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ABSTRACT

In recent years we have seen fast progress on a number of benchmark problems in
AI, with modern methods achieving near or super human performance in Go, Poker
and Dota. One common aspect of all of these challenges is that they are by design
adversarial or, technically speaking, zero-sum. In contrast to these settings, success
in the real world commonly requires humans to collaborate and communicate with
others, in settings that are, at least partially, cooperative. In the last year, the card
game Hanabi has been established as a new benchmark environment for AI to fill
this gap. In particular, Hanabi is interesting to humans since it is entirely focused
on theory of mind, i.e., the ability to effectively reason over the intentions, beliefs
and point of view of other agents when observing their actions. Learning to be
informative when observed by others is an interesting challenge for Reinforcement
Learning (RL): Fundamentally, RL requires agents to explore in order to discover
good policies. However, when done naively, this randomness will inherently make
their actions less informative to others during training. We present a new deep
multi-agent RL method, the Simplified Action Decoder (SAD), which resolves
this contradiction exploiting the centralized training phase. During training SAD
allows other agents to not only observe the (exploratory) action chosen, but agents
instead also observe the greedy action of their team mates. By combining this
simple intuition with best practices for multi-agent learning, SAD establishes
a new SOTA for learning methods for 2-5 players on the self-play part of the
Hanabi challenge. Our ablations show the contributions of SAD compared with
the best practice components. All of our code and trained agents are available at
https://github.com/facebookresearch/Hanabi_SAD.

1 INTRODUCTION

Humans are highly social creatures and spend vast amounts of time coordinating, collaborating
and communicating with others. In contrast to these, at least partially, cooperative settings most
progress on AI in games has been in zero-sum games where agents compete against each other,
typically rendering communication futile. This includes examples such as Go (Silver et al., 2016;
2017; 2018), poker (Brown & Sandholm, 2017; Moravčík et al., 2017; Brown & Sandholm, 2019)
and chess (Campbell et al., 2002).

This narrow focus is unfortunate, since communication and coordination require unique abilities. In
order to enable smooth and efficient social interactions of groups of people, it is commonly required
to reason over the intents, points of views and beliefs of other agents from observing their actions.
For example, a driver can reasonably infer that if a truck in front of them is slowing down when
approaching an intersection, then there is likely an obstacle ahead. Furthermore, humans are both
able to interpret the actions of others and can act in a way that is informative when their actions are
being observed by others, capabilities that are commonly called theory of Mind (ToM), (Baker et al.,
2017). Importantly, in order to carry out this kind of reasoning, an agent needs to consider why a
given action is taken and what this decision indicates about the state of the world. Simply observing
what other agents are doing is not sufficient.

While these abilities are particularly relevant in partially observable, fully cooperative multi-agent
settings, ToM reasoning clearly matters in a variety of real world scenarios. For example, autonomous
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cars will likely need to understand the point of view, intents and beliefs of other traffic participants in
order to deal with highly interactive settings such as 4-way crossing or dense traffic in cities.

Hanabi is a fully cooperative, partially-observable card game that has recently been proposed as a
new benchmark challenge problem for AI research (Bard et al., 2019) to fill the gap around ToM. In
Hanabi, players need to find conventions that allow them to effectively exchange information from
their local observations through their actions, taking advantage of the fact that actions are observed
by all team mates.

Most prior state-of-the-art agents for Hanabi were developed using handcrafted algorithms, which
beat off-the-shelf deep multi-agent RL methods by a large margin. This makes intuitive sense: Beyond
the “standard” multi-agent challenges of credit assignment, nonstationarity and joint exploration,
learning an informative policy presents an additional fundamentally new conflict. On the one hand,
an RL agent needs to explore in order to discover good policies through trial and error. On the other
hand, when carried out naively, this exploration will add noise to the policy of the agent during the
training process, making their actions strictly less informative to their team mates.

One possible solution to this is to explore in the space of deterministic partial policies, rather than
actions, and sample these policies from a distribution that conditions on a common knowledge
Bayesian belief. This is successfully carried out in the Bayesian Action Decoder (BAD) (Foerster
et al., 2019), the only previous Deep RL method to achieve a state-of-the-art in Hanabi. While this is a
notable accomplishment, it comes at the cost of simplicity and generality. For a start, BAD requires an
explicit common knowledge Bayesian belief to be tracked, which not only adds computational burden
due to the required sampling steps, but also uses expert knowledge regarding the game dynamics.
Furthermore, BAD, as presented, is trained using actor-critic methods which are sample inefficient
and suffer from local optima. In order to get around this, BAD uses population based training, further
increasing the number of samples required. Lastly, BAD’s explicit reliance on common knowledge
limits the generality of the method.

In this paper we propose the Simplified Action Decoder (SAD), a method that achieves a similar goal
to BAD, but addresses all of the issues mentioned above. At the core of SAD is a different approach
towards resolving the conflict between exploration and being interpretable, which, like BAD, relies
on the centralized training with decentralized control (CT/DC) regime. Under CT/DC information
can be exchanged freely amongst all agents during centralized training, as long as the final policies
are compatible with decentralized execution.

The key insight is that during training we do not have to chose between being informative, by taking
greedy actions, and exploring, by taking random actions. To be informative, the greedy actions do
not need to be executed by the environment, but only need to be observed by the team mates. Thus
in SAD each agent takes two different actions at each time step: One greedy action, which is not
presented to the environment but observed by the team mates at the next time step as an additional
input, and the “standard” (exploratory) action that gets executed by the environment and is observed
by the team mates as part of the environment dynamics. Importantly, during greedy execution the
observed environment action can be used instead of centralized information for the additional input,
since now the agent has stopped exploring.

Furthermore, to ensure that these greedy actions and observations get decoded into a meaningful
representation, we can optionally train an auxiliary task that predicts key hidden game properties
from the action-observation trajectories. While we note that this idea is in principle compatible with
any kind of model-free deep RL method with minimal modifications to the core algorithm, we use
a distributed version of recurrent DQN in order to improve sample efficiency, account for partial
observability and reduce the risk of local optima. We also train a joint-action Q-function that consists
of the sum of per-agent Q-values to allow for off-policy learning in this multi-agent setting using
Value Decomposition Networks (VDN) (Sunehag et al., 2017).

Using SAD we establish a new SOTA for learning methods for 2-5 players in Hanabi, with a method
that not only requires less expert knowledge and compute, but is also more general than previous
approaches. In order to ensure that our results can be easily verified and extended, we also evaluate
our method on a proof-of-principle matrix game and open-source our training code and agents.
Beyond enabling more research into the self-play aspect of Hanabi, we believe these resources will
provide a much needed starting point for the ad-hoc teamwork part of the Hanabi challenge.
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2 RELATED WORK

Our work relates closely to research on emergent communication protocols using deep multi-agent
RL, as �rst undertaken by Sukhbaatar et al. (2016) and Foerster et al. (2016) . There has been a
large number of follow-up papers in this area, so listing all relevant work is beyond the scope and
we refer the reader to Nguyen et al. (2018), a recent survey on deep multi-agent RL. One major
difference to our work is that the environments considered typically contain a cheap-talk channel,
which can be modeled as a continuous variable during the course of training. This allows agents
to, for example, use differentiation across the communication channel in order to learn protocols.
In contrast, in our setting agents have to communicate through the observable environment actions
themselves, requiring fundamentally different methods.

Furthermore, our work is an example of cooperative multi-agent learning in partially observable
settings under centralized training and decentralized control. There have been a large number of
papers in this space, with seminal work including MADDPG (Lowe et al., 2017) and COMA (Foerster
et al., 2018a), both of which are actor-critic methods that employ a centralized critic with decentralized
actors. Again, we refer the reader to Nguyen et al. (2018) for a more comprehensive survey.

Until 2018, work on Hanabi had been focused on hand-coded methods and heuristics. Some
relevant examples include SmartBot (O'Dwyer, 2019) and the so-called “hat-coding” strategies, as
implemented by WTFWThat (Wu, 2018). These strategies use the information theoretic ideas that
allow each hint to reveal information to all other agents at the same time. While they do not perform
well for 2-player Hanabi due to the smaller action space, they get near perfect scores for 3-5 players.

In contrast, so far learning methods have seen limited success on Hanabi. Bard et al. (2019) undertake
a systematic evaluation of current Deep RL methods for 2-5 players in two different regimes and
open-source the Hanabi-Learning-Environment (HLE) to foster research on the game. They evaluate
a feed-forward version of DQN trained on 100 million samples and a recurrent actor-critic agent
with population based training using 20 billion samples. Notably, while both agents achieve near
0% win rate for 3-5 players in Hanabim, at a high level their DQN agent is a good starting point
for our work. However, since the authors did not propose any speci�c method of accounting for the
issues introduced by� -greedy exploration in a ToM task, they resorted to setting� to zero after a
short burn-in phase. The only state-of-the-art in Hanabi established by an RL agent is from Foerster
et al. (2019) which we refer to in more detail in Section 1 and Section 4. Recently there have also
been attempts to train agents that are robust to different team-mates (Canaan et al., 2019) and even to
extend to human-AI collaboration (Liang et al., 2019). For a more comprehensive review on previous
results on Hanabi we refer the reader to Bard et al. (2019).

Poker is another partially observable multi-agent setting, although it is fundamentally different due to
the game being zero-sum. Recent success in Poker has extensively bene�ted from search (Brown
et al.). Examples of using search in Hanabi include Goodman (2019).

3 BACKGROUND

3.1 SETTING

In this paper we assume a Dec-POMDP (Oliehoek, 2012), in whichN agents interact in a partially
observable environment. At each time step agenta 2 1::N obtains an observation,oa

t = O(st ; a),
wherest 2 S is the Markov state of the system andO(st ; a) is the deterministic observation function.
Since we are interested in ToM, in our setting the observation function includes the last action of the
acting agent, which is observed by all other agents at the next time step. We note that actions are
commonly observable not only in board games but also in some real world multi-agent settings, such
as autonomous driving.

For simplicity, we restrict ourselves to turn based settings, in which at each time step only the acting
agents takes an action,ua

t , which is sampled from their policy,ua � � a
� (ua j� a), while all other agents

take a no-op action. Here� a is the action-observation history of agenta, � a = f oa
0 ; ua

0 ; r 1; ::rT ; oa
T g,

T is the length of the episode and� are the weights of a function approximator that represents the
policy, in our case recurrent neural networks, such as LSTMs (Hochreiter & Schmidhuber, 1997).
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We further use� t to describe the state-action sequence,� = f s0; u0 ; r 1; ::rT ; sT g, whereu t is the
joint action of all agents.

As is typical in cooperative multi-agent RL, the goal of the agents is to maximize the total expected
return,J � = E� � P ( � j � ) R0(� ), whereR0(� ) is the return of the trajectory (in generalRt (� ) =
P

t 0� t  t 0� t r t 0) and is an optional discount factor. We have also assumed that agents are sharing
parameters,� , as is common in cooperative MARL.

3.2 DISTRIBUTED RECURRENTDQN AND AUXILIARY TASKS

In Q-learning the agent approximates the expected return for a given state action-pair,s; u, assuming
that the agent acts greedily with respect to the Q-function for all future time steps,Q(s; u) =
E� � P ( � j s;u ) Rt (� ), where� = f st ; ut ; r t +1 ; : : : ; sT g, ut = u andut 0 = arg maxu 0 Q(st 0; u0); 8t0 >
t. A common exploration scheme is� -greedy, in which the agent takes a random action with
probability � and acts greedily otherwise. Importantly, the Q-function can be trained ef�ciently
using the Bellman equation:Q(s; u) = Es0[r t +1 +  maxu 0 Q(s0; u0)], where for simplicity we have
assumed a deterministic reward. In Deep Q-Learning (DQN) (Mnih et al., 2015) the Q-function is
parameterized by a deep neural network and trained with transitions sampled from experience replay.

In our work we also incorporate other best practice components of the last few years, including double-
DQN (van Hasselt et al., 2015), dueling network architecture (Wang et al., 2015) and prioritized
replay (Schaul et al., 2015). We also employ a distributed training architecture similar to the one
proposed by Horgan et al. (2018) where a number of different actors with their own exploration
rates collect experiences in parallel and feed them into a central replay buffer. Since our setting is
partially observable the natural choice for the function approximator is a recurrent neural network.
A combination of these techniques was �rst explored by Kapturowski et al. (2019) in single agent
environments such as Atari and DMLab-30.

Another common best-practice in RL are auxiliary tasks Mirowski et al. (2016); Jaderberg et al.
(2016), in which the agent produces extra output-heads that are trained on supervised tasks and
optimized alongside the RL loss.

3.3 CENTRALISED TRAINING , DECENTRALIZED EXECUTION AND JOINT Q-FUNCTIONS

The most straight forward application of Q-learning to multi-agent settings is Independent Q-Learning
(IQL) (Tan, 1993) in which each agent keeps an independent estimate of the expected return, treating
all other agents as part of the environment. One challenge with IQL is that the exploratory behavior
of other agents is not corrected for via themax operator in the bootstrap. Notably, IQL does typically
not take any advantage ofcentralized trainingwith decentralised control(CT/DC), a paradigm under
which information can be exchanged freely amongst agents during the training phase as long as the
policies rely only on local observations during execution.

There are various approaches for learning joint-Q-functions in the CT/DC regime. For example,
Value-Decomposition-Networks (VDN) (Sunehag et al., 2017) represent the joint-Q-function as a
sum of per-agent contributions and QMIX (Rashid et al., 2018) learns a non-linear but monotonic
combination of these contributions.

4 METHOD

4.1 THEORY OFM IND AND BAYESIAN REASONING

At the very core of interpreting the actions of another agent, and ToM in general, is Bayesian
reasoning. Fundamentally, askingwhat a given action by another agent implies about thestate
of the worldrequires understanding ofwhy this action was taken. To illustrate this, we start out
with an agent that has a given belief about the state-action history of the world,� t , given her own
action-observation history� a

t : B (� t ) = P(� t j� a
t ).
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Next the agent observes the actionua0

t of her team mate,a0, and carries out a Bayesian update:

P(� t j� a
t ; ua0

t ) =
P(ua0

t j� t )P(� t j� a
t )

P
� 0

t
P(ua0

t j� 0
t )P(� 0

t j�
a
t )

(1)

=
� a0

(ua0

t jO(a0; � t ))B (� t )P
� 0

t
� a0(ua0

t jO(a0; � 0
t ))B (� 0

t )
; (2)

where, with a slight abuse of notation, we have used (and will keep using)O(a0; � t ) for the action-
observation history,� a0

t , that results from applying the observation function for agenta0 to � t at each
time step. Note that for non-deterministic observation functions we would have to marginalize over
P(� a0

t j� t ).

Clearly, since agents have access to the policy of their teammate during centralised training, we
could in principle evaluate thisexplicit Bayesian belief. However, beyond the practical dif�culty of
computing thisexplicit belief, when it is used as an input to the policy it will lead to prohibitively
costly higher order beliefs. The typical workout for this is apublic beliefoverprivate featureswhich
only conditions on common knowledge and can therefore be calculated by all agents individually, we
refer to Morav�cík et al. (2017); Nayyar et al. (2013); Foerster et al. (2018b) for more details.

Instead, in this work we rely on RNNs to learnimplicit representations of the suf�cient statistics
over the distribution of the Markov state given the action-observation histories, noting that they are
unlikely to recover exact beliefs due to the issues mentioned above.

4.2 EXPLORATION AND BELIEFS

Next we illustrate the impact of exploration on the beliefs, which we will do in the explicit (exact)
case, since it serves as an upper bound on the accuracy of the implicit beliefs. Since we are looking
at fully-cooperative settings we assume that the optimal policy of the agent is deterministic and any
randomness is due to exploration. Given that we are focused on value based methods we furthermore
assume an� -greedy exploration scheme, noting that the same analysis can be extended to other
methods. Under this exploration scheme� a0

(ua0

t jO(a0; � t )) becomes:

� a0
(ua0

t jO(a0; � t )) = (1 � � )I (u� (� t ); ua0

t ) + �=jUj; (3)

where we have usedu� (� t ) to indicate the greedy action of the agenta0, u� (� t ) =
arg maxu Qa0

(u; O(a0; � t )) andI is the indicator function.

While the �rst part corresponds to a �ltering operator, in which the indicator function only attributes
�nite probability to those histories that are consistent with the action taken under greedy execution,
the exploration term adds a �xed (history independent) probability, which effectively `blurs' the
posterior:

P(� t j� a
t ; ua0

t ) =

�
(1 � � )I (u� (� t ); ua0

t ) + �=jUj
�
B (� t )

P
� 0

�
(1 � � )I (u� (� 0); ua0

t ) + �=jUj
�
B (� 0)

(4)

=

�
(1 � � )I (u� (� t ); ua0

t ) + �=jUj
�
B (� t )

�=jUj +
P

� 0

�
(1 � � )I (u� (� 0); ua0

t )
�
B (� 0)

(5)

=
B (� t )

1 + jUj
P

s0

�
(1=� � 1)I (u� (� 0); ua0

t )B (� 0)
(6)

+

�
(1 � � )I (u� (� t ); ua0

t )
�
B (� t )

�=jUj +
P

� 0

�
(1 � � )I (u� (� 0); ua0

t )
�
B (� 0)

: (7)

We �nd that the posterior includes an additional term of the formB (� t ) which carries over an
un�ltered density over the trajectories from the prior. We further con�rm that in the limit of� = 1 ,
the posterior collapses to the prior,P(� t j� a

t ; ua0

t ) = B (� t ). This can be particularly worrisome in
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the context of our training setup, whereby different agents run different, and potentially high,�
throughout the course of training. It fundamentally makes the beliefs obtained less informative.

While not making the above argument explicitly, the Bayesian Action Decoder (BAD) (Foerster et al.,
2019), resolves this issue by shifting exploration to the level of deterministic partial policies, rather
than action-level, and tracking an approximate Bayesian belief. As outlined in Section 1 this comes
at a huge cost in the complexity of the method, the computation requirements and in the loss of
generality of the method.

4.3 SIMPLIFIED ACTION DECODING

In this paper we take a drastically simpler and different approach towards the issue. We note that the
`blurring', which makes decoding of an action challenging, is entirely due to the� -greedy exploration
term. Furthermore, in order for another agent to do an implicit Bayesian update over an action taken,
it is not required that this action is executed by the environment. Indeed, if we assume that other
agents can observe thegreedyaction,u� , at every time step and condition their belief update on this,
the terms depending on� disappear from the Bayesian update:

P(� t j� a
t ; u� ) =

I (u� (� t ); u� )
�
B (� t )

P
� 0 I (u� (� 0); u� )

�
B (� 0)

(8)

Therefore, to have our cakeand eat it, in the Simpli�ed Action Decoder (SAD) the acting agent
is allowed to `take' two actions at any given time step during training. The �rst action,ua , is the
standard environment action, which gets executed as usual and is observed by all agents through the
observation function at the next time step, as mentioned in Section 3. The second action,u� , is the
greedy action of the active agent. This action does not get executed by the environment but instead
is presented as an additional input to the other agents at the next time step, taking advantage of the
centralized training regime during which information can be exchanged freely.

Clearly we are not allowed to pass around extra information duringdecentralized control, but luckily
this is not needed. Since we set� to 0 at test time we can simply use the, now greedy, environment
action obtained from the observation function as our greedy-action input.

While this is most straight forward in settings where the last action is observed by other agents
directly, in principle SAD can also be extended to settings where it is indirectly observed by all agents
through the environment dynamics. In these cases we can replace the greedy-action side-channel
with a learned inverse model that recovers the action from the observation history during execution.

Furthermore, to encourage the agent to meaningfully decode the information contained in the greedy
action, we can optionally add an auxiliary task to the training process, such as predicting unobserved
information from their observation history .

While this idea is compatible with any deep RL algorithm with minimal modi�cations, we use a
recurrent version of DQN with distributed training, dueling networks and prioritized replay. We
also learn a joint Q-function using VDN in order to address the challenges of multi-agent off-policy
learning, please see Section 3 for details on all of these standard methods.

5 EXPERIMENTS

5.1 MATRIX GAME

We �rst verify the effectiveness of SAD in the two step, two player matrix game from Foerster et al.
(2019), which replicates thecommunication through actionchallenge of Hanabi in a highly simpli�ed
setting. In this fully cooperative game each player obtains a privately observed `card', which is drawn
iid from two options (1,2).

After observing her card, the �rst player takes one of three possible discrete actions (1, 2, 3). Crucially,
the second player observes both her own private card and the team mate's action before acting herself,
which establishes the opportunity to communicate. The payout is a function of both the two private
cards and the two actions taken by both agents, as shown in Figure 1.
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Figure 1: Illustration of the matrix game
from Foerster et al. (2019)

Importantly, there are some obvious strategies that do not
require any communication. For example, if both player
learn to play the 2nd action, the payout is always 8 points,
independent of the cards dealt. However, if the players do
learn to communicate it is possible to achieve 10 points
for every pair of cards dealt.

5.2 HANABI

Hanabi is a fully cooperative card game in which all play-
ers work together to complete piles of cards referred to as
�reworks. Each card has a rank,1 to 5, and a color,G / B
/ W / Y / R. Each �rework (one per color) starts with a1
and is �nished once the5 has been added. There are three
1s, one5 and two of all other ranks for each of the colors,
adding up to a total of 50 cards in the deck. The twist in
Hanabi is that while players can observe the cards held by
their team mates, they cannot observe their own cards and
thus need to exchange information with each other in order to understand what cards can be played.
There are two main means for doing so: First of all, players can take groundedhint actions, in which
they reveal the subset of a team mate's hand that matches a speci�c rank or color. An example hint is
“Your third and �fth card are1s”. These hint actions cost scarceinformation tokens, which can be
replenished bydiscardinga card, an action that both removes the card from the game and makes it
visible to all players.

Finally players can also choose toplay a card. If this card is the next card for the �rework of the
corresponding color, it is added to the �rework and the team scores one point. Otherwise the card is
removed from the game, the identity is made public, and the team loses one of the 3 life tokens. If the
team runs out of life tokens before the end of the game, all points collected so far are lost and the
game �nishes immediately. These rules result in a maximum score of5 � 5 = 25 points in any game,
which corresponds to all �ve �reworks being completed with �ve cards per �rework.

To ensure reproducibility and comparability of our results we use the Hanabi Learning Environment
(HLE) (Bard et al., 2019) for all experimentation. For further details regarding Hanabi and the
self-play part of the Hanabi challenge please see Bard et al. (2019).

5.3 ARCHITECTURE ANDCOMPUTATION REQUIREMENTS

We borrow some ideas and insights from prior distributed Q-learning methods while bring extensions
to MARL as well as innovations to improve throughput and ef�ciency. Following Horgan et al.
(2018) and Kapturowski et al. (2019), we use a distributed prioritized replay buffer shared byN
asynchronous actors and a centralized trainer that samples mini-batches from the replay buffer
to update the model. In each actor thread, we runK environments sequentially and batch their
observations together. The observation batch is then fed into an actor that utilize a GPU to compute
a batch of actions. All asynchronous actors share one GPU and the trainer uses another GPU for
gradient computation and model updates. This is different from prior works which run single actor
and single environment in each thread on a CPU. Our method enables us to run a very large number
of simulations with moderate computation resources. In all Hanabi experiments, we runN = 80
actor threads withK = 80 environments in each thread on single machine with 40 CPU cores and
2 GPUs. Without this architectural improvement, it may require at least a few hundred CPU cores
to run 6400 Hanabi environments, in which case neural network agents and simulations have to be
distributed across multiple machines, greatly reducing the reproducibility and accessibility of such
research. Please refer to Appendix A for implementation details and hyper-parameters.
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6 RESULTS

6.1 MATRIX GAME

Figure 2:Results for the matrix game.

As we can see in Figure 2, even in our simple ma-
trix game thegreedy action inputmakes a drastic
difference. With an average reward of around 9.5
points, tabular IQL does well in this task, matching
theBAD results from Foerster et al. (2019). How-
ever, just by adding the greedy action as an addi-
tional input, we obtain an average performance of
9:97 � 0:02. Results are averaged over 100 seeds,
and shading is s.e.m. The code is available here:
www.bit.ly/2mBJLyk .

6.2 HANABI

As shown in Table 1, our �ndings from the matrix game are for the most part con�rmed on the
challenging Hanabi benchmark. To illustrate the contributions of the different components, we
compare average scores and win rates across 13 independent training runs of SAD and three different
options:IQL is simply the recurrent DQN agent with parameter sharing,VDN is the same agent but
also learns a joint Q-function and �nallySAD & AuxTaskis the SAD agent with the auxiliary task.

While we �nd that SAD signi�cantly outperforms our baselines (IQL and VDN) for 2, 4 and 5 players
in terms of average score and/or win rate, there is no signi�cant difference for 3 players, where VDN
matches the performance of SAD.

Interestingly, the auxiliary task only signi�cantly helps the 2-player performance, where it substan-
tially boosts the average score and win rate. In contrast, it drastically hurts performance for 3-5
players, which opens an interesting avenue for future work.

For completeness we have included training curves showing average scores and s.e.m. across all
training runs for all numbers of players for our methods and ablations in Appendix B. We �nd that
for 5 players the auxiliary task drastically reduces the variance of SAD and intermittently leads to
higher performance during training but ultimately results in lower �nal performance. We can also
clearly see that despite 72 hours of training and billions of samples consumed, the performance has
not plateaued for 3-5 players, pointing to an obvious avenue for further improvements.

The original numbers in the Hanabi challenge and BAD used population based training (Jaderberg
et al., 2018), effectively reporting maximum performance across a large number of different runs.
Therefore, for reproducibility purposes, we report evaluations of the best model from our various
training runs for each method in Table 2.

As shown, under this reporting we establish a new SOTA for learning methods on the self-play
part of the Hanabi challenge for 2-5 players, with the most drastic improvements being achieved
for 3-5 players. In particular, we beat both the ACHA agent from Bard et al. (2019) and the BAD
agent on average score, even though both of them used population based training and require more
compute. We note that while we follow the counting convention proposed by the challenge paper,
BAD was optimized for a different counting scheme, in which agents keep their scores when they run
out of lives. This may explain the higher win rate (58.6%) of BAD combined with a relatively low
mean score, which is exceeded even by our baseline methods. Once again, only the performance for
2-player is signi�cantly improved by the auxiliary task and the 3-player setting is an outlier in the
sense that SAD does not improve the best performance compared to VDN.

7 CONCLUSION AND FUTURE WORK

In this paper we presented the Simpli�ed Action Decoder (SAD), a novel deep multi-agent RL
algorithm that allows agents to learn communication protocols in settings where no cheap-talk
channel is available. On the challenging benchmark Hanabi our work substantially improves the
SOTA for an RL method for all numbers of players. For two players SAD establishes a new high-score

8



Published as a conference paper at ICLR 2020

Agent 2 Players 3 Players 4 Players 5 Players

IQL 23.77� 0.04 23.02� 0.10 21.99� 0.09 20.60� 0.11
(Baseline) 43.88� 1.21 % 26.16� 2.01 % 10.15� 0.86 % 2.27� 0.32 %

VDN 23.83� 0.03 23.71� 0.06 23.03� 0.15 21.18� 0.12
(Baseline) 44.97� 1.28 % 41.16� 1.27 % 23.57� 2.20 % 2.26� 0.32 %

SAD 23.87� 0.03 23.69� 0.05 23.27� 0.16 22.06� 0.23
47.90� 1.10 % 41.12� 1.10 % 29.38� 2.63 % 7.22� 1.29 %

SAD 24.02� 0.01 23.56� 0.07 22.78� 0.10 21.47� 0.08
AuxTask 54.38� 0.41 % 40.77� 1.35 % 20.80� 1.65 % 2.92� 0.40 %

Table 1:Mean performance of our methods and baselines on Hanabi. We take the �nal models of 13 independent
runs, i.e. 13 models per algorithm per player setting. Each model is evaluated on 100K games. Mean and s.e.m
over the mean scores of the 13 models are shown in the table. The second row of each section is the win rate.

Agent 2 Players 3 Players 4 Players 5 Players

Rainbow 20.64� 0.03 18.71� 0:01 18.00� 0.17 15.26� 0.18
(Bard et al., 2019) 2.5% 0.2% 0% 0%

ACHA 22.73� 0.12 20.24� 0.15 21.57� 0.12 16.80� 0.13
(Bard et al., 2019) 15.1% 1.1% 2.4% 0%

BAD 23.92� 0.01 - - -
(Foerster et al., 2019) 58.56% - - -

IQL 23.97� 0.01 23.69� 0.01 22.76� 0.01 21.29� 0.01
(Baseline) 50.47% 40.25% 19.39% 4.93%

VDN 23.96� 0.01 23.99� 0.01 23.79� 0.00 21.80� 0.01
(Baseline) 50.27% 50.37% 38.86% 4.98%

SAD 24.01� 0.01 23.93� 0.01 23.81� 0.01 23.01� 0.01
52.39% 48.05% 41.45% 13.93%

SAD & 24.08� 0.01 23.81� 0.01 23.47� 0.01 22.25� 0.01
AuxTask 56.09% 49.74% 33.87% 7.33%

Table 2:Comparison between the previous SOTA learning methods and ours. We take thebestmodel of 13
runs for each of our methods and baselines. Each model is evaluated on 100K games with different seeds. Mean
and s.e.m over the100K games are shown in the table. The s.e.m. is less than 0.01 for most models. Bold
numbers are the best results achieved with learning algorithms. The second row of each section is the win rate.

across any method. Furthermore we accomplish all of this with a method that is both simpler and
requires less compute than previous advances. While these are encouraging steps, there is clearly
more work to do. In particular, there remains a large performance gap between the numbers achieved
by SAD and the known performance ofhat-codingstrategies (Wu, 2018) for 3-5 players. One possible
reason is that SAD does not undertake any explicit exploration in the space of possible conventions.
Another promising route for future work is to integrate search with RL, since this has produced SOTA
results in a number of different domains including Poker, Go and backgammon.
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A NETWORK ARCHITECTURE AND HYPER-PAMAMETERS FOR HANABI

Our Hanabi agent uses dueling network architecture (Wang et al., 2015). The main body of the
network consists of 1 fully connected layer of 512 units and 2 LSTM (Hochreiter & Schmidhuber,
1997) layers of 512 units, followed by two output heads for value and advantages respectively. The
same network configuration is used across all Hanabi experiments. We take the default featurization
of HLE and replace the card knowledge section with the V0-Belief proposed by Foerster et al. (2019).
The maximum length of an episode is capped at 80 steps and the entire episode is stored in the
replay buffer as one training sample. This avoids the “slate hidden states” problem as described
in Kapturowski et al. (2019) because we can simply initialize the hidden states of LSTM as zero
during training. For exploration and experience prioritization, we follow the simple strategy as
in Horgan et al. (2018) and Kapturowski et al. (2019). Each actor executes an �i-greedy policy where
�i = �1+ 1

N�1� for i 2 f0; :::; N � 1g but with a smaller � = 0:1 and � = 7. For simplicity, all
players of a game use the same epsilon. The per time-step priority �t is the TD error and per episode
priority is computed following �e = �maxt �i + (1� �)�̂ where � = 0:9. Priority exponent is set
to 0:9 and importance sampling exponent is set to 0:6. We use n-step return (Sutton, 1988) and
double Q-learning (van Hasselt et al., 2015) for target computation during training. The discount
factor  is set to 0.999. The network is updated using Adam optimizer (Kingma & Ba, 2014) with
learning rate lr = 6:25� 10�5 and � = 1:5� 10�5. Trainer sends its network weights to all actors
every 10 updates and target network is synchronized with online network every 2500 updates. These
hyper-parameters are fixed across all experiments.

In the baseline, we use Independent Q-Learning where each player estimates the Q value and selects
action independently at each time-step. Note that all players need to operate on the observations in
order to update their recurrent hidden states while only the current player has non-trivial legal moves
and other players can only select ‘pass’. Each player then writes its own version of the episode into
the prioritized replay buffer and they are sampled independently during training. The prioritized
replay buffer contains 217(131072) episodes. We warm up the replay buffer with 10,000 episodes
before training starts. Batch size during training is 128 for games of different numbers of players.

As mentioned in Section 4, the SAD agent is built on top of joint Q-function where the Q value is the
sum of the individual Q value of all players given their own actions. One episode produces only one
training sample with an extra dimension for the number of players. The replay buffer size is reduced
to 216 for 2-player and 3-player games and 215 for 4-player and 5-player games. The batch sizes for
2-, 3-, 4-, 5-players are 64, 43, 32, 26 respectively to account for the fact that each sample contains
more data.

Auxiliary task can be added to the agent to help it decode the greedy action more effectively. In
Hanabi, the natural choice is the predict the card of player’s own hand. In our experiments, the
auxiliary task is to predict the status of a card, which can be playable, discardable, or unknown. The
loss is the average cross entropy loss per card and is simply added to the TD-error of reinforcement
learning during training.
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