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ABSTRACT

This paper addresses the problem of evaluating learning systems in safety critical
domains such as autonomous driving, where failures can have catastrophic conse-
quences. We focus on two problems: searching for scenarios when learned agents
fail and assessing their probability of failure. The standard method for agent eval-
uation in reinforcement learning, Vanilla Monte Carlo, can miss failures entirely,
leading to the deployment of unsafe agents. We demonstrate this is an issue for
current agents, where even matching the compute used for training is sometimes
insufficient for evaluation. To address this shortcoming, we draw upon the rare
event probability estimation literature and propose an adversarial evaluation ap-
proach. Our approach focuses evaluation on adversarially chosen situations, while
still providing unbiased estimates of failure probabilities. The key difficulty is in
identifying these adversarial situations – since failures are rare there is little sig-
nal to drive optimization. To solve this we propose a continuation approach that
learns failure modes in related but less robust agents. Our approach also allows
reuse of data already collected for training the agent. We demonstrate the efficacy
of adversarial evaluation on two standard domains: humanoid control and simu-
lated driving. Experimental results show that our methods can find catastrophic
failures and estimate failures rates of agents multiple orders of magnitude faster
than standard evaluation schemes, in minutes to hours rather than days.

1 INTRODUCTION

How can we ensure machine learning systems do not make catastrophic mistakes? While machine
learning systems have shown impressive results across a variety of domains (Krizhevsky et al.,
2012; Mnih et al., 2015; Silver et al., 2017), they may also fail badly on particular inputs, often in
unexpected ways (Szegedy et al., 2013). As we start deploying these systems, it is important that
we can reliably evaluate the risk of failure. This is particularly important for safety critical domains
like autonomous driving where the negative consequences of a single mistake can overwhelm the
positive benefits accrued during typical operation of the system.

Limitations of random testing. The key problem we highlight is that for standard statistical evalu-
ation, attaining confidence that the failure rate of a policy is below ε requires at least 1/ε episodes.
We now informally summarize this point, which we discuss further in Appendix A. For concrete-
ness, consider a self-driving car company that decides that the cost of a single accident where the car
is at fault outweighs the benefits of 100 million miles of faultless operation. The standard approach
in machine learning is to estimate the expected return via i.i.d. samples from the data distribution
(frequently a test set). For tightly bounded returns, the sample estimate is guaranteed to quickly
converge to the true expectation. However, with catastrophic failures, this may be prohibitively in-
efficient. In our current example, any policy with a failure probability greater than ε = 10−8 per
mile has negative expected return. In other words, it would be better to not deploy the car. However,
to achieve reasonable confidence that the car crashes with probability below 1e–8, the manufacturer
would need to test-drive the car for at least 1e8 miles, which may be prohibitively expensive.

∗Equal Contribution
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Our Contributions. To overcome the above-mentioned problems, we develop a novel adversarial
evaluation approach. The central motivation behind our algorithmic choices is the fact that real-
world evaluation is typically dominated by the cost of running the agent in the real-world and/or
human supervision. In the self-driving car example, both issues are present: testing requires both
operating a physical car, and a human test driver behind the wheel. The overarching idea is thus to
screen out situations that are unlikely to be problematic, and focus evaluation on the most difficult
situations. The difficulty arises in identifying these situations – since failures are rare, there is lit-
tle signal to drive optimization. To address this problem, we introduce a continuation approach to
learning a failure probability predictor (AVF), which estimates the probability the agent fails given
some initial conditions. The idea is to leverage data from less robust agents, which fail more fre-
quently, to provide a stronger learning signal. In our implementation, this also allows the algorithm
to reuse data gathered for training the agent, saving time and resources during evaluation. We note
that adversarial testing is a well-established idea (see Section 5), but typically requires either a dense
optimization signal or expert domain knowledge. We avoid these stumbling blocks by relying on
the learned AVF, which guides the adversarially acting evaluator.

We look at two settings where the AVF can be used. In the simplest setting, failure search, the
problem is to efficiently find inputs (initial conditions) that cause failures (Section 2.1). This task
has several uses. First, an adversary that solves this task efficiently allows one to identify and debug
potentially unsafe policies. Second, as has been done previously in the supervised learning literature,
efficient adversaries can be used for adversarial training, by folding the states causing failures back
into the training algorithm (Madry et al., 2017). The second setting, risk estimation, is the problem
of efficiently estimating the failure probability of an agent (Section 2.2), which also has a simple
application to efficiently selecting the most reliable agent from a finite set (Section 4.3).

Empirically, we demonstrate dramatic improvements in efficiency through adversarial testing on two
domains (simulated driving and humanoid locomotion). In summary, we present 3 key contributions:

1. We empirically demonstrate the limitations of random testing. We observe that with ran-
dom testing, the cost of reliably obtaining even a single adversarial input can exceed the
entire cost of training. Further, reliably estimating risk can exceed training costs.

2. We describe a continuation approach for learning failure probability predictors even when
failures are rare. We develop algorithms applying failure probability predictors to failure
search, risk estimation, and model selection.

3. We extensively evaluate our method on simulated driving and humanoid locomotion do-
mains. Using adversarial evaluation, we find failures with 198 and 3100 times fewer sam-
ples respectively. On Humanoid, we bring the cost of reliable risk estimation down from
greater than the cost of training to a practical budget.

2 PROBLEM FORMULATION

We first introduce our notation. Recall that we are interested in reliability assessment of a trained
agent. We assume that the experimenter who performs the reliability assessment can run an experi-
ment (equivalently, a rollout or episode) with the trained agent given some initial condition x ∈ X ,
the outcome of which is a random failure indicator C = c(x, Z) where Z ∼ PZ for some proba-
bility distribution PZ over some set Z and where c : X × Z → {0, 1}. In particular, C is binary
and C = 1 indicates a “catastrophic failure”. The interpretation of Z is that it collects all sources of
randomness due to the agent and the environment. Unlike the case of x, Z is neither observed, nor
controllable by the experimenter. We are interested in the agent’s performance on the environment
distribution over initial conditions X ∼ PX , which we assume can be sampled quickly.1

In the real-world, evaluating c requires running the agent in the real-world and/or human supervision,
which generally dominate the cost of evaluating neural networks. It is thus assumed that evaluating
c on the pair (x, Z) is costly. In Section 4.1, we show that even on relatively cheap simulated
environments, the cost of simulating environments dominates costs of evaluating neural networks.

1 To minimize jargon, we omit standard conditions on the spaces and functions that permit the use of the
language of probabilities.
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2.1 FAILURE SEARCH

The objective of failure search is to find a catastrophic failure of the agent. Algorithms that search
for failures, which we will call adversaries, can specify initial conditions x, observe the outcome C
of running the agent on x and return as soon as C = 1. Thus, for each round t, the adversary can
choose Xt ∼ Pt(·|X1, . . . , Xt−1), observe Ct = c(Xt, Zt), and return if Ct = 1. Here, Zt ∼ PZ ,
independently of the history (X1, . . . , Xt, Z1, . . . , Zt−1). The naive adversary evaluates the agent
on samples from PX until observing a failure. We assess adversaries by either the expected number
of episodes, or the expected time elapsed, until returning a failure case.

To design a more efficient adversary, the experimenter is allowed to collect historical data of the
form (X ′1, θ1, C

′
1), . . . , (X ′n, θn, C

′
n) while they are training their agent. Here, the initial condition

X ′t and θt ∈ Θ are chosen by the training procedure, where θt encodes information about the agent
used in round t to generate the observation C ′t = c(X ′t, Z

′
t).

2.2 RISK ESTIMATION

As before, let PX denote the distribution over initial states X defined by the environment. The
failure probability of the trained agent is

p = E[c(X,Z)] ,

where X ∼ PX and Z ∼ PZ independently. A typical goal is to estimate p up to a fixed relative
accuracy with high probability. Given some ρ > 1, δ ∈ (0, 1), an algorithm is said to be (ρ, δ)

correct if the estimate P̂ produced belongs to the [p/ρ, pρ] interval with probability at least 1 − δ.
When P̂ belongs to the said interval, we say that it is a ρ-approximation of p.

As before, the algorithm has access to historical data and can quickly sample from PX . The naive
or vanilla Monte Carlo (VMC) estimator samples from PX and returns the average of the observed
outcomes. We assess estimators by the total number of experiments required.

3 APPROACH

In this section we describe our approach to the two problems outlined above. A common feature of
our proposed solutions is that they estimate the failure probability predictor (AVF) f∗ : X → [0, 1]
that returns the probability of failure given a initial condition (equivalently, the value function of an
adversary which receives reward 1 for failures, without discounting):

f∗(x) = P(c(x, Z) = 1), x ∈ X ,
where Z ∼ PZ . Our continuation approach to learning an approximation f ≈ f∗, f : X →
[0, 1] is described in Section 3.3. f will be chosen so that the cost of evaluating f is negligible
compared to running an experiment. The idea is to use f to save on the cost of experimentation. Our
solutions build on the certainty equivalence approach (Turnovsky, 1976): First, we describe how f∗
(if available) could be leveraged. In cases of certainty equivalence, we would substitute f for f∗.
We then introduce additional heuristics to reduce sensitivity to the mismatch between f and f∗.

3.1 FAILURE SEARCH

When f∗ is known, the optimal adversary has a particularly simple form (proof left to the reader):
Proposition 3.1. The adversary that minimizes the expected number of rounds until failure evaluates
the agent repeatedly on an instance x∗ ∈ X that maximizes f∗ : X → [0, 1].

Having access to f ≈ f∗, a natural approach is to evaluate the agent on arg maxx f(x). There are
two problems with this: (i) a maximizer may be hard to find and (ii) there is no guarantee that the
maximizer of f will give a point where f∗ is large. Rather than always select the global maximizer
of f , one way to increase the robustness of this procedure is to sample diverse initial conditions. We
adopt a simple procedure: sample n initial conditions from PX , pick the initial condition from this
set where f is the largest, and run an experiment from the found initial condition. We repeat this
process with new sampled initial conditions until we find a catastrophic failure. The pseudocode is
included in Appendix C as Algorithm 2 (AVF Adversary).

3



3.2 RISK ESTIMATION USING AVFS

The failure probability estimation method uses importance sampling (IS) (e.g., Section 4.2, Bucklew
2004) where the distribution PX is replaced by a proposal distribution Q. For t ∈ [n], the proposal
distribution is used to generate random initial condition Xt ∼ Q, then an experiment is performed
to generate Ct = c(Xt, Zt). The failure probability p is estimated using the sample mean

P̂ =
1

n

n∑
t=1

Wt c(Xt, Zt) ,

where Wt = pX(Xt)
q(Xt)

is the importance weight of the t-th sample. Here, pX denotes the density of
PX and q denotes the density of Q.2 Let Ut = Wtc(Xt, Zt). As is well-known, under the condition
that pX(x)f∗(x) = 0 whenever q(x) = 0, we have that E[Ut] = p, and hence E[P̂ ] = p. Given that
P̂ is unbiased for any proposal distribution, one natural objective is to choose a proposal distribution
which minimizes the variance of the estimator P̂ .

Proposition 3.2. For f : X → [0, 1] such that PX(f1/2) :=
∫
f1/2(x′)PX(dx′) > 0 let Qf be

defined as the distribution over X whose density qf is

qf (x) =
f1/2(x)pX(x)

PX(f1/2)
.

Then, the variance minimizing proposal distribution Q∗ is Qf∗ .

The (standard) proof of this and the next proposition can be found in Appendix B. Note that from
the definition of Qf it follows that pX(x)

qf (x)
= f−1/2(x)PX(f1/2) when qf (x) > 0.

The above result motivates us to suggest using the distribution Qf as the proposal distribution of an
IS estimator. Note that the choice of f (as long as it is bounded away from zero) only influences the
efficiency of the method, but not its correctness. It remains to specify how to sample from Qf and
how to calculate the importance weights. For sampling from Qf , we propose to use the rejection
sampling method (Section 1.2.2, Bucklew 2004) with the proposal distribution chosen to be PX :
First, X ∼ PX is chosen, which is accepted by probability f1/2(X). This is repeated until a sample
is accepted:

Proposition 3.3. Rejection sampling as described produces a sample from Qf .

To increase the robustness of the sampling procedure against errors introduced by f 6= f∗, we
introduce a “hyperparameter” α > 0 so that qf is redefined to be proportional to fα. Note that
α = 1/2 is what our previous result suggests. However, if f is overestimated, a larger value of α
may work better, while if f is underestimated, a smaller value of αmay work better. The pseudocode
of the full procedure is given as Algorithm 1.

3.3 A CONTINUATION APPROACH TO LEARNING AVFS

Recall that we wish to learn an approximation f to f∗, where f∗ is the true failure probability
predictor for an agent A. The classical approach is to first obtain a dataset (X1, C1), . . . , (Xn, Cn)
by evaluating the agent of interest on initial states X ∼ PX . We could then fit a softmax classifier f
to this data with a standard cross-entropy loss.

The classical approach does not work well for our setup, because failures are rare and the failure
signal is binary. For example, in the humanoid domain, the agent of interest fails once every 110k
episodes, after it was trained for 300k episodes. To learn a classifier f we would need to see many
failure cases, so we would need significantly more than 300k episodes to learn a reasonable f .

To solve this problem, we propose a continuation approach to learning AVFs, where we learn f
from a family of related agents that fail more often. The increased failure rates of these agents can
provide an essential boost to the ‘signal‘ in the learning process.

2Here, we implicitly assume that these measures have a density with respect to a common measure. As it
turns out, this is not a limiting assumption, but this goes beyond the scope of the present article.
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Algorithm 1 AVF-guided risk estimator (AVF estimator)

Input: AVF f , budget T ∈ N and tuning parameter α > 0

Returns: Failure probability estimate P̂
Initialize S ← 0
for t = 1 to T do

repeat
Sample proposal instance Xt ∼ PX
Accept Xt with probability fα(Xt)

until accepting initial condition Xt

Evaluate the agent on Xt and observe Ct = c(Xt, Zt)
S ← S + Ct/f

α(Xt)
end for
Compute normalization constant Z ← 1

m

∑m
i=1 f

α(X ′i) for X ′i ∼ PX , m� T

return P̂ ← ZS/T

The particular problem we consider, agent evaluation, has additional structure that we can leverage.
Typically, agents earlier on in training fail more often but in related ways, to the final agent. So we
propose learning f from agents that were seen earlier on in training. This has an added computa-
tional benefit – we do not need to gather additional data at evaluation time. Concretely, we collect
data during training of the form (X ′1, θ1, C

′
1), . . . , (X ′n, θn, C

′
n) where X ′t is the initial condition in

iteration t of training, and θt characterizes essential features of the agent’s policy used to collect the
failure indicator C ′t. We then train a network to predict P(C ′t = 1|X ′t, θt) at input (X ′t, θt). In the
simplest implementation, θt merely encodes the training iteration t. In many common off-policy RL
methods, additional stochasticity is used in the policy at training time to encourage exploration. In
these cases, we also use θt to encode the degree of stochasticity in the policy.

The continuation approach does make a key assumption – that agents we train on fail in related ways
to the final agent. We provide a simple toy example to discuss in what ways we rely on this, and in
what ways we do not.

Example. Suppose the true AVF f∗ factorizes as f∗(x, θ) = g∗(x)h∗(θ). Suppose we have
two agents described by θ1, θ2, such that the latter agent is significantly more robust, i.e.,
h∗(θ1)/h∗(θ2) = r � 1. Then, if learning requires a fixed number of positive examples to reach
a particular accuracy, the continuation approach learns g, the state-dependent component, r times
faster than the naive approach, since it receives r times as many positive examples.

On the other hand, accurately learning h(θ2) is difficult, since positive examples on θ2 are rare.
However, even when h is learned inaccurately, this AVF is still useful for both failure search and
risk estimation. Concretely, if two AVFs f1(x, θ) = g(x)h1(θ), f2(x, θ) = g(x)h2(θ) differ only in
h, then both the adversaries and estimators induced by f1 and f2 are equivalent.

Discussion. Of course, this strict factorization does not hold exactly in practice. However, we
use this example to illustrate two points. First, for both failure search and risk estimation, it is the
shape of the learned AVF f(θ, s) which matters more than its magnitude. Second, it captures the
intuition that the AVF may learn the underlying structure of difficult states, i.e. g(s), on policies
where positive examples are less scarce. Further, using flexible parameterizations for f , such as
neural networks, may even allow f to represent interactions between θ and s, provided there is
sufficient data to learn these regularities. Of course, if failure modes of the test policy of interest
look nothing like the failure modes observed in the related agents, the continuation approach is
insufficient. However, we show that in the domains we study, this approach works quite well.

4 EXPERIMENTS

We run experiments on two standard reinforcement learning domains, which we describe briefly
here. Full details on the environments and agent training procedures are provided in Appendix E.

In the Driving domain, the agent controls a car in the TORCS simulator (Wymann et al., 2000) and
is rewarded for forward progress without crashing. Initial conditions are defined by the shape of
the track, which is sampled from a procedurally defined distribution PX . We define a failure as
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Domain AVF Cost VMC Cost PR Cost Acceleration Factor

Driving 3/5/11 200/1000/2700 —∗ 65/198/250

Humanoid 19/33/56 60K/110K/180K 9K/10K/220K∗ 2100/3100/3800

Table 1: Failure search. We show cost for different adversaries to find an adversarial problem
instance, measured by the expected number of episodes. Each column reports the min, median, and
max over evaluations of 5 separate agents. In the median case, the AVF adversary finds adversarial
inputs with 198x fewer episodes than random testing on Driving and 3100x fewer on Humanoid
(Acceleration Factor).

any collision with a wall. We use an on-policy actor-critic agent as in Espeholt et al. (2018), using
environment settings from Mnih et al. (2016) which reproduces the original results on TORCS.

In the Humanoid domain, the agent controls a 21-DoF humanoid body in the MuJoCo simulator
(Todorov et al., 2012; Tassa et al., 2018), and is rewarded for standing without falling. The initial
condition of an experiment is defined by a standing joint configuration, which is sampled from a
fixed distribution. We define a catastrophic failure as any state where the humanoid has fallen,
i.e. the head height is below a fixed threshold. We use an off-policy distributed distributional
deterministic policy gradient (D4PG) agent, following hyperparameters from Barth-Maron et al.
(2018) which reproduces the original results on the humanoid tasks.

4.1 FAILURE SEARCH

We first compare three adversaries by the number of episodes required to find an initial condition
that results in a trajectory that ends with a failure. Our purpose is to illustrate two key contributions.
First, a naive evaluation, even when using the same number of episodes as training the agent, can lead
to a false sense of safety by failing to detect any catastrophic failures. Second, adversarial testing
addresses this issue, by dramatically reducing the cost of finding failures. The adversaries evaluated
are the naive (VMC) and the AVF adversaries introduced in Section 3.1, as well as an adversary that
we call the prioritized replay (PR) adversary. This latter adversary runs experiments starting from
all initial conditions which led to failures during training, most recent first. This provides a simple
and natural alternative to the naive adversary. Additional details on all adversaries are provided in
Appendix E. The results are summarized in Table 1.

Discussion of AVF adversary. The AVF adversary is multiple orders of magnitude more efficient
than the random adversary. In particular, we note that on Humanoid, for the VMC adversary to have
over a 95% chance of detecting a single failure, we would require over 300, 000 episodes, exceeding
the cost of training, which used less than 300, 000 episodes3. In practice, evaluation is often run for
much less time than training, and in these cases, the naive approach would very often lead to the
mistaken impression that such failure modes do not exist.

We observe similar improvements in wall-clock time. On the Driving domain, in the median case,
finding a failure requires 2.7 hours in expectation for the random adversary, compared to 1.1 minutes
for the AVF adversary. Even including the model training time of 5 minutes, the AVF adversary
is 27 times faster. Similarly, on the Humanoid domain, the random adversary requires 3 days (77
hours) in expectation, compared to 6 minutes for the AVF adversary, amounting to a 61-fold speedup
after including AVF training time of 70 minutes. These numbers underscore the point that even in
relatively cheap, simulated environments, the cost of environment interactions dominate learning
and inference costs of the AVF.

Discussion of Prioritized Replay adversary. The PR adversary often provides much better effi-
ciency than random testing, with minimal implementational overhead. The main limitation is that in
some cases, the prioritized replay adversary may never detect failures, even if they exist. In partic-
ular, an agent may learn to handle the particular problem instances on which it was trained, without
eliminating all possible failures. In these cases (this occurred once on Humanoid), we fall back to
the VMC adversary after trying all the problem instances which caused failures at training. On the

3The number of failures is distributed Bin(N, p) and in the median case, for p = 1/110, 000, N =
300, 000, we have (1− p)N > 0.05.
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Figure 1: The figure shows the reliability of the AVF and VMC estimators. The x axis shows the
number of evaluation episodes, while the y axis shows the probability that P̂ does not belong to
the interval (p/3, 3p). This probability is obtained by repeating the evaluation multiple times and
plotting the fraction of these runs when the estimate is outside of the target interval. The AVF
estimator reliably approaches ground truth dramatically faster than the VMC estimator. We show
error bars of 2 standard errors, which are difficult to see on the Driving domain, since we can afford
to run sufficiently many trials that standard errors are near zero.

Driving domain, because we use a form of adversarial training for the agent, very few (< 20) of the
training problem instances have support under PX . Since none of these resulted in failures, the PR
adversary would immediately fall back to the VMC adversary.

Comparison to classical approaches. One question is why we do not compare to more classical
techniques from the rare events literature, such as cross-entropy method or subset simulation. Be-
cause we optimize a binary failure signal, rather than a continuous score as in the classical setting,
these approaches would not work well. For example, in Humanoid, the final agent fails once every
110k episodes, and was trained for 300k episodes. If we used cross-entropy method on the final
agent, we would need significantly more than 300k episodes of data to fit a good proposal distri-
bution. The continuation approach is essential - obtaining enough failures to fit a useful proposal
distribution requires learning from a family of weaker agents.

4.2 RISK ESTIMATION

We now compare approaches for risk estimation. Again, the purpose is to illustrate the claim that
a naive approach may often be too inefficient to give rise to non-vacuous quantitative answers with
reasonable resources, while better alternatives can deliver such answers. In particular, we compare
the AVF estimator of Section 3.2 to the vanilla Monte Carlo estimator (VMC). For comparison
purposes, we run each estimator multiple times and report the fraction of cases when the obtained
estimates fail to fall in the (p/3, 3p) interval, where p is the failure probability to be estimated. This
provides a fairly accurate estimate of the probability of P̂ failing to be a ρ = 3-approximation of p.4
Results are summarized in Fig. 1. In Appendix E.3 we include plots for other choices of ρ, to show
that the results are not very sensitive to ρ.

Discussion. At the confidence level 1− δ = 0.95, on the Driving domain, the AVF estimator needs
only 750 experiments to achieve a 3-approximation, while the VMC estimator needs 11, 000 exper-
iments for the same. This means that here the AVF estimator requires 14 times less environment
interaction. Similarly, on the Humanoid domain, at the confidence level 1− δ = 0.95, the AVF esti-
mator requires 15, 000 experiments to achieve a 3-approximation, while the VMC estimator requires
5.1e5 experiments, a 34-fold improvement.

We note that these numbers demonstrate that the AVF also has good coverage, i.e. it samples from
most possible failures, since if a large number of failure conditions were vastly undersampled, the
variance of the AVF estimator would explode due to the importance weight term. Coverage and
efficiency are complementary. While failure search merely requires the adversary to identify a single
failure, efficient risk estimation requires the adversary to sample from most possible failures.

4Here, p was measured separately by running the VMC estimator for 5e6 episodes on Driving and 2e7
episodes on Humanoid, so that 2 standard errors lies within 5% relative error on Driving, and 20% on Hu-
manoid.
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4.3 APPLICATION TO IDENTIFYING MORE
RELIABLE AGENTS
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Figure 2: Model selection: We plot the
expected number of episodes until failure,
i.e. 1/p where p is the probability of fail-
ure, for the best policy selected by the
AVF vs. VMC estimators. The error bars
show the min/max over 5 random seeds,
while the solid lines correspond to the av-
eraged failure probability. The VMC es-
timator largely maintains a uniform distri-
bution over many of the policies, whereas
the AVF estimator quickly eliminates the
worst policies.

The improved efficiency of the AVF estimator has
many benefits. One application is to identify the most
reliable agent from a fixed finite set.

For this illustration, we compare 50 Humanoid agents,
spaced evenly over the course of training (excluding
the beginning of training, when the agent has a high
failure rate). We compare the choices made when the
failure probability estimation is performed with the
VMC estimator versus the AVF estimator. The se-
lected policy at each point in time is the policy with
the lowest estimated risk. In the event of a tie (e.g.,
among several policies with no failures), we report the
expected failure probability when selecting from the
tied agents randomly.

Fig. 2 summarizes the results. When using VMC on
the median agent, 36 out of 50 policies have never
failed by the end of the evaluation process. Thus,
VMC was not able to rank 36 out of the 50 policies
and the experimenter would be forced to choose one
of these with no further information about their relia-
bility. On the other hand, the AVF estimator quickly
produces failures for the weak policies, and is able to
select a policy which is over 3 times more robust. This can be viewed as an extremely naive form
of adversarial training, where the model is selected from a discrete set of options rather than a high-
dimensional parameter space. We use this example to highlight the recurring theme that random
testing can be highly inefficient – failing to identify the best policies even after 500, 000 episodes
(longer than training time) – while adversarial testing greatly improves efficiency.

4.4 APPLICABILITY AND ROBUSTNESS

We conclude this section with practical considerations regarding the use of this approach in settings
beyond the domains considered here, including the real world.

Maintaining high coverage. A concern is that if the AVF underestimates the failure probability
of certain initial conditions, the risk estimator will have high variance, and with limited samples,
often underestimate the true failure probability. Our main point is that in many settings, VMC has
little chance of revealing any failures with a practical budget, and so using any form of optimized
adversary is a large improvement, but we also acknowledge other factors which mitigate this issue.

First, because the AVF is trained on weaker agents, it typically over-estimates failure probabilities.
Second, in Humanoid, where failures are particularly rare, we use a simplified Differentiable Neural
Dictionary (DND) (Pritzel et al., 2017) described in Appendix E.1. A DND is a kNN classifier in
feature space, but uses a learned pseudo-count, which causes it to output higher failure probabilities
when the query point is far in feature space from training points.

Efficiency lower bounds. Further, we can ensure our method never does more than 2 times worse
than VMC. To do so, we run both the VMC and AVF estimators in parallel. If VMC finds at least
several failures, then we take the VMC estimate, and otherwise take the AVF estimate. This incurs
a 2x slow-down in the worst case, while remaining much more efficient in many safety critical
domains. Neufeld et al. (2014) give better guarantees when combining stochastic estimators.

5 BACKGROUND AND RELATED WORK

Adversarial examples. Our work on reliability is in part motivated by research on adversarial
examples, which highlights the fact that machine learning systems that perform very well on average
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may nonetheless perform extremely poorly on particular adversarial inputs, often in surprising ways
(Szegedy et al., 2013; Goodfellow et al., 2014). Unlike previous work on adversarial examples in
reinforcement learning (Huang et al., 2017; Lin et al., 2017), we do not allow adversaries to generate
inputs outside the distribution on which the agent is trained.

Most work on adversarial examples has focused on Lp norm balls in the image domain. Many recent
papers have questioned the practical value of norm ball robustness (Gilmer et al., 2018; Engstrom
et al., 2017; Schott et al., 2018). However, moving beyond the norm ball specification has been
difficult, because for unrestricted adversarial examples, human evaluation is necessary to determine
the ground truth labels (see Brown et al. (2018); Song et al. (2018) for work in this direction).

In this context, we believe simulated reinforcement learning environments provide a valuable testbed
for researchers interested in adversarial examples - the ground truth is provided by the simulator. We
hope the domains and problem formulations presented here drive research on adversarial examples
beyond norm balls, and towards training and testing models consistent with global specifications.

Adversarial approaches for evaluation. O’ Kelly et al. (2018) use the cross-entropy method to
efficiently estimate the rate of rare but catastrophic accidents in a simulated driving environment.
Concurrent work (to ours) by Webb et al. (2019) uses multi-level splitting, a rare event estimation
technique, to estimate the proportion of inputs for which a neural network’s output violates a partic-
ular property. Our aims share similarities to recent proposals for testing components of autonomous
vehicle systems (Shalev-Shwartz et al., 2017; Dreossi et al., 2017; Tian et al., 2018; Pei et al., 2017).
We believe these approaches are complementary and should be developed in parallel: these works
focus on components-level specifications (e.g. controllers should maintain safe distances) while
here, we focus on testing the entire agent end-to-end for system-level specifications.

Rare event estimation. We draw upon a rich literature on rare event probability estimation (e.g.,
Bucklew 2004; Rubino & Tuffin 2009; Rubinstein & Kroese 2017). Importance sampling (IS) is one
of the workhorses of this field. The closest methods to our approach are the adaptive importance
sampling methods where data collected from an initial proposal distribution is iteratively used to
adjust it to maximize sampling efficiency (e.g., Rubinstein 1997; Rubinstein & Kroese 2017; Li
et al. 2013). These methods do not work well in our context where the failure signal is binary. A
key novelty in our method is that we adapt the proposal distribution using data from related, but
less robust, agents. Our approach is also different from previous works in that, to better reflect the
practicalities of RL tasks, we explicitly separate controllable randomness (i.e., initial conditions,
simulator parameters) from randomness that is neither controllable, nor observable (environment
and agent randomness). As we show, this has implications on the form of the minimum-variance
proposal distribution.

In robotics, the assessment of the safety of motion control algorithms has been recognized as a crit-
ical aspect of their real-world deployment (Van Den Berg et al., 2011). In a recent paper, extending
Janson et al. (2018), Schmerling & Pavone (2017) proposed to use an adaptive mixture importance
sampling algorithm to quantify the collision probability for an LQR controller with EKF state esti-
mation applied to non-linear systems with a full rigid-body collision model. Unlike our method, this
work needs an analytic model of the environment.

Learning highly reliable agents. While in this work we primarily focus on agent evaluation, rather
than training, we note recent work on safe reinforcement learning (see Garcı́a & Fernández, 2015,
for a review). These approaches typically rely on strong knowledge of the transition dynamics
(Moldovan & Abbeel, 2012), or assumptions about the accuracy of a learned model (Berkenkamp
et al., 2017; Akametalu et al., 2014), and we believe are complementary to adversarial testing, which
can be viewed as a mechanism for checking whether such assumptions in fact hold. We provide a
longer discussion of this literature in Appendix F.

6 CONCLUSION AND FUTURE WORK

In this work, we argued that standard approaches to evaluating RL agents are highly inefficient in
detecting rare, catastrophic failures, which can create a false sense of safety. We believe the approach
and results here strongly demonstrate that adversarial testing can play an important role in assessing
and improving agents, but are only scratching the surface. We hope this work lays the groundwork
for future research into evaluating and developing robust, deployable agents.
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Andrew Lefrancq, Simon Green, Vı́ctor Valdés, Amir Sadik, et al. Deepmind lab. arXiv preprint
arXiv:1612.03801, 2016.

Felix Berkenkamp, Matteo Turchetta, Angela Schoellig, and Andreas Krause. Safe model-based
reinforcement learning with stability guarantees. In Advances in Neural Information Processing
Systems, pp. 908–918, 2017.

Tom B Brown, Nicholas Carlini, Chiyuan Zhang, Catherine Olsson, Paul Christiano, and Ian Good-
fellow. Unrestricted adversarial examples. arXiv preprint arXiv:1809.08352, 2018.
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Bernhard Wymann, Eric Espié, Christophe Guionneau, Christos Dimitrakakis, Rémi Coulom, and
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A RISK ESTIMATION WITH HEAVY-TAILED LOSSES

In this section, we expand on why empirical estimators of the expected risk using uninformed ran-
dom sampling will have very high variance for problems with heavy-tailed losses. In statistical learn-
ing theory, the objective is to find a model θ which minimizes the expected risk, J = Ex∼D[`θ(x)],
where `θ(x) denotes the loss of the model θ on a data point x. For example, in classification, ` is
typically the 0 − 1 loss, indicating whether θ makes the correct prediction on x. In reinforcement
learning, ` returns the negative discounted return on a rollout from state x.

To assess a model θ, since we typically can only sample from D, the expected risk can be estimated
on a test set of n i.i.d. points xi ∼ D using the empirical risk : Ĵ = 1

n

∑n−1
i=0 `θ(xi).

The standard justification for this approach is that with high probability, the empirical risk is close
to the true expected risk (Valiant, 1984). If 0 ≤ `(·) ≤ a, then Hoeffding’s inequality yields

P[J ≥ Ĵ + ε] ≤ exp(−2nε2/a2)

Equivalently, the empirical test risk is within ε of the expected risk with probability 1− δ, provided
the number of data points in the test set is at least

n ≥ a2 log(1/δ)

2ε2

In many commonly studied settings, such as classification with the 0 − 1 loss, or reinforcement
learning with [0, 1]-bounded rewards and fixed episode lengths (Tassa et al., 2018; Beattie et al.,
2016), these bounds guarantee fairly good efficiency. However, for very heavy-tailed losses, these
bounds become very weak. Ensuring a constant additive error requires n = O(a2), and error up to
a constant multiple of a still requires n = O(a) examples. Using the self-driving car example from
Section 1, consider a car going on many 1-mile-long trips. Due to the extremely negative rewards
associated with crashes, achieving a fixed error bound of ε requires 1016 more trips than would
otherwise be necessary if negative rewards for crashes were bounded to the same range as normal
operation.

Intuitively, because very costly events may occur with a small probability, random sampling is un-
likely to detect these failure modes unless we use a very large number of random samples. Note that
for an agent with probability p of failure, limp→0+(1 − p)c/p = e−c. Thus, for small p, even with
1/p experiments, there is a > 35% chance the empirical estimate will detect no failures at all, even
though for a sufficiently catastrophic failure, this could dominate the overall expected risk. While
the exact bound on the error in the empirical estimate may depend on the particular estimator and
concentration inequalities being used (Brownlees et al., 2015; Audibert et al., 2011), any approach
relying solely on uninformed random sampling will face similar issues.

B PROOFS FOR SECTION 3.2

We start with the proof of Proposition 3.2. Let Ut = Wtc(Xt, Zt) where Wt = pX(Xt)/q(Xt).
Under the condition that pX(x)f(x) = 0 whenever q(x) = 0, E[Ut] = p, hence E[P̂ ] = p.

Since U1, . . . , Un are independent and identically distributed, Var[P̂ ] = Var[Ut]/n for any t ∈ [n].
Hence, the variance of P̂ is minimized when the variance of Ut is minimized. Since E[Ut] = p, this
variance is minimized when E[U2

t ] = E[W 2
t c

2(Xt, Zt)] = E[W 2
t c(Xt, Zt)] = E[(Wtf

1/2
∗ (Xt))

2]
is minimized, where we used the definition of f∗ and that c is binary-valued. By integral Cauchy-
Schwartz, this is minimized by the proposal distribution whose density with respect to PX is pro-
portional to f1/2∗ , leading to the desired claim.

Notably this differs from the deterministic case, where the variance-minimizing proposal distribu-
tion has density proportional to c(Xt) with respect to PX . Characterizing the variance-minimizing
proposal distribution for the general stochastic case, when c is not binary-valued, is an interesting
open question.

Next, we prove Proposition 3.3, which stated that the rejection sampling procedure that accepts
a random instance X ∼ PX with probability f1/2(X) produces a sample from Qf . Let U be
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uniformly distributed on the [0, 1] interval and independent of X . Clearly, the probability that a
sample produced by rejection sampling falls into a set A ⊂ X is P(X ∈ A|U ≤ f1/2(X)). Now,

P(X ∈ A|U ≤ f1/2(X)) =
P(X ∈ A,U ≤ f1/2(X))

P(U ≤ f1/2(X))
=

∫
A
P(U ≤ f1/2(x))PX(x)

P(U ≤ f1/2(X))

=

∫
A
f1/2(x)PX(x)

P(U ≤ f1/2(X))
.

Since P(X ∈ ·|U ≤ f1/2(X)) is a probability measure on X , it follows that the unconditional
acceptance probability satisfies P(U ≤ f1/2(X)) =

∫
X f

1/2(x)PX(x), thus showing that the dis-
tribution of accepted points is Qf as required.

C PSEUDOCODE FOR AVF ADVERSARY

Algorithm 2 AVF-guided Search (AVF adversary)

Input: Sample size n
repeat

Collect random initial conditions S = {X1, . . . , Xn} where Xi ∼ PX , i ∈ [n]
Select X = arg maxx∈S f(x)
Run an experiment to generate outcome C = c(X,Z)

until C = 1

D AGENT TRAINING DETAILS

D.1 ENVIRONMENTS

For the Driving domain, we use the TORCS 3D car racing game (Wymann et al., 2000) with settings
corresponding to the “Fast car, no bots” setting in Mnih et al. (2016). At each step, the agent receives
an 15-dimensional observation vector summarizing its position, velocity, and the local geometry of
the track. The agent receives a reward proportional to its velocity along the center of the track at
its current position, while collisions with a wall terminate the episode and provide a large negative
reward.

Each problem instance is a track shape, parameterized by a 12-dimensional vector encoding the loca-
tions and curvatures of waypoints specifying the track. Problem instances are sampled by randomly
sampling a set of waypoints from a fixed distribution, and rejecting any tracks with self-intersections.

For the Humanoid domain, we use the Humanoid Stand task from Tassa et al. (2018). At each step,
the agent receives a 67-dimensional observation vector summarizing its joint angles and velocities,
and the locations of various joints in Cartesian coordinates. The agent receives a reward proportional
to its head height. If the head height is below 0.7m, the episode is terminated and the agent receives
a large negative reward.

Each problem instance is defined by an initial standing pose. To define this distribution, we sample
1e5 random trajectories from a separately trained D4PG agent. We sample a random state from these
trajectories, ignoring the first 10 seconds of each trajectory, as well as any trajectories terminating
in failure, to ensure all problem instances are feasible. Together, we obtain 6e7 problem instances,
so it is unlikely that any problem instance at train or test time has been previously seen.

D.2 AGENTS

We now describe the agents we used for evaluation on each task. The focus of this work is not on
training agents, and hence we leave the agents fixed for all experiments. However, we did make
some modifications to decrease agent failure probabilities, as we are most interested in whether we
can design effective adversaries when failures are rare, and thus there is not much learning signal to
guide the adversary.
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On Driving, we use an asynchronous batched implementation of Advantage Actor-Critic, using a
V-trace correction, following Espeholt et al. (2018). We use Population-Based Training, and evolve
the learning rate and entropy cost weights Jaderberg et al. (2017), with a population size of 5.
Each learner is trained for 1e9 actor steps, which takes 4 hours distributed over 100 CPU workers
and a single GPU learner. Since episodes are at most 3600 steps, this equates to roughly 270e3
episodes per learner, and 1.3e6 episodes for the entire population. At test time, we take the most
likely predicted action, rather than sampling, as we found it decreased the failure probability by
roughly half. Additionally, we used a hand-crafted form of adversarial training by training on a
more difficult distribution of track shapes, with sharper turns than the original distribution, since this
decreased failure probability roughly 20-fold.

On Humanoid, we use a D4PG agent, using the same hyperparameters as Barth-Maron et al. (2018).
The agent is trained for 4e6 learner steps, which corresponds to between 250e6 and 300e6 actor
steps, which takes 8 hours distributed over 32 CPU workers and a single GPU learner. Since episodes
are at most 1000 steps, this equates to roughly 275e3 episodes. We use different exploration rates
on actors, as in Horgan et al. (2018), with noise drawn from a normal distribution with standard
deviation σ evenly spaced from 0.0 to 0.4. We additionally use demonstrations from the agent
described in the previous section, which was used for defining the initial pose distribution, following
Vecerı́k et al. (2017). In particular, we use 1000 demonstration trajectories, and use demonstration
data for half of each batch to update both the critic and policy networks. This results in a roughly
4-fold improvement in the failure rate.

E EXPERIMENTAL DETAILS

E.1 AVF DETAILS

When constructing the training datasets, we ignore the beginning of training during which the agent
fails very frequently. This amounts to using the last 150, 000 episodes of data on Driving and last
200, 000 on Humanoid. To include information about the training iteration of the agent, we simply
include a single real value, the current training iteration divided by the maximum number of training
iterations. Similarly, for noise applied to the policy, we include the amount of noise divided by the
maximum amount of noise. These are all concatenated before applying the MLP. We train both
AVF models to minimize the cross-entropy loss, with the Adam optimizer (Kingma & Ba, 2014),
for 20, 000 and 40, 000 iterations on Driving and Humanoid respectively, which requires 4.5 and 50
minutes respectively on a single GPU.

On Driving, the AVF architecture uses a 4-layer MLP with 32 hidden units per layer and a single
output, with a sigmoid activation to convert the output to a probability. On Humanoid, since fail-
ures of the most robust agents are very rare, we use a simplified Differentiable Neural Dictionary
architecture (Pritzel et al., 2017) to more effectively leverage the limited number of positive train-
ing examples. In particular, to classify an input x, the model first retrieves the K = 32 nearest
neighbors and their corresponding labels (xi, yi) from the training set. The final prediction is then a
weighted average (b+

∑
i:yi=1 wi)/(2b+

∑
i wi), where b is a learned pseudocount, which allows

the model to make uncertain predictions when all weights are close to 0. To compute weights wi,
each point is embedded by a 1-layer MLP f into 16 dimensions, and the weight of each neighbor
is computed wi = κ(f(x), f(xi)), where κ is a Gaussian kernel, κ(x, y) = exp(‖x− y‖22 /2). We
tried different hyperparameters for the number of MLP layers on Driving, and the number of neigh-
bors on Humanoid, and selected based on a held-out test set using data collected during training. In
particular, to match real-world situations, we did not select hyperparameters based on either failure
search or risk estimation experiments.

E.2 FAILURE SEARCH

We ran the VMC adversary for 5e6 experiments for each agent. The expected cost is simply 1/p,
where p is the fraction of experiments resulting in failures. For the AVF adversary, we ran 2e4
experiments for each agent, since failures are more common, so less experiments are necessary to
estimate the failure probabilities precisely. For the PR adversary, the adversary first selected problem
instances which caused failures on the actor with the least noise, most recent first, followed by the
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Sample size n n0/10 Cost n0/10 Speedup n0 Cost 10n0 Cost 10n0 Speedup

Driving 4/23/61 0.18/0.22/0.59 3/5/11 2/3/6 1.1/1.7/2.4

Humanoid 57/173/220 0.16/0.23/0.28 19/33/56 7/11/25 1.8/2.4/3.1

Table 2: Adversary hyperparameter sensitivity analysis. We show the performance of Algorithm
2 for varying values of the sample size parameter n. The middle column shows results for n = n0,
the value we used in our experiments, and we compare to a factor of 10 larger and smaller. Costs
represent expected number of episodes until a failure, and speedups are relative to when n = n0. As
before, each cell shows min, median, and max values across 5 agents. On both domains, applying
greater optimization pressure improves results.

actor with the second least noise, and so on. We also tried a version which did not account for the
amount of noise and simply ran the most recent failures first, which was slightly worse.

For the failure search experiments on the Humanoid domain, we always evaluate the best version of
each agent according to the AVF model selection procedure from Section 4.3. We chose this because
we are most interested in whether we can design effective adversaries when failures are rare, and
simply choosing the final agent is ineffective, as discussed in Appendix E.4.

We now discuss the sample size parameter n in Algorithm 2. As discussed, using larger values of
n applies more selection pressure in determining which problem instances to run experiments on,
while using smaller values of n draws samples from a larger fraction of X , and thus provides some
robustness to inaccuracies in the learned f . Of course, other more sophisticated approaches may
be much more effective in producing samples from diverse regions of X , but we only try this very
simple approach. For our experiments, we use n = 1000 for Driving and n = 10000 for Humanoid.
We did not perform any hyperparameter selection on n, in order to match the real-world setting
where the experimenter has only a fixed budget of experiments, and wishes to find a single failure.
However, we include additional experiments to study the robustness of the AVF adversary to the
choice of n. These are summarized in Table 2.

We observe that on both domains, applying greater optimization pressure improves results, over the
default choices for n we used. However, relative to the improvements over the VMC adversary,
these differences are small, and the AVF adversary is dramatically faster than the VMC adversary
for all choices of n we tried.

E.3 RISK ESTIMATION DETAILS

In our paper, we showed that the AVF estimator can estimate the failure probability of an agent much
faster than the VMC estimator. In particular, we showed in both the Driving and Humanoid domains
that our estimator requires an order of magnitude less episodes to achieve a 3-approximation at any
given confidence level. In general, we may be interested in a ρ-approximation, that is we might
want the estimates to fall in the range (p/ρ, pρ) where p is the probability of failure that we wish
to measure. One might ask whether our results are sensitive to the choice of ρ. In other words, did
we select ρ = 3 so that our results look good? To address this concern, we include results for lower
and higher choices of ρ. We see that the AVF estimator performs significantly better than the VMC
estimator across choices of ρ.

E.4 MODEL SELECTION

Measuring ground truth failure probabilities. In Figure 4, we show the “ground truth” failure
probabilities used for computing model robustness in Figure 2. Each bar represents a version of
the agent at a different point in training, starting from step 5e5, and taking a new version every 7e4
learner steps (so that there are 50 agents in total). Failure probabilities are computed by taking the
fraction of experiments resulting in failures, using 160, 000 experiments per agent. As in Figure
2, we show robustness (1/p) rather than failure probabilities, so that it is easier to see differences
between the most robust models. Robustness should be interpreted as the expected number of ex-
periments until seeing a failure. Thus, when we report robustness in Figure 2 for averages over
multiple agents, we first average the failure probabilities of these agents, before applying the recip-

17



0 100K 200K 300K 400K 500K

Evaluation Episodes

0

0.2

0.4

0.6

0.8

1

U
n
re

li
a
b
le

 E
st

im
a
te

s 
[%

] Humanoid (r=2)

0 100K 200K 300K 400K 500K

Evaluation Episodes

Humanoid (r=5)

AVF Estimator VMC Estimator

0 2K 4K 6K 8K 10K 12K

Evaluation Episodes

0

0.2

0.4

0.6

0.8

1

U
n
re

li
a
b
le

 E
st

im
a
te

s 
[%

] Driving (r=2)

0 2K 4K 6K 8K 10K 12K

Evaluation Episodes

Driving (r=5)

AVF Estimator VMC Estimator

Figure 3: This figure shows the reliability of the AVF and VMC estimators for various choices of
r = ρ. As before, the x axis shows the number of evaluation episodes. The y-axis shows the
probability that P̂ does not belong in the interval (p/r, pr). The probability is obtained by running
the evaluation multiple times, and we include error bars of 2 standard errors. Note that the curves
are not smooth especially for the VMC estimator. This is not because of the uncertainty in the plots
but is a property of ρ-estimators when the sample size is small, that is on the order of 1/p. For such
sample sizes, increasing the sample size does not monotonically improve the estimator’s accuracy.
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Figure 4: We show the robustness for agents taken from different points in training. The failure
probability of each agent is estimated using 160, 000 experiments with VMC. Note that the robust-
ness does not improve monotonically, and that simply choosing the final agent would not provide a
robust agent.

rocal, which represents the expected number of experiments until failure, if the agent is randomly
selected from that set.

We note that the failure probabilities we report after model selection in Figure 2 are likely conser-
vative. For the two agents which did not fail in our ground truth measurements, we use a failure
probability of 1/160, 000 rather than 0. We could run the ground truth measurements for longer, but
already, this required 160, 000 ∗ 50 = 8e6 experiments, or 231 CPU-days. Nonetheless, even with
these estimates, the AVF estimator showed significant improvements over using the VMC estimator
for model selection.

Non-monotonicity of robustness over training. Finally, we note that the robustness is not mono-
tonically increasing, and thus simply taking the last agent (or randomly choosing from the last
few) would be a worse model selection strategy than uniform exploration with the AVF estimator.
This differs from the standard setting in deep reinforcement learning, with tightly bounded rewards,
where expected return usually (roughly) monotonically increases over the course of training. As
discussed in Sections 1 and 5, when the agent is optimized using VMC, failures are observed very
rarely, and thus the optimization process does not effectively decrease the failure probability, which
is consistent with the non-monotonicity we observe here.

F EXTENDED RELATED WORK

Learning highly reliable agents. Our results also indicate that learning highly reliable agents will
likely require a significant departure from some of current practices. In particular, since for highly
reliable systems failure events are extremely rare, any technique that uses vanilla Monte Carlo (that
is, perhaps 99% of the current RL literature) is ought to fail to provide the necessary guarantees.
This is a problem that has been studied in the simulation optimization literature, but so far it has
received only little attention in the RL community (e.g., Frank et al. 2008).

The training time equivalent of our setting can be viewed as a special case of Constrained MDPs
(Altman, 1999), where a cost of 1 is incurred at the final state of a catastrophic trajectory. While
recent work has adapted deep reinforcement learning techniques to handle constraints, these address
situations where costs are observed frequently, and the objective is to keep expected costs below
some threshold (Achiam et al., 2017; Chow et al., 2018) as opposed to avoiding costs entirely, and
are not designed to specifically satisfy constraints when violations would be caused by rare events.
This suggests a natural extension to the rare failures case using the techniques we develop here. Re-
lated work in safe reinforcement learning (see Garcı́a & Fernández, 2015, for a review) tries to avoid
catastrophic failures either during learning or deployment. Approaches for safe exploration typically
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rely on strong knowledge of the transition dynamics (Moldovan & Abbeel, 2012), or assumptions
about the accuracy of a learned model (Berkenkamp et al., 2017; Akametalu et al., 2014), and we
believe are complementary to adversarial testing approaches, which make weak assumptions, but
also do not provide guarantees. Finally, there has been significant recent interest in training con-
trollers that are robust to system misspecification by exposing them to pre-specified or adversarially
constructed noise applied e.g. to observation or system dynamics (Peng et al., 2017; Pinto et al.,
2017; Zhu et al., 2018; Mandlekar et al., 2017).
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