
Under review as a conference paper at ICLR 2019

MODULAR DEEP PROBABILISTIC PROGRAMMING

Anonymous authors
Paper under double-blind review

ABSTRACT

Modularity is a key feature of deep learning libraries but has not been fully
exploited for probabilistic programming. We propose to improve modularity
of probabilistic programming language by offering not only plain probabilistic
distributions but also sophisticated probabilistic model such as Bayesian non-
parametric models as fundamental building blocks. We demonstrate this idea by
presenting a modular probabilistic programming language MXFusion, which in-
cludes a new type of re-usable building blocks, called probabilistic modules. A
probabilistic module consists of a set of random variables with associated prob-
abilistic distributions and dedicated inference methods. Under the framework of
variational inference, the pre-specified inference methods of individual probabilis-
tic modules can be transparently used for inference of the whole probabilistic
model. We demonstrate the power and convenience of probabilistic modules in
MXFusion with various examples of Gaussian process models, which are evalu-
ated with experiments on real data.

1 INTRODUCTION

Deep neural networks (DNNs) have seen great successful in various areas such as computer vi-
sion, speech recognition, and artificial intelligence. A major driver of such success is the rise of
deep learning libraries, starting from Theano and following by many popular libraries such as Ten-
sorFlow, PyTorch. The unique benefits that these libraries bring are: (1) completely transparent
training and prediction, (2) modular DNN construction with interchangeable components. A DNN
component can vary dramatically in terms of size and complexity, ranging from a single matrix op-
erator, to a highly complex deep neural network such as convolutional neural networks (CNN) or
long short-term memory (LSTM). All the components share the same interface, which enables a
user to replace one component by another with almost no changes on other parts of the code. In
particular, modularity in the programming languages used by deep learning libraries revolutionizes
the development, communication and deployment of DNNs. The ability to package a state-of-the-art
implementation into a standard module and distribute enables rapid development with much lower
chance of having bugs and performance issues comparing with re-implementing from scratch, which
makes research results more reproducible. Communication about ongoing research method and re-
sults becomes much easier, as running a different experiment or modifying a network only requires
to change a few lines of code. The standardized interface of components enables better testing and
maintainability. It eases the transition of a research implementation into an industrial software.

Probabilistic programming language (PPL) is a similar domain specific programming language that
aims at describing probabilistic models and automating inference in those models. Despite the
different of DNNs and probabilistic models in mathematical formulations1, a similar modularity
structure exist in both probabilistic models and DNNs. However, the benefits of modularity has
not been fully exploited in currently popular PPLs such as Stan (Carpenter et al., 2017), Edward
(Tran et al., 2016), PyMC (Salvatier et al., 2016), which is mostly about re-using plain probabilistic
distributions and (configurable) generic inference algorithms such as Markov Chain Monte Carlo
(MCMC) or Stochastic Variational Inference (SVI).

In this paper, we propose to further exploit the modularity in probabilistic models by offering not
only plain probabilistic distributions but also sophisticated probabilistic model such as Bayesian

1A DNN represents a deterministic function, while a probabilistic model describes a probabilistic distribu-
tion.

1

Under review as a conference paper at ICLR 2019

non-parametric models as fundamental building blocks in a PPL. This would bring the a lot of ben-
efits of modularities that we enjoy with deep learning libraries and improve the usabilities of PPLs
on real world problems. We demonstrate this idea by presenting a modular probabilistic program-
ming language MXFusion, which includes a new type of re-usable building blocks for probabilistic
models called probabilistic modules. A probabilistic module consists of a set of random variables
with associated probabilistic distributions and dedicated inference methods designed specifically for
efficiency and accuracy on that set of random variables. This allows to package a sophisticated prob-
abilistic model with their proposed inference methods. The reason for packaging inference methods
within a probabilistic module is due to the fact that the exact inference of most of probabilistic mod-
els are intractable. Given a specific probabilistic model, a generic approximate inference method
that is applicable to a wide range of probabilistic models often performs worse than a dedicated
inference method. Most of current PPLs only rely on generic inference methods such as MCMC or
black-box variational inference. We propose a framework of probabilistic modules based on vari-
ational inference. With the proposed framework, one could seamlessly combine generic inference
methods with dedicated inference methods, which bridges the performance gap.

The rest of the paper is organized as follows: Section 2 describes relevant ideas in the literature of
PPL; Section 3 provides details of probabilistic modules; Section 4 and ?? presents probabilistic
modules in MXFusion; Section 5 demonstrates experiments of presented models with real data.

2 RELATED WORKS

Probabilistic programming languages typically focus on offering an expressive programming lan-
guage that describes probabilistic models and automating inference of probabilistic models through
a “compilation” step. Due to the intractability of inference in probabilistic models, existing PPLs
either focus on the expressiveness and employs a generic inference engine which suffers from scala-
bility issues (Pfeffer, 2001; 2009; Goodman et al., 2012), or focus on efficiency by restricting down
to a specific class of models and inference algorithms (Spiegelhalter et al., 1995; Murphy, 2001;
Salvatier et al., 2015; Carpenter et al., 2016). By exploiting automatic-differentiation and hardware
acceleration, Edward (Tran et al., 2017) and Pyro (Goodman, 2017) take a middle approach by
offering the capability of customized inference methods, which is often referred to as an inference
model. Both propose a clear separation between model and inference and typically rely on stochastic
variational inference methods such as amortized inference.

The idea of encapsulating models and approximate inference programs in probabilistic modules has
also been proposed by Cusumano-Towner & Mansinghka (2017), in which they demonstrate with
Markov Chain Monte Carlo (MCMC) and Sequential Monte Carlo (SMC) inference programs. Ven-
ture and Anglican define inference as a collection of program fragments corresponding to local in-
ference problems, although they do not support customizable posterior approximation (Mansinghka
et al., 2014; Wood et al., 2014).

3 MODULARITY IN PROBABILISTIC PROGRAMMING

DNN has a very nice modularity property that is exploited by deep learning libraries, which is a
result of function composition. The formulation of a function can be broken into the composition of
several sub-functions, e.g., f(x) = g1(· · · gk(x)). This enables a deep learning library to implement
building blocks at various granularities as individual sub-functions. Then, a user can easily construct
a DNN by putting these building blocks via function composition.

A similar modularity property also exists in probabilistic models, but in sightly different form. The
joint probability distribution of a probabilistic model can often be decomposed into the product of
the conditional distribution of individual variables with all the latent variables being marginalized
out, e.g., p(y|z) =

∫
x
p(y|x)p(x|z). This allows us to implement these individual conditional dis-

tributions as building blocks for a probabilistic model. So far, most of PPLs exploits this modularity
and provides standard probabilistic distribution as building blocks. In this paper, we present an
approach to provide more sophisticated probabilistic models as building blocks.

Inference for a DNN is mostly based on gradient optimization, in which a gradient can be computed
transparently through automatic-differentiation. For a probabilistic model, inference is very chal-

2

Under review as a conference paper at ICLR 2019

lenging, as the exact inference for most of probabilistic models is intractable. Research has been
focused on developing approximate inference or sampling methods for resolving this intractability.
The literature of approximate inference methods can be broadly categorized into two groups: (1)
proposing a better approximate inference method for a specific probabilistic model (2) developing a
generic inference algorithm that can be applied to a family of probabilistic models as big as possible,
sometimes being referred to as black-box inference. Both types of inference methods have received
great attention and been developed by a lot of researchers. Obviously, given a specific model, a spe-
cialized inference method will always give a better performance than a generic inference method, as
it is able to take advantages of the specific mathematical properties of the given model. Even among
generic inference methods, a method only applicable to a small family of models performs better
than a more generic method. For example, stochastic variational inference with reparameterization
trick that is only applicable to a location-scale family of distributions produces a lower variance
estimate of gradient than the score function approach that is applicable to mostly of distribution
including discrete distributions.

Currently existing PPLs only use generic inference methods. Although those generic inference
methods may be configurable, e.g., providing a customized variational posterior, it often performs
worse for the probabilistic models, of which a specialized inference method exists. In MXFusion, we
bridge the performance gap between generic and specialized inference methods by further exploiting
the modularity of probabilistic models and offering probabilistic modules as building blocks. A
probabilistic module encapsulates a sophisticated probabilistic model, e.g., a Gaussian process, and
a set of specialized inference algorithms. With the latent variables of a probabilistic module being
invisible from outside, a probabilistic module defines a conditional distribution over its exposed
variables, which has no difference from a plain probabilistic distribution. A probabilistic module
offers the same interface as a plain probabilistic distribution, so that an external inference method
can transparently treat a probabilistic module as a plain probabilistic distribution. Internally, the
interface of a probabilistic module is realized by calling a pre-specified inference method.

In the following section, we demonstrate the idea of a probabilistic module with variational infer-
ence. This idea can also be applied to other inference algorithms.

3.1 PROBABILISTIC MODULE WITH VARIATIONAL INFERENCE

The concept of hiding the details of inference of a probabilistic module by specialized inference
methods is nice. The challenge is that not all the approximate inference method are compatible
with each other. In this section, we present an approach to implement probabilistic module with the
framework of variational inference.

The main idea of variational inference is to approximate an intractable posterior distribution of latent
variables with a parametric approximation, referred to as a variational posterior distribution. VI is
often framed as a lower bound of the logarithm of the marginal distribution, e.g,

log p(y|z) = log

∫
x

p(y|x)p(x|z) ≥
∫
x

q(x|y, z) log p(y|x)p(x|z)
q(x|y, z)

= L(y, z), (1)

where p(y|x)p(x|z) forms a probabilistic model with x as a latent variable, q(x|y) is the variational
posterior distribution, and the lower bound is denoted as L(y, z). By then taking a natural exponen-
tiation of L(y, z), we get a lower bound of the marginal probability denoted as p̃(y|z) = eL(y,z).

Assume we are interested in plugging p(y|z) into another probabilistic model p(l|y)p(y|z) where y
is a latent variable. With variational inference, the lower bound of the overall model can be derived
as

log p(l|z) ≥
∫
y

q(y) log
p(l|y)p(y|z)

q(y)
≥

∫
y

q(y) log
p(l|y)p̃(y|z)

q(y)
, (2)

where the usual variational lower bound is further lower bounded by replacing p(y|z) with its lower
bound p̃(y|z). By substituting (1) into (2), we then derive the variational lower bound for the whole
model,

log p(l|z) ≥
∫
y,x

q(x|y, z)q(y|z) log p(l|y)p(y|x)p(x|z)
q(x|y, z)q(y|z)

= L(l, z). (3)

This example shows that variational inference has a recursive property that enables inference modu-
larity. A technical challenge with VI is that the integral of the lower bound of a probabilistic module

3

Under review as a conference paper at ICLR 2019

yn

xn
σ2

N

m = Model()
dnn = MXFusionGluonFunction(net, 1)
m.x = Variable(shape=(N, Q))
m.sigma2 = Variable(shape=(1,),

transformation=PositiveTransformation())
m.y = MultivariateNormal.define_variable(

shape=(N, 1), mean=0,
covariance=syrk(dnn(m.x))+mx.eye(N)*m.sigma2)

infr = GradientBasedInference(MAP(m, [m.x, m.y]))

Figure 1: Bayesian linear regression. The variable net references a deep neural network defined in
the MXNet Gluon syntax.

with respect to external latent variables, such as (2), may not always be tractable. Stochastic varia-
tional inference (SVI) offers an approximated solution to this new intractability by applying Monte
Carlo Integration. Monte Carlo Integration is applicable to generic probabilistic distributions and
lower bounds as long as we are able to draw samples from variational posterior.

In this case, the lower bound is approximated as

L(l, z) ≈ 1

N

∑
i

log
p(l|yi)eL(yi,z)

q(yi|z)
, L(yi, z) ≈

1

M

∑
j

log
p(yi|xj)p(xj |z)
q(xj |yi, z)

, (4)

where yi|z ∼ q(y|z), xj |yi, z ∼ q(x|yi, z) andN is the number of samples of y andM is the number
of samples of x given y. Note that if there is a closed form solution of p̃(yi|z), the calculation of
L(yi, z) can be replaced with the closed-form solution.

MXFusion offers modularity via probabilistic modules, which combine the definition of probabilis-
tic distributions and specialized inference methods in a concise interface. If using VI as the primary
inference algorithm, probabilistic modules used in a model automatically compute variational lower
bounds, such as p̃(y|z) in the above example.

4 MODEL CONSTRUCTION WITH PROBABILISTIC MODULES

In PPLs, a probabilistic model is often represented as a graph of random variables, where connec-
tions between random variables denotes corresponding probabilistic distributions. In such a repre-
sentation, a probabilistic distribution is a fundamental re-usable component for constructing various
probabilistic models. A probabilistic distribution typically have two reusable operations required
by an inference method: drawing a sample of the random variable and computing the logarithm
of its probabilistic density/mass function. Then, a user specifies a probabilistic model by defining
individual variables and their corresponding probabilistic distributions if they are random variables.
Each specified probabilistic distribution includes the form of the distribution and all the variables
that the distribution is conditioned on, which corresponds to all the directed connections towards the
random variable.

MXFusion follows this design of model specification. Figure 1 implements a Bayesian linear regres-
sion (BLR) model using a deep neural network as a feature extractor. There are N data points, each
of which contains an input vector xn ∈ RQ and an output variable yn ∈ R. Each input vector is first
applied to a DNN, hn = fφ(xn), where φ denotes the parameters of the DNN. The output variable,
y = (y1, . . . , yN), follows a multi-variate normal distribution, y ∼ N (0,H>H+σ2I), where H is
the stack of the outcome of DNN, H = (h1, . . . ,hN)>. As there are no latent variables in BLR, a
MAP inference method is created to estimate the model parameters with maximum likelihood given
the observed data, i.e., φ∗, σ∗ = argmaxφ,σ log p(y|fφ(X), σ). The maximum likelihood estimate
is achieved through optimizing the log-likelihood via a gradient-based optimization algorithm. The
log-likelihood of BLR is computed via the log pdf method of the probabilistic distribution of
the variable y, which is a multi-variate normal distribution. The gradient of the log-likelihood is
obtained through auto-differentiation using MXNet.

A noticeable difference from PyMC and Edward is that all the variables in a probabilistic model
are defined as explicit members of a Model class, which offers a clean memory management by

4

Under review as a conference paper at ICLR 2019

m = Model()
dnn = MXFusionGluonFunction(net, 1)
m.x = Variable(shape=(N, Q))
m.h = dnn(m.x)
m.sigma2 = Variable(shape=(1,),

transformation=PositiveTransformation())
m.y = SparseGaussianProcessRegression.define_variable(

shape=(N, 1), X=m.h, kernel=RBF(100), noise_var=m.sigma2)
infr = GradientBasedInference(MAP(m, [m.x, m.y]))

Figure 2: Deep kernel learning (Wilson et al., 2016). The variable net references a deep neural
network defined in the MXNet Gluon syntax, of the output dimensionality is 100.

avoiding any global states. Like Edward, the information about which variables are observed is
not given until inference time. This allows reuse a model specification across multiple inference
methods. When applying a machine learning model to a problem, one almost always uses a model
with at least two inference methods that have different observed variables.: one for estimating model
parameters/posterior distribution from training data and the other for making prediction with new
data. Taking BLR as an example, during training, the input variable X and output variable y are
both observed and the aim of inference is to estimate the model parameters that maximizes the log-
likelihood, while at prediction stage, only the input variable X is observed and the inference is to
estimate the output variable with the optimal model parameters p(y|X, σ∗, θ∗).

4.1 PROBABILISTIC MODULE AS MODEL COMPONENT

A stronger modularity for PPL is to enable reusing probabilistic models as building blocks. Ideally,
one should be able to construct a probabilistic model by putting together well-known sophisticated
probabilistic models such as Gaussian process, just like building a deep neural work with convolu-
tional layers or LSTM layers. MXFusion offers such modularity by encapsulating the specification
of a probabilistic model and a set of specialized inference algorithms, which is called a probabilistic
module. A probabilistic module implements the same interface that a probabilistic distribution has,
i.e., drawing a sample of output random variables and computing the logarithm of the probabilistic
density/mass function. By following the same interface, a probabilistic module can be transparently
used by a probabilistic model just like an usual probabilistic distribution.

In Figure 2, we demonstrate the convenience of a probabilistic module by modifying a BLR into
deep kernel learning (DKL) (Wilson et al., 2016). This only requires to change one line of code,
which replaces a multi-variate normal distribution with a sparse Gaussian process regression (SGPR)
module. The syntax of specifying a probabilistic module is similar to the one for a normal distribu-
tion. The input arguments include the input variable to the SGPR module and the choice of kernel
function for GP, which is radius basis function (RBF) in this case, and the noise variance for a Gaus-
sian likelihood distribution. The function returns a variable representing the output of the SGPR
module, which is assigned as the variable m.y in this example. In (Wilson et al., 2016), a particular
GP approximation, known as KISS-GP, is used for scalability, which is replaced by a variational
sparse GP approximation (Titsias, 2009) in this example.

Variational sparse GP speeds up the computation of log-likelihood by replacing it with a variational
lower bound. It introduces a set of auxiliary variables u ∈ RM , known as inducing data, and a set
of corresponding inducing inputs Z ∈ RM×Q. The resulting variational lower bound is

log p(y|X,Z, θ) ≥ LSGP(y,X,Z, θ) =

∫
f ,u

p(f |u,X,Z)q(u) log p(y|f)((((((p(f |u,X,Z)p(u|Z)
((((((p(f |u,X,Z)q(u)

where q(f ,u) = p(f |u,X,Z)q(u) is the variational posterior. The above variational lower bound
has a closed form solution with a computational complexity O(NM2), which is significantly lower
than the cubic complexity of GP, O(N3). The log pdf method of the SGPR module compute the
above variational lower bound. The MAP inference method of the DKL model finds the parameters of
SGPR θ, Z and the parameters of DNN φ that maximize the lower bound of DKL, i.e., θ∗, φ∗,Z∗ =
argmaxθ,φ,Z LSGP(y, fφ(X),Z, θ).

5

Under review as a conference paper at ICLR 2019

m = Model()
m.x = Normal.define_variable(mean=0, variance=1, shape=(N, Q))
m.sigma2 = Variable(shape=(1,), transformation=PositiveTransformation())
m.y = SparseGaussianProcessRegression.define_variable(

shape=(N, D), X=m.x, kernel=RBF(Q), noise_var=m.sigma2)
q = Posterior(m)
q.mu = Variable(shape=(N, Q))
q.S = Variable(shape=(N, Q), transformation=PositiveTransformation())
q.x.assign_factor(Normal(mean=q.mu, variance=q.S))
infr = GradientBasedInference(SVI(m, q, [m.x, m.y]))

Figure 3: Bayesian Gaussian process latent variable model (Titsias & Lawrence, 2010).

The variational inference method of SGPR transparently provides a specialized implementation that
exploits all the knowledge about the SGPR module and delivers good accuracy and efficiency. To
achieve the same task with a standard PPL, one needs to explicit the prior distribution of a sparse
Gaussian process regression model and the corresponding variational posterior. Even by doing so,
the same quality of inference is not achievable with a generic variational inference method. Stochas-
tic variational inference with reparameterization tricks would be the best choice in this case. The
inference result will be slow and has high variance. This is because: (1) The inference algorithm
is not able to figure out the cancellation of p(f |u,X,Z) in both the nominator and denominator.
A direct evaluation of p(f |u,X,Z) results into a cubic complexity O(N3), which fails to deliver
any speed-up comparing with GP. (2) The variational distribution p(f |u,X,Z) is high dimensional
RN and highly correlated. The variance of the Monte Carlo integration via sampling will be high.
(3) The optimal value of q(u) in the variational lower bound has a closed form solution, which
is exploited by variational sparse GP (Titsias, 2009). With SVI, one needs to explicitly optimize
it with gradient optimization. The speed and quality of the two inference approaches reflects the
gap between a generic inference algorithm and a specialized inference algorithm. The probabilistic
module aims at bridging this gap.

4.2 NESTED VARIATIONAL INFERENCE

A probabilistic module can be treated transparently as a probabilistic distribution. Then, it is straight-
forward to construct a probabilistic model consists of multiple probabilistic modules such as Deep
GPs (Dai et al., 2016). In these models, some of the exposed variables of probabilistic modules is
also latent variables. As shown in Section 3.1, as long as a variational inference method is used for
the whole probabilistic model, the inference of individual probabilistic modules can be transparently
handled.

Figure 3 implements Bayesian Gaussian process latent variable model (BGPLVM) (Titsias &
Lawrence, 2010), which is an example of this kind of models. BGPLVM can be constructed by
assign the input variable X a Gaussian distribution with zero-mean and unit-variance. As the input
variable X is a latent variable, the marginal log-likelihood is not tractable anymore. A variational
lower bound can be written as

log p(Y) ≥
∫
X

q(X) log
p(Y|X)p(X)

q(X)
≥

∫
X

q(X) log
LSGP(y,X,Z, θ)p(X)

q(X)

where p(Y|X) is a GP and q(X) = N (X|µ, diag(s)) is the variational posterior of X, which
is assumed to be a Gaussian distribution with a diagonal covariance matrix. By applying a vari-
ational sparse GP (Titsias, 2009) approximation to p(Y|X), we further lower bound the original
lower bound by replace p(Y|X) with the variational sparse GP lower bound mentioned above
LSGP(y,X,Z, θ). For the expectation with respect to q(X), we can apply stochastic variational
inference (SVI) by drawing samples from q(X). In this way, we result into a nested variational
inference combining a generic inference method (SVI) with a specialized inference method (varia-
tional sparse GP). Following the same approach, it is also straight-forward to extend BGPLVM into
a variationally auto-encoded GPLVM/deep GP (Dai et al., 2016) by parameterizing µ and s in q(X)
as the outcome of a DNN.

6

Under review as a conference paper at ICLR 2019

Metric Method naval1 naval2 kin8nm power

RMSE
SGP† (50) 3.5e-5 (1.0e-5) 3.1e-4 (9.0e-6) 0.087 (3.1e-3) 3.98 (0.19)
SGP (50) 3.7e-5 (1.1e-5) 3.1e-4 (8.0e-6) 0.089 (2.96e-3) 3.98 (0.19)
SGP (3200) 0.6e-5 (0.6e-5) 2.97e-4 (5.0e-6) 0.068 (2.48e-3) 3.08 (0.28)
DKL (1000) 2.0e-5 (1.2e-5) 4.85e-4 (5.5e-4) 0.062 (1.51e-3) 3.39 (0.26)

TLL
SGP† (50) 8.58 (0.22) 6.66 (0.03) 0.98 (0.02) -2.80 (0.05)
SGP (50) 8.69 (0.19) 6.67 (0.02) 0.98 (0.02) -2.80 (0.05)
SGP (3200) 10.70 (0.51) 6.70 (0.02) 1.28 (0.04) -2.53 (0.10)
DKL (1000) 5.26 (4.35) -83.8 (43.3) -19.4 (1.73) -12.7 (3.84)

Table 1: Performance comparison of variational sparse GP (SGP) and deep kernel learning (DKL)
on four standard regression benchmarks. SGP† is the GPy implementation. SGP is the SGP module
in MXFusion. The implementation of DKL is shown in Figure 2. The numbers in the parentheses
in the method column show the number of inducing points. Both rooted mean square error (RMSE)
and test log-likelihood (TLL) are the mean of measure with 10-fold cross-validation. The number
in the parentheses next to performance measure is its standard deviation.

5 EXPERIMENTS

In the previous examples, we demonstrate that various sophisticated probabilistic models can be
easily constructed with a few lines of codes by using probabilistic modules. In this section, we
evaluate the models that are constructed with probabilistic modules deliver good performance on
real data.

5.1 GAUSSIAN PROCESS REGRESSION AND DEEP KERNEL LEARNING

We evaluate the variational sparse GP (SGP) (Titsias, 2009) module implemented in MXFusion
and a variant of deep kernel learning (DKL) (Wilson et al., 2016) shown in Figure 2, comparing
with a standard sparse GP implementation from GPy (2012). All the GP models use RBF kernels.
By taking the advantage of GPU acceleration that is provided by MXNet, it allows to scale to a
significantly higher number of inducing points. For DKL, we use one hidden layer with 20 hidden
units and tanh activation. It outputs a 5-dimensional representation and, then, feeds into our SGP
module.

In this experiment, we compare all the methods on four standard regression benchmarks. Naval1 and
Naval2 are the same regression dataset with two different regression targets, they have 11934 data
points and 16 dimensional inputs. Kin8nm has 8192 data points and 8 dimensional inputs. We used
90% data points for training and 10% for testing. All the datasets are normalized column-wise. We
use 50 inducing points for GPy implementation which is a standard choice in the literature, and use
50 and 3200 inducing points for our SGP module. The Adam optimizer (Kingma & Ba, 2015) was
used for training in MXFusion, while GPy models are trained with L-BFGS. Results with 10-fold
averages measured in terms of root mean squared error (RMSE) and test set log likelihood (TLL)
are provided in Table 1. GPy and MXFusion with 50 inducing points give similar performance for
both RMSE and TLL. With 3200 inducing points, it gives significantly better performance on all the
datasets for both RMSE and TLL. For DKL, with a relative small number of inducing points (1000),
it produces a comparable RMSE with the help of a neural network, but does not give as good TLL.

6 DISCUSSION

Despite the expressiveness and flexibility provided by a PPL, a major limitation of PPL is that they
rely on generic inference algorithms. Recent work such as Edward and Pyro support customizable
inference algorithms, in particular, stochastic variational inference with a customized variational
posterior. Once an inference algorithm is chosen, it remains the same across a probabilistic model.
However, given a specific probabilistic model, e.g., a conjugate model, a specialized inference al-
gorithm that exploits the mathematical properties of that particular model will always produce in-
ference results that are as good or better than the generic inference in terms of both accuracy and
efficiency. In practice, when doing probabilistic modeling there is a tradeoff between implementing
a specialized inference algorithm for improved speed and performance at the cost of maintainability

7

Under review as a conference paper at ICLR 2019

and flexibility by introducing specialized code for each model. MXFusion aims at closing the gap
between having specialized, highly performant algorithms and generic, easily maintained generic al-
gorithms by introducing probabilistic modules. A probabilistic module consists of both a model and
inference definition, defined together and wrapped up in a modular, plug-and-play package. This
allows specialized inference algorithms for corresponding probabilistic modules to be smoothly in-
tegrated into the inference algorithm of a larger probabilistic model. By bringing modularity into
probabilistic programming, MXFusion offers a flexible maintainable framework for doing proba-
bilistic modeling while keeping the accuracy and efficiency of specialized inference algorithms.

REFERENCES

Bob Carpenter, Andrew Gelman, Matthew D Hoffman, Daniel Lee, Ben Goodrich, Michael Betan-
court, Marcus Brubaker, Jiqiang Guo, Peter Li, and Allen Riddell. Stan: A probabilistic program-
ming language. ArXiv, 2016.

Bob Carpenter, Andrew Gelman, Matthew Hoffman, Daniel Lee, Ben Goodrich, Michael Betan-
court, Marcus Brubaker, Jiqiang Guo, Peter Li, and Allen Riddell. Stan: A probabilistic program-
ming language. Journal of Statistical Software, Articles, 76(1):1–32, 2017.

Marco F. Cusumano-Towner and Vikash K. Mansinghka. Encapsulating models and approximate
inference programs in probabilistic modules. In workshop on probabilistic programming seman-
tics,, 2017.

Zhenwen Dai, Andreas Damianou, Javier González, and Neil Lawrence. Variational auto-encoded
deep Gaussian processes. International Conference on Learning Representations (ICLR), 2016.

Noah Goodman. Uber ai labs open sources pyro, a deep probabilistic programming language.
http://eng.uber.com/pyro, 2017.

Noah Goodman, Vikash Mansinghka, Daniel M Roy, Keith Bonawitz, and Joshua B Tenenbaum.
Church: A language for generative models. In Uncertainty in Artificial Intelligence, 2012.

GPy. GPy: A gaussian process framework in python. http://github.com/SheffieldML/
GPy, 2012.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations, 2015.

Vikash K. Mansinghka, Daniel Selsam, and Yura N. Perov. Venture: a higher-order probabilistic
programming platform with programmable inference. ArXiv, 2014.

Kevin Murphy. The Bayes net toolbox for Matlab. Computing Science and Statistics, 2001.

Avi Pfeffer. Ibal: A probabilistic rational programming language. In Proceedings of International
Joint Conference on Artificial Intelligence, pp. 733–740, 2001.

Avi Pfeffer. Figaro: An object-oriented probabilistic programming language. 2009.

John Salvatier, Thomas Wiecki, and Christopher Fonnesbeck. Probabilistic programming in python
using PyMC. ArXiv, 2015.

John Salvatier, Thomas V. Wiecki, and Christopher Fonnesbeck. Probabilistic programming in
Python using PyMC3. PeerJ Computer Science, 2(e55), 2016.

David J Spiegelhalter, Andrew Thomas, Nicky G Best, and Wally R Gilks. BUGS: Bayesian infer-
ence using Gibbs sampling. MRC Biostatistics Unit, Cambridge, 1995.

Michalis K. Titsias. Variational learning of inducing variables in sparse Gaussian processes. In
AISTATS, 2009.

Michalis K. Titsias and Neil D. Lawrence. Bayesian gaussian process latent variable model. In
International Conference on Artificial Intelligence and Statistics, 2010.

8

http://eng.uber.com/pyro
http://github.com/SheffieldML/GPy
http://github.com/SheffieldML/GPy

Under review as a conference paper at ICLR 2019

Dustin Tran, Alp Kucukelbir, Adji B. Dieng, Maja Rudolph, Dawen Liang, and David M.
Blei. Edward: A library for probabilistic modeling, inference, and criticism. arXiv preprint
arXiv:1610.09787, 2016.

Dustin Tran, Matthew D. Hoffman, Rif A. Saurous, Eugene Brevdo, Kevin Murphy, and David M.
Blei. Deep probabilistic programming. In International Conference on Learning Representations,
2017.

Andrew Gordon Wilson, Zhiting Hu, Ruslan Salakhutdinov, and Eric P. Xing. Deep kernel learning.
In International Conference on Artificial Intelligence and Statistics, 2016.

Frank Wood, Jan Willem Meent, and Vikash Mansinghka. A New Approach to Probabilistic Pro-
gramming Inference. In Proceedings of the Seventeenth International Conference on Artificial
Intelligence and Statistics, 2014.

9

	Introduction
	Related Works
	Modularity in Probabilistic Programming
	Probabilistic Module with Variational Inference

	Model Construction with Probabilistic Modules
	Probabilistic Module as Model Component
	Nested Variational Inference

	Experiments
	Gaussian Process Regression and Deep Kernel Learning

	Discussion

