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ABSTRACT

We incorporate Tensor-Product Representations within the Transformer in order
to better support the explicit representation of relation structure. Our Tensor-
Product Transformer (TP-Transformer) sets a new state of the art on the recently-
introduced Mathematics Dataset containing 56 categories of free-form math word-
problems. The essential component of the model is a novel attention mechanism,
called TP-Attention, which explicitly encodes the relations between each Trans-
former cell and the other cells from which values have been retrieved by attention.
TP-Attention goes beyond linear combination of retrieved values, strengthening
representation-building and resolving ambiguities introduced by multiple layers
of standard attention. The TP-Transformer’s attention maps give better insights
into how it is capable of solving the Mathematics Dataset’s challenging problems.
Pretrained models and code will be made available after publication.

1 INTRODUCTION

In this paper we propose a variation of the Transformer (Vaswani et al., 2017) that is designed to
allow it to better incorporate structure into its representations. We test the proposal on a task where
structured representations are expected to be particularly helpful: math word-problem solving,
where, among other things, correctly parsing expressions and compositionally evaluating them is
crucial. Given as input a free-form math question in the form of a character sequence like Let
r(g) be the second derivative of 2xgx*3/3 - 21xg*x2/2 + 10%g. Let
z be r(7). Factor —-z*xs + 6 — 9xsxx2 + 0xs + 6xsxx2., the model must
produce an answer matching the specified target character-sequence — (s + 3) * (3xs - 2)
exactly. Our proposed model is trained end-to-end and infers the correct answer for novel examples
without any task-specific structural biases.

We begin by viewing the Transformer as a kind of Graph Neural Network (e.g., Gori et al., 2005).
For concreteness, consider the encoder component of a Transformer with H heads. When the A"
head of a cell ¢ of layer [ issues a query and as a result concentrates its self-attention distribution on
another cell ¢’ in layer [, we can view these two cells as joined by an edge in an information-flow
graph: the information content at ¢’ in effect passes via this edge to affect the state of ¢. The strength
of this attention can be viewed as a weight on this edge, and the index h of the head can be viewed
as a label. Thus, each layer of the Transformer can be viewed as a complete, directed, weighted,
labeled graph. Prior NLP work has interpreted certain edges of these graphs in terms of linguistic
relations (Sec.[7), and we wish to enrich the relation structure of these graphs to better support the
explicit representation of relations within the Transformer.

Here we propose to replace each of the discrete edge labels 1, . .., H, with a relation vector: we cre-
ate a bona fide representational space for the relations being learned by the Transformer. This makes
it possible for the hidden representation at each cell to approximate the vector embedding of a sym-
bolic structure built from the relations generated by that cell. This embedding is a Tensor-Product
Representation (TPR; Smolensky, [1990) in an end-to-end-differentiable TPR system (Schlag &
Schmidhuber} 2018}, Schmidhuber} [1992)) that learns “internal spotlights of attention” (Schmidhu-
ber, 1993). TPRs provide a general method for embedding symbol structures in vector spaces. TPRs
support compositional processing by directly encoding constituent structure: the representation of a
structure is the sum of the representation of its constituents. The representation of each constituent
is built compositionally from two vectors: one vector that embeds the content of the constituent, the
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“filler’ — here, the vector returned by attention — and a second vector that embeds the structural
role it fills — here, a relation conceptually labeling an edge of the attention graph. The vector that
embeds a filler and the vector that embeds the role it fills are bound together by the tensor product
to form the tensor that embeds the constituent that they together define|’| The relations here, and the
structures they define, are learned unsupervised by the Transformer in service of a task; post-hoc
analysis is then required to interpret those roles.

In the new model, the TP-Transformer, each head of each cell generates a key-, value- and query-
vector, as in the Transformer, but additionally generates a role-vector (which we refer to in some
contexts as a ‘relation vector’). The query is interpreted as seeking the appropriate filler for that
role (or equivalently, the appropriate string-location for fulfilling that relation). Each head binds that
filler to its role via the tensor product (or some contraction of it), and these filler/role bindings are
summed to form the TPR of a structure with H constituents (details in Sec. [2).

An interpretation of an actual learned relation illustrates this (see Fig. @] in Sec.[5.2). One head of
our trained model can be interpreted as partially encoding the relation second-argument-of. The top-
layer cell dominating an input digit seeks the operator of which the digit is in the second-argument
role. That cell generates a vector r; signifying this relation, and retrieves a value vector vy describ-
ing the operator from position ¢’ that stands in this relation. The result of this head’s attention is
then the binding of filler vy to role 7; this binding is added to the bindings resulting from the cell’s
other attention heads.

On the Mathematics Dataset (Sec. El) the new model sets a new state of the art for the overall
accuracy (Sec.[d)), and for all the individual-problem-type module accuracies (Fig. [2)). Initial results
of interpreting the learned roles for the arithmetic-problem module show that they include a good
approximation to the second-argument role of the division operator and that they distinguish between
numbers in the numerator and denominator roles (Sec. [5).

More generally, it is shown that Multi-Head Attention layers not only capture a subspace of the
attended cell but capture nearly the full information content (Sec.[6.I). An argument is provided that
multiple layers of standard attention suffer from the binding problem, and it is shown theoretically
how the proposed TP-Attention avoids such ambiguity (Sec.[6.2). The paper closes with a discussion
of related work (Sec. [7) and a conclusion (Sec. ).

2 THE TP-TRANSFORMER

The TP-Transformer’s encoder network, like the Transformer’s encoder (Vaswani et al., [2017)), can
be described as a 2-dimensional lattice of cells (¢,1) where t = 1, ..., T are the sequence elements of
the inputand [ = 1, ..., L are the layer indices with [ = 0 as the embedding layer. All cells share the
same topology and the cells of the same layer share the same weights. More specifically, each cell
consists of an initial layer normalization (LN) followed by a TP-Multi-Head Attention (TPMHA)
sub-layer followed by a fully-connected feed-forward (FF) sub-layer. Each sub-layer is followed by
layer normalization (LN) and by a residual connection (as in the original Transformer; Eq.[I)). Our
cell structure follows directly from the official TensorFlow source code by |Vaswani et al.|(2017) but
with regular Multi-Head Attention replaced by our TPMHA layer.

The input into cell; ; is the output of cell; ;1 and doesn’t depend on the state of any other cells of
the same layer, which allows a layer’s outputs to be computed in parallel.

h; = z,; + TPMHA(LN(2,;), LN(21.7,)) (1)
z4,141 = LN(h; + FF(LN(hy,)))

We represent the symbols of the input string as one-hot vectors 1, ..., £ € R% where d,, is the
size of the vocabulary and the respective columns of the matrix E € R?*9v are the embedding
vectors of those symbols. We also include a positional representation p; using the same sinusoidal

! The tensor product operation (when the role-embedding vectors are linearly independent) enables the sum
of constituents representing the structure as a whole to be uniquely decomposable back into individual pairs of
roles and their fillers, if necessary.
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encoding schema introduced by |[Vaswani et al.[(2017). The input of the first-layer cell; 1 is 2 o:

e, = Exi\/d, +p;
r,=WPe, + p® (2)
zZi0o =€ Or

where W) ¢ Ré=xd= p(P) ¢ R r, is a position- and symbol-dependent role representation, and
© is elementwise multiplication (a contraction of the tensor product: see Sec. [2.1}).

2.1 TP-MULTI-HEAD ATTENTION

The TPMHA layer of the encoder consists of H heads that can be applied in parallel. Every head
h,1 < h < H applies separate affine transformations W, w/»(") w @ yyh() ¢ pdixd.

b ® bl @ () ¢ Réx 1o produce key, value, query, and relation vectors from the hidden
state z;;, where d, = d, /H:

kﬁl _ vvlh,(k)th + bfa(k) qu _ VVlh’(q)zt,l + blh’(‘I) )
'U?,l _ VVlh,(V)th + b;t,(V) 7’21 _ ‘,Vlh,(r)th + b?’(r)
The filler of the attention head t, 1, h is
T .
o =) vlary, @)
i=1

i.e., a weighted sum of all 7" values of the same layer and attention head (see Fig. . Here aZ ’li €

(0,1) is a continuous degree of match given by the softmax of the dot product between the query
vector at position ¢ and the key vector at position %:

h h _1
ah’li B eXP(‘It,z : ki,l Tjk) 5)
A T
di=1 exp(qzl : k?',z \/tTk)

d
elements of g, and k, are uncorrelated variables with mean 0 and variance 1, in order to initially
keep the values of the softmax in a region with better gradients.

The scale factor ﬁ can be motivated as a variance-reducing factor under the assumption that the

Finally, we bind the filler 'Dth ; Wwith our relation vector rf ;» followed by an affine transformation

W,gol) € Rd=xdx bgfg € R¥ before it is summed up with the other heads’ bindings to form the TPR
of a structure with H constituents: this is the output of the TPMHA layer.

TPMHA (24, 21.70) = {W,Ej’} (B, Ol + bﬁjjl)] (6)
h

Note that, in this binding, to control dimensionality, we use a contraction of the tensor product,
pointwise multiplication ®: this is the diagonal of the tensor product. For discussion, see the Ap-
pendix.

It is worth noting that the {** TPMHA layer returns a vector that is quadratic in the inputs z4) to
the layer: the vectors vi’;l that are linearly combined to form v;; (Eq. , and r!";, are both linear in
the z;; (Eq. , and they are multiplied together to form the output of TPMHA (Eq. @) This means
that, unlike regular attention, TPMHA can increase, over successive layers, the polynomial degree
of its representations as a function of the original input to the Transformer. Although it is true
that the feed-forward layer following attention (Sec. introduces its own non-linearity even in
the standard Transformer, in the TP-Transformer the attention mechanism itself goes beyond mere
linear re-combination of vectors from the previous layer. This provides further potential for the
construction of increasingly abstract representations in higher layers.
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Figure 1: A simplified illustration of our TP-Attention mechanism for one head at position ¢ in
layer I. The main difference from standard Attention is the additional role representation that is
element-wise multiplied with the filler/value representation.

2.2 FEED-FORWARD LAYER

The feed-forward layer of a cell consists of an affine transformation followed by a ReLU activation
and a second affine transformation:

FF () = W ReLUW, & + b)) + b} )

Here, W/) € Rir=d: b)) ¢ Res W9 € Re=xds b9 ¢ Ré= and a is the function’s argument.
As in previous work, we set dy = 4d..

2.3 THE DECODER NETWORK

The decoder network is a separate network with a similar structure to the encoder that takes the
hidden states of the encoder and auto-regressively generates the output sequence. In contrast to the
encoder network, the cells of the decoder contain two TPMHA layers and one feed-forward layer.
We designed our decoder network analogously to [Vaswani et al.| (2017) where the first attention
layer attends over the masked decoder states while the second attention layer attends over the final
encoder states. During training, the decoder network receives the shifted targets (teacher-forcing)
while during inference we use the previous symbol with highest probability (greedy-decoding). The
final symbol probability distribution is given by

Y; = softmax(ETzAtA’L) (8)

where 2; | is the hidden state of the last layer of the decoder at decoding step t of the output sequence
and E is the shared symbol embedding of the encoder and decoder.

3 THE MATHEMATICS DATASET

The Mathematics Dataset (Saxton et al., [2019) is a large collection of math problems of various
types, including algebra, arithmetic, calculus, numerical comparison, measurement, numerical fac-
torization, and probability. Its main goal is to investigate the capability of neural networks to reason
formally. Each problem is structured as a character-level sequence-to-sequence problem. The input
sequence is a free-form math question or command like What is the first derivative
of 13xax*2 — 627434%a + 1191410672 from which our model correctly predicts the
target sequence 26+a — 627434. Another example from a different module is Calculate
66.6x12.14. which has 808.524 as its target sequence.

The dataset is structured into 56 modules which cover a broad spectrum of mathematics up to uni-
versity level. It is procedurally generated and comes with 2 million pre-generated training samples
per module. The authors provide an interpolation dataset for every module, as well as a few extrap-
olation datasets as an additional measure of algebraic generalization.
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We merge the different training splits train-easy, train-medium, and train-hard from all modules into
one big training dataset of 120 million unique samples. From this dataset we extract a character-level
vocabulary of 72 symbols, including start-of-sentence, end-of-sentence, and padding symbol

4 EXPERIMENTAL RESULTS

We evaluate our trained model on the concatenated interpolation and extrapolation datasets of the
pre-generated files, achieving a new state of the art: see Table [l For a more detailed compar-
ison, Fig. [2 shows the interpolation and extrapolation performance of every module separately.
The TP-Transformer matches or out-performs the Transformer in every module but one (proba-
bility__swr_p_sequence). Our model never quite converged, and was stopped prematurely after 1.7
million steps. We trained our model on one server with 4 V100 Nvidia GPUs for 25 days.

Table 1: Model accuracy averaged over all modules. A sample is correct if all characters of the target
sequence have been predicted correctly. The column “>95%” counts how many of the 56 modules
achieve over 95% accuracy. Boldface marks the best-performing model up to 700k steps.

weights  steps train interpolation extrapolation
acc >95% acc >95%

Simple LSTM 18M 500k - 57.00% 6 41.00%
Transformer (Saxton et al.)  30M 500k - 76.00% 13 50.00%

500k  83.06% 75.33% 12 52.42%
Transformer (ours) 4IM 00k 85.01% 77.42% 14 52.00%
500k  85.41% 78.30% 16 52.22%
TP-Transformer (ours) 492M 700k 87.25% 80.67 % 18 52.48 %

1.7M  91.04% 84.24% 25 55.40%

W W I = — —

4.1 IMPLEMENTATION DETAILS

We initialize the symbol embedding matrix E from N(0,1), W) from A/(1,1), and all other
matrices W () using the Xavier uniform initialization as introduced by |Glorot & Bengio| (2010).
The model parameters are set to d, = 512,dy = 2048,d, = 72, H = 8,L = 6. We were not
able to train the TP-Transformer, nor the regular Transformer, using the learning rate and gradient
clipping scheme described by |Saxton et al.[(2019)). Instead we proceed as follows: The gradients are
computed using PyTorch’s Autograd engine and their gradient norm is clipped at 0.1. The optimizer
we use is also Adam, but with a smaller learning_rate = 1 x 104, betal = 0.9, beta2 = 0.995. We
train with a batch size of 1024 up to 1.7 million steps.

S5 INTERPRETING THE LEARNED STRUCTURE

We report initial results of analyzing the learned structure of the encoder network’s last layer from
our 700k-step TP-Transformer.

5.1 INTERPRETING THE LEARNED ROLES

To this end, we sample 128 problems from the interpolation dataset of the arithmetic__mixed module
and collect the role vectors from a randomly chosen head. We use k-means with k = 20 to cluster
the role vectors from different samples and different time steps of the final layer of the encoder.
Interestingly, we find separate clusters for digits in the numerator and denominator of fractions.
When there is a fraction of fractions we can observe that these assignments are placed such that
the second fraction reverses, arguably simplifying the division of fractions into a multiplication of
fractions (see Fig.[3).

Note that |Saxton et al.| (2019) report a vocabulary size of 95, but this figure encompasses characters that
never appear in the pre-generated training and test data.
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Accuracy
B TP-Transformer (1 7M) [ TP-Transformer (700k) Transformer (700k)

numbers__place_value
numbers__round_number
arithmetic__add_or_sub
anthmetic__add_or_sub_in_base
calculus__ differentiate
arithmetic__add_sub_multiple
algebra__linear_1d
comparison__kth_biggest
comparison__sort
measurement__time
polynomials__collect
comparison__closest
arithmetic__mul_div_multiple
algebra__linear_2d
companson__kth_biggest_composed
polynomials__coefficient_named
comparison__pair
algebra__sequence_next_term
comparison__closest_composed
polynomials__add
arithmetic__nearest_integer_root
comparison__sort_composed
calculus__differentiate_composed
polynomials__expand
algebra__linear_2d_composed
algebra__linear_1d_composed
measurement__conversion
numbers__round_number_composed
algebra__polynomial_roots_composed
numbers__gcd_composed
comparison__pair_composed
arithmetic__div
algebra__sequence_nth_term
polynomials__evaluate_composed
polynomials__compose
polynomials__evaluate
numbers__Is_factor_composed
arithmetic__mixed
probability__swr_p_level_set
numbers__is_factor
numbers__place_value_composed
anthmetic__mul
numbers__lcm_composed
probability__swr_p_sequence
numbers__is_prime_composed
algebra__polynomial_roots
numbers__gcd
numbers__div_remainder_composed
numbers__lcm
anthmetic__simplify_surd
numbers__is_prime
numbers__list_prime_factors_compose
numbers__div_remainder
polynomials__simplify_power
numbers__base_conversion
numbers__list_prime_factors

module

Figure 2: The accuracies of our implementation of the Transformer (700k steps) and the TP-
Transformer (700k and 1.7M steps) for every module of the Mathematics Dataset.
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Figure 3: Samples of correctly processed problems from the arithmetic__mixed module. ‘#’ and
‘%’ are the start- and end-of-sentence symbols. The colored squares indicate the k-means cluster
of the role-vector assigned by one head in the final layer in that position. Blue and gold rectangles
respectively highlight numerator and denominator roles. They were discovered manually. Note how
their placement is correctly swapped in rows 2, 3, and 4, where a number in the denominator of a
denominator is treated as if in a numerator. Role-cluster 9 corresponds to the role ones-digit-of-a-
numerator-factor, and 6 to ones-digit-of-a-denominator-factor; other such roles are also evident.
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Figure 4: TP-Transformer attention maps for three examples as described in section

5.2 INTERPRETING THE ATTENTION MAPS

In Fig. ] we display three separate attention weight vectors of one head of the last TP-Transformer
layer of the encoder. Gold boxes are overlaid to highlight most-relevant portions. The row above the
attention mask indicates the symbols that take information to the symbol in the bottom row. In each
case, they take from ‘/’. Seen most simply in the first example, this attention can be interpreted as
encoding a relation second-argument-to holding between the querying digits and the °/’ operator.
The second and third examples show that several numerals in the denominator can participate in
this relation. The third display shows how a numerator-numeral (-297) intervening between two
denominator-numerals is skipped for this relation.

6 INSIGHTS AND DEFICITS OF MULTIPLE MULTI-HEAD ATTENTION LAYERS

6.1 MULTI-HEAD ATTENTION SUBSPACES CAPTURE VIRTUALLY ALL INFORMATION

It was claimed by [Vaswani et al.|(2017) that Multi-head attention allows the model to jointly attend
to information from different representation subspaces at different positions. In this section, we
show that in our trained models, an individual attention head does not access merely a subset of the
information in the attended cell but instead captures nearly the full information content.

Let us consider a toy example where the attention layer of cell, ; only attends to cell;s ;. In this
setting, the post-attention representation simplifies and becomes

AttentionHead(z¢ 1, z1.7,1) = 21 + VVl(())(VVl(V)zt/,l + bl(v)) + bl(”)

9
2t + O(U(Zt/J)) ( )
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where o and v are the respective affine maps (see Sec. [2.1). Note that even though VVI(V) is a
projection into an 8 times smaller vector space, it remains to be seen whether the hidden state
loses information about z;/ ;. We empirically test to what extent the trained Transformer and TP-
Transformer lose information. To this end, we randomly select n = 100 samples and extract the
hidden state of the last layer of the encoder z; ¢, as well as the value representation vy, (z; ) for
every head. We then train an affine model to reconstruct z; ¢ from v, (2 6), the value vector of the
single head h:

216 = Whon(zr6) + by,

1. (10)
€= E(zt,G - Zt,6)2

For both trained models, the TP-Transformer and the regular Transformer, the mean squared error
e averaged across all heads is only ~0.017 and ~0.009 respectively. This indicates that the attention
mechanism incorporates not just a subspace of the states it attends to, but affine transformations of
those states that preserve nearly the full information content.

6.2 THE BINDING PROBLEM OF STACKED ATTENTION LAYERS

The binding problem refers to the problem of binding features together into objects while keeping
them separated from other objects. It has been studied in the context of theoretical neuroscience
(von der Malsburg), [1981} [1994)) but also with regards to connectionist machine learning models
(Hinton et al., [1984). The purpose of a binding mechanism is to enable the fully distributed rep-
resentation of symbolic structure (like a hierarchy of features) which has recently resurfaced as an
important direction for neural network research (Lake & Baroni, 2017} |Bahdanau et al., [2018;; van
Steenkiste et al.| 2019; [Palangi et al.| 2017; [Tang et al.| [2018).

In this section, we describe how the standard attention mechanism is ill suited to capture complex
nested representations, and we provide an intuitive understanding of the benefit of our TP-Attention.
We understand the attention layer of a cell as the means by which the subject (the cell state) queries
all other cells for an object. We then show how a hierarchical representation of multiple queries
becomes ambiguous in multiple standard attention layers.

Consider the string (a/b) / (c/d). A good neural representation captures the hierarchical struc-
ture of the string such that it will not be confused with the similar-looking but structurally different
string (a/d) / (c/b). Our TP-Attention makes use of a binding mechanism in order to explicitly
support complex structural relations by binding together the object representations receiving high
attention with a subject-specific role representation. Let us continue with a more technical example.
Consider a simplified Transformer network where every cell consists only of a single-head attention
layer with a residual connection: no feed-forward layer or layer normalization, and let us assume
no bias terms in the maps o; and v; introduced in the previous section (Eq.[9). In this setting, as-
sume that cell, ; only attends to cell ;, and cell.. ; only attends to celly ; where a, b, ¢, d are distinct
positions of the input sequence. In this case

Zai+1 = Zay + 01(v1(201))
Zegt1 = Zey + o1(vi(2ay))

1D
Suppose now that, for hierarchical grouping, the next layer cell. ;41 attends to both cell, ;41 and
cellc ;41 (equally, each with attention weight %). This results in the representation

Zejit2 = Zei+1 + 0i11(Vit1(Zai+1 + 2Zci41))/2

= Zei+1 + 0141 (Vi41(Za1 + 2o + 01(vi(20,0)) + 01(vi(24,0))))/2 (12)
Note that the final representation is ambiguous in the sense that it is unclear by looking only at Eq.
whether cell, ; has picked celly, ; or celly ;. Either scenario would have led to the same outcome,
which means that the network would not be able to distinguish between these two different structures
(as in confusing (a/b) / (c/d) with (a/d)/ (c/b)). In order to resolve this ambiguity, the
standard Transformer must recruit other attention heads or find suitable non-linear maps in between
attention layers, but it remains uncertain how the network might achieve a clean separation.



Under review as a conference paper at ICLR 2020

Our TP-Attention mechanism, on the other hand, specifically removes this ambiguity. Now Egs. [IT]
and[12] become:

Za,141 = Za,1 + 01(vi(2b1) © T )
Zej+1 = Zeg +0o1(vi(2a) @ 1ey) (13)
Zeit+2 = Zei+1 + 0141(Vi41(Zai + Zeq + 01(vi(2p0) © 7o) + 0r(vi(24,0) © Tey)))/2

Note that the final representation is not ambiguous anymore. Binding the filler symbols v;(z) (our
objects) with a subject-specific role representation r as described in Eq. [6] breaks the structural
symmetry we had with regular attention. It is now simple for the network to specifically distinguish
the two different structures.

7 RELATED WORK

Several recent studies have shown that the Transformer-based language model BERT (Devlin et al.,
2018) captures linguistic relations such as those expressed in dependency-parse trees. This was
shown for BERT’s hidden activation states (Hewitt & Manning} [2019; [Tenney et al.,[2019) and, most
directly related to the present work, for the graph implicit in BERT’s attention weights (Coenen et al.,
2019; [Lin et al., 2019). Future work applying the TP-Transformer to language tasks (like those on
which BERT is trained) will enable us to study the connection between the explicit relations {r!;}
the TP-Transformer learns and the implicit relations that have been extracted from BERT. /

8 CONCLUSION

We have introduced the TP-Transformer, which enables the powerful Transformer architecture to
learn to explicitly encode structural relations using Tensor-Product Representations. On the novel
and challenging Mathematics Dataset, TP-Transformer beats the previously published state of the
art by 8.24%. Our initial analysis of this model’s final layer suggests that the TP-Transformer
naturally learns to cluster symbol representations based on their structural position and relation to
other symbols.
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A APPENDIX: RELATIONS BETWEEN HADAMARD- AND
TENSOR-PRODUCT-BINDING

A.1 GENERAL CONSIDERATIONS

In the version of the TP-Transformer studied in this paper, binding of relations 7 to their values v
is not done by the tensor product, v ® r, as in full TPRs. Rather, a contraction of the full TPR is
used: the diagonal, which is the elementwise or Hadamard product v ® rE] To what extent does
Hadamard-product binding share relevant properties with tensor-product binding?

A crucial property of the tensor product for its use in vector representations of structure is that a
structure like a/b is not confusable with b/a, unlike the frequently-used bag-of-words encoding: in
the BOW encoding of a/b, the pair of arguments to the operator are encoded simply as a + b, where
a and b are respectively the vector encodings of a and b. Obviously, this cannot be distinguished
from the BOW encoding of the argument pair in b/a, b + a. (Hence the name, symbol “bag”, as
opposed to symbol “structure”.)

In a tensor-product representation of the argument pair in a/b, we have axr,, +bxrg, where r,, and
14 are respectively distinct vector embeddings of the numerator (or first-argument) and denominator
(or second-argument) roles, and « is the tensor product. This is distinct from a x r4 + b * 7, the
embedding of the argument-pair in b/a. (In Sec. of the paper, an aspect of this general property,
in the context of attention models, is discussed. In Sec. @ visualization of the roles and the per-
role-attention show that this particular distinction, between the numerator and denominator roles, is
learned and used by the trained TP-Transformer model.)

This crucial property of the tensor product, that @ x 7, + b * 4 # a x rq + b * r,,, is shared by the
Hadamard product: if we now take « to represent the Hadamard product, the inequality remains true.
To achieve this important property, the full tensor product is not required: the Hadamard product is
the diagonal of the tensor product, which retains much of the product structure of the tensor product.
In any application, it is an empirical question how much of the full tensor product is required to
successfully encode distinctions between bindings of symbols to roles; in the TP-Transformer, it
turns out that the diagonal of the tensor product is sufficient to get improvement in performance
over having no symbol-role-product structure at all. Unfortunately, the compute requirements of
training on the Mathematics Dataset currently makes using the full tensor product infeasible, unless
the vector representations of symbols and roles are reduced to dimensions that proved to be too small
for the task. When future compute makes it possible, we expect that expanding from the diagonal to
the full tensor product will provide further improvement in performance and interpretability.

We next move beyond these general considerations and consider a setting in which Hadamard-
product attention can yield an optimal approximation to tensor-product attention.

A.2 HADAMARD-PRODUCT ATTENTION AS AN OPTIMAL APPROXIMATION TO
TENSOR-PRODUCT ATTENTION

In Eq. [6| for TPMHA, we have a sum over all H heads of an affine-transformed product of a value
vector vy, and a role vector . (Throughout this discussion, we leave the subscripts ¢, [ implicit, as
well as the over-bar on vy, in Eq.[6]) In a hypothetical, full-TPR formulation, this product would
be the tensor product v;, ® 7, although in our actual proposed TP-Transformer, the Hadamard
(elementwise) product v, © 7, (the diagonal of v, ® 7p,) is used. The appropriateness of the
compression from tensor product to Hadamard product can be seen as follows.

In the hypothetical full-TPR version of TPMHA, attention would return the sum of H tensor prod-
ucts. This tensor A would have rank at most H, potentially enabling a substantial degree of com-
pression across all tensors the model will compute over the data of interest. Given the translation-
invariance built into the Transformer via position-invariant parameters, the same compression must
be applied in all positions within a given layer [, although the compression may vary across heads.
For the compression of A we will need more than H components, as this decomposition needs to be
optimal over all all tensors in that layer for all data points.

3This is a vector, and should not be confused with the inner product v - 7 which is a scalar: the inner product
is the sum of all the elements of the Hadamard product.
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In detail, for each head h, the compression of the tensor Ap, = vy ® rp, (or matrix Ay = vhr,T) is
to dimension dj, which will ultimately be mapped to dimension d, (to enable addition with z via
the residual connection of Eq. [I)) by the affine transformation of Eq.[6]. The optimal dj-dimensional
compression for head h at layer | would preserve the dj;, dominant dimensions of variance of the
attention-generated states for that head and layer, across all positions and inputs: a kind of singular-
value decomposition retaining those dimensions with the principal singular values. Denote these
principal directions by {m!" @ n"*|c = 1,...,dy}, and let M, and IN}, respectively be the dj, x dy,
matrices with the orthonormal vectors {m/} and {n”} as columns. (Note that orthonormality
implies that MhTMh =TI and N,;rNh = I, with I the dj, x dj, identity matrix.)

The compression of Ay, Ah, will lie within the space spanned by these d}, tensor products m” @n”,
ie, A, = Zfil ahm, ® m.; in matrix form, A, = M;LAhNhT, where A}, is the dj x dj
diagonal matrix with elements @". Thus the dj, dimensions {G"} of the compressed matrix A}, that
approximates Ay, are given by:

Ah = MhTAhNh ~ MJAhNh = MJ’UhT’;LrNh = (MJ’U}L)(NJT‘}L)T
it = [An] =~ Mo [N e = B © 7,

cc
where v, = M, v,, 7 = N,/ r,. Now from Egq. v, = Whz 4 ph() g9
oy = M,J(Wh®z 4+ b)) Thus by changing the parameters W () p"() o W () =
M, W) ph () = MTHM(*) | and analogously for the role parameters W (") p":(") we con-
vert our original hypothetical TPR attention tensor Ay, to its optimal dj-dimensional approximation,
in which the tensor product of the original vectors vy, 7, is replaced by the Hadamard product
of the linearly-transformed vectors vy, 7. Therefore, in the proposed model, which deploys the

Hadamard product, learning simply needs to converge to the parameters ﬁ;h’(”), b"(*) rather than
the parameters W (v) | ph(v),

A.3 NEURAL MACHINE TRANSLATION

To demonstrate the generalizability of our contribution, we run a preliminary neural machine trans-
lation experiment. We follow the experimental setup of the fairseq toolkit (Ott et al., 2019). The
dataset was modeled as in previous work (Vaswani et al.}[2017). The dataset consists of the WMT’ 14
English to German data but adds additional news-commentary-v12 data from WMT’17. We use
byte-pair encoding and employed label-smoothing with a value of 0.1. We train the regular trans-
former and our TP-Transformer on 4 P100 GPUs for 500,000 steps using the hyperparameters of
the regular transformer. Throughout training, we observe that our TP-Transformer achieves a lower
negative log-likelihood than the regular transformer.

Table 2: The results of our neural machine translation experiment. The loss is the smoothed nega-
tive log-likelihood of the word-pieces (lower is better). The TP-Transformer achieves a lower loss
throughout training and a comparable final BLEU score (higher is better).

loss BLEU
Transformer (ours) 4,137 27.05
TP-Transformer (ours) 4.111  27.10
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Figure 5: The best-so-far smoothed negative log-likelihood of word-pieces on held-out data through-
out training.
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