledge

Table 1 shows the average values of precision (P) and re-
call (R) for each domain in the four tested settings. The table
also reports the number of schematic mutexes (|Φ|) used for
each domain. Comparing the settings only domain knowl-
edge (setting 2) with only observability (setting 3), we can
see that slightly better results are obtained with the latter,
meaning that observability is more informative than the used
domain knowledge. On the other hand, the gain of using Φ
under minimal observability (setting 1 compared to setting
2) is rather marginal. While these results might indicate a
general preference for observations over knowledge, when
comparing setting 3 with setting 4, we can observe a signifi-
cant improvement in the quality of the learned models. This
indicates that the payoff of using Φ is noticeable when the
learning example has a certain degree of observability.

Using knowledge to counter incompleteness
The previous experiment reveals that observations are not
totally replaceable by domain knowledge; but also shows
that given a minimum degree of observability, using Φ en-
riches both the observations and the learning process and
better models are learnable. In this next experiment we mea-
sure the improvement provided by Φ at increasing degrees
of observability of the learning example.
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Figure 5: Comparison of the precision of the learned models
for increasing degrees of observability.

Figures 5 and 6 compare the Precision and Recall of the
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Figure 6: Comparison of the recall of the learned models for
increasing degrees of observability.

learned models with and without domain knowledge. The
points plotted in these figures are average values across all
the domains presented in Table 1. The results show that us-
ing Φ significantly improves the learned models no matter
how complete the learning examples are. An interesting and
revealing aspect from the figures is that the quality of the ac-
tion models learned with 30%-observable learning examples
and Φ is comparable to the quality obtained with a 100%-
observable example. Hence, domain knowledge can make
up for the lack of completeness in the learning examples.

Conclusions

We present an approach to learn action models that
builds upon a former compilation-to-planning learning sys-
tem (Aineto et al. 2018). Our proposal studies the gains
of using domain-specific knowledge when the availability
(amount and observability) of learning examples is very lim-
ited. Introducing domain knowledge encoded as schematic
mutexes allows to narrow down the search space of the
learning task and improve overall the performance of the
learning system to the point that it offsets the lack of learn-
ing examples.

In a theoretical work that analyzes the relation between
the number of observed trajectory plans and the guarantee
for a learned action model to achieve the goal (Stern and
Juba 2017), authors conclude that the number of trajecto-
ries needed scales gracefully and the guarantee grows lin-
early with the number of predicates and quasi-linearly with
the number of actions. This evidences that learning accu-
rate models is heavily dependent on the number and quality
(observability) of the learning examples. In this sense, our
proposal comes to alleviate this dependency by relying on
easily deducible domain knowledge. It is not only capable
of learning from a single non-fully observable learning ex-
ample but also proves that learning from a 30%-observable
example with domain-specific knowledge is comparable to
learning from a complete plan observation.
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don, Sylvie Thiébaux, Vikas Shivashankar, and Dana S.
Nau. Extending classical planning with state constraints:
Heuristics and search for optimal planning. Journal of Arti-
ficial Intelligence Research, 62:373–431, 2018.
Malte Helmert. Concise finite-domain representations for
pddl planning tasks. Artificial Intelligence, 173(5-6):503–
535, 2009.
Henry Kautz and Bart Selman. Unifying SAT-based and
graph-based planning. In IJCAI, volume 99, pages 318–325,
1999.
Jirı́ Kucera and Roman Barták. LOUGA: learning plan-
ning operators using genetic algorithms. In Pacific Rim
Knowledge Acquisition Workshop, PKAW-18, pages 124–
138, 2018.
Drew McDermott, Malik Ghallab, Adele Howe, Craig
Knoblock, Ashwin Ram, Manuela Veloso, Daniel Weld, and
David Wilkins. PDDL – The Planning Domain Definition
Language, 1998.
Kira Mourão, Luke S. Zettlemoyer, Ronald P. A. Petrick,
and Mark Steedman. Learning STRIPS operators from noisy
and incomplete observations. In Conference on Uncertainty
in Artificial Intelligence, UAI-12, pages 614–623, 2012.
Christian Muise. Planning.domains. ICAPS system demon-
stration, 2016.
Jussi Rintanen. Madagascar: Scalable planning with SAT.
In International Planning Competition, (IPC-2014), 2014.
Jussi Rintanen. Schematic invariants by reduction to ground
invariants. In National Conference on Artificial Intelligence,
AAAI-17, pages 3644–3650, 2017.
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