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Abstract. Knowledge Graphs have emerged as a core technology to
enhance the search experience of users in research and industry alike.
Applications are being developed to build and exploit graph structures
in data repositories, to improve search and integration of knowledge.
However, data is available on the Web in diverse formats and integrat-
ing data from different sources is still an open research area. In this
paper, we propose a method to build a schema for Knowledge Graphs
that leverages ontologies by integrating them in a single unified graph,
enriched by an ontology matching step. We evaluate this method by com-
paring the different stages of graph structures and measuring structural
properties of the resulting graphs. We also propose an approach that
groups ontology classes by conceptual type, showcasing how an underly-
ing ontology-based schema can enhance a Knowledge Graph. The results
demonstrate the viability of this approach, highlighting how the chosen
techniques based on edge addition successfully make our ontology-based
knowledge graph schema more complete and tightly connected.
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1 Introduction

The Web provides an infrastructure where knowledge can be stored, shared,
and created, commonly in an unstructured format, using natural language. In
response to this lack of structure, the Semantic Web [2] and Linked Open Data
(LOD) [3] emerged to structure and integrate data on the Web, with standardised
formats that can be read and interpreted by both machines and humans alike.

Search engines often find unstructured information just by crawling the Web.
Recently, however, search engines have been evolving towards a more developed
search experience by leveraging Semantic Web technologies to structure infor-
mation. For instance, Google coined the term Knowledge Graph1 (KG) and de-
scribed it as a way to find new information about entities quickly and easily. The
concept of KG has since been adopted by the Semantic Web community to de-
scribe graphs that aggregate knowledge from different domains by including real-
world entities and their relationships [18] (e.g. DBPedia [12] and YAGO [20]).

However, creating KGs from information on the Web, even when structured,
is not a trivial task. When information sources were not specifically developed
with interoperability in mind, data structures do not follow the same standards

1 https://googleblog.blogspot.com/2012/05/introducing-knowledge-graph-
things-not.html (Retrieved in November 2018)
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or models, and integration becomes a tough challenge. Therefore, ontologies
are fundamental to ensure the consistency between datasets since they formally
represent and precisely define concepts and their relationships. When combined
with LOD, they improve the semantic content of the data and link datasets at
a schema level (as shown, for example, in [5] for the education domain).

Figure 1 illustrates a well-connected network of ontology classes that is used
at the schema level to integrate knowledge in a KG. Ontologies are structured
as a graph where the concepts/classes are nodes and the axioms/properties are
edges. These axioms refer to relationships within the ontology (intra-links) or link
to concepts in other ontologies (inter-links). Then, graph enrichment methods fa-
cilitate the discovery of new relationships between ontology entities (enrichment
links), resulting in a more tightly connected graph. Finally, assigning classes
from the schema layer to entities in the data layer (annotation links) allows the
inference of new relationships or paths between entities (inferable links).
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Fig. 1: KG with two layers illustrating different links.
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Fig. 2: Example of use of the ontology graph schema to
structure data in a KG.

Figure 2 presents an hypothetical example of how multiple ontologies can be
connected in a single graph and exploited as a KG schema. The Schema Layer
contains a graph with three example ontologies: DBPedia, AKT2, and CRSW3.
Now lets consider the task of two datasets that need to be integrated into the
KG: one describing universities and the other describing courses. After align-

2 http://projects.kmi.open.ac.uk/akt/ref-onto/
3 https://lov.linkeddata.es/dataset/lov/vocabs/crsw
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ing the data with the schema, a connected ontology graph allows for the newly
discovered shorter path (blue path) describing a Course that is taught at an
Organization that, in this case, is a University. Finally, akin to the UMLS Se-
mantic Types [14], assigning defined types to concepts from different ontologies
reduces the semantic complexity of the connected KG schema by grouping re-
lated concepts. In Figure 2, the semantic type is exemplified by the red box that
groups all organisation-related terms under the Organisation semantic type. This
grouping opens the possibility for type-based knowledge inference and provides
an additional layer of structuring for complex schemas with several ontologies
connected in a single graph.

In this paper, we propose and evaluate a method that exploits existing on-
tologies to improve integration of data at the schema level in KGs. For this
purpose, we analyse the impact of axioms and ontology matching in the overall
structure of the graph. We also demonstrate how to take advantage of an ontol-
ogy graph as the underlying schema of a KG by proposing a method that assigns
semantically relevant groups to ontology entities.

We start the article by discussing related work, followed by a detailed expla-
nation of the methods and evaluation. We then present and analyse the results.
Finally, we present our conclusions, limitations of the methods and future work.

2 Related Word

DBpedia [12] is a KG built from information in Wikipedia, with an underlying
ontology semi-automatically extracted from the most commonly used Wikipedia
information boxes. YAGO [20] is another KG that extracts knowledge from
Wikipedia, but its ontology combines the Wikipedia category system with the
WordNet [15] taxonomy. The relations in YAGO are manually evaluated and
some also provide links to DBPedia concepts. However, both DBPedia and
YAGO restrict their knowledge to information present in Wikipedia and, there-
fore, their ontologies focus on describing information available on this website.
Instead, we propose methods to extract a schema for a KG from multiple avail-
able ontologies, facilitating the integration of knowledge from different domains.

The problem of knowledge integration addresses interoperability problems
in data. KARMA [10] is a system that models a variety of data sources, in
different formats, with ontologies provided by the users. This system, however,
does not explore the potential of the ontologies as an additional layer to enrich
relationships. In this paper, we propose to not only use the ontologies to model
the data but, also, to provide an additional layer of knowledge in a KG that can
be exploited to infer new knowledge in the data layer.

KnowLife [6] is a biomedical knowledge base that integrates unstructured
data. It uses UMLS Semantic Types [14] to detect entities in text and also
extract relationships between these entities from the semantic types. The UMLS
Metathesaurus [4] is used as a graph database related through UMLS Semantic
types. In this work, we propose to take advantage of the UMLS Metathesaurus
and Semantic Types not as a base for our ontology graph but as a method to
enrich the knowledge in the KG.

3 Methods

The following sections describe our methods for building, enriching, and charac-
terising an ontology graph to be used as the foundation of a KG. Figure 3 shows
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the stages of the proposed methodology based on the hypothetical example from
Figure 2. The following sections describe these stages in detail.

Hierarchical Parsing Relationship Extraction Ontology Matching

Fig. 3: Methodology stages.

3.1 Hierarchy Parsing

A graph G is defined as G = (V,E), where V is a set of vertices or nodes and E
is a set of edges that connect the nodes.

In this step, a set of ontologies is loaded and processed into a graph G. The
ontology classes are represented as nodes in V, while E translates into the set of
hierarchical relationships obtained from the rdfs:subClassOf axiom. In Figure 3
the red lines represent these axioms in the three example ontologies. The graph
resulting from this step is named Base Graph or BGraph for short.

3.2 Relationship Extraction

When present, equivalent class axioms, property domain/range definitions, and
logical definitions are added to the ontology graph. Equivalent class axioms
(owl:equivalentClass) are added as bi-directional edges between the equivalent
nodes. The property domain/range definitions are added as an edge between the
domain and the range, and the edge is labelled with the property name.

Logical definitions [16] are complex axioms that refer to the relationship be-
tween a defining class, x, and a general class g that is discriminated from other
classes of x with a class d. For example, the Cell Ontology [1] contains a log-
ical definition for the class cardiac neuron (CL:0010022), where g is a neuron
(CL:0000540) that is part of d, the heart (UBERON:0000948). Logical defini-
tions are translated into two edges: E1 = (x, g) and E2 = (x, d).

Figure 3 illustrates owl:equivalentClass axioms, in red, connecting DBO’s
Organization with AKT’s equivalent class. Similarly the axioms connect Uni-
versity between the two ontologies. The diagram also shows an hypothetical
logical definition (green line) to connect the intersection between DBO’s Orga-
nization and University with AKT’s Higher Education Organization. The graph
resulting from this step is an increment over the Base Graph and was named
Axiom Graph or AGraph for short.

3.3 Ontology Matching

Ontology matching is the process of finding mappings between overlapping con-
cepts in ontologies to create alignments. We apply this approach as a edge en-
richment step, however, these edges do not necessarily adhere to ontology for-
malisms. Instead, they represent links between related concepts to be leveraged
when extracting knowledge from a KG.

AgreementMakerLight (AML) [8] is an ontology matching system that pro-
duces alignments between pairs of ontologies. This system is consistently one of
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the best performing in the Ontology Alignment Evaluation Initiative (OAEI) [7],
which evaluates the performance of ontology matching systems in specific tracks
that benchmark their efficacy and efficiency.

We match sets of ontologies with AML’s Word Matcher, which uses a bag-
of-words strategy to find word overlap between two ontology class labels and
scores the mappings with Jaccard similarity. Mappings with a score higher than
0.4 were selected. If conflicting mappings were found, only the highest scoring
ones were selected for the final alignment. We performed a baseline evaluation of
the chosen ontology matching strategy by using the anatomy dataset from the
Anatomy track of the OAEI 20184, which provides two anatomy ontologies and
a manually curated reference alignment.

Figure 3 illustrates a possible mapping (red line) between DBO’s Educational
Institution with AKT’s Educational Organization. The graph resulting from this
step is an increment over the Axiom Graph and was named Mappings Graph or
MGraph for short.

3.4 Characterisation and Evaluation

To the best of our knowledge, no benchmark or comparable approach exists to
evaluate our methods. However, the graphs obtained from the hierarchy pars-
ing, axiom extraction, and ontology matching (BGraph, AGraph, and MGraph,
respectively) are increments of each other, i.e. the AGraph is built from the
BGraph and the MGraph is enriched from the AGraph. This incremental build-
ing process allows us to assess how the more complex ontology axioms and the
ontology matching process affect the base structure of the ontology graph.

We adopt the BGraph as the baseline for the evaluation since it represents
the minimum set of existing edges between the considered ontologies. We then
evaluate each step as an increment over the previous graph with characterisa-
tion measures that provide an overview of the structure. This evaluation strategy
assesses the impact of each step, giving a better understanding of the graph evo-
lution. Ideally, the results of this evaluation present graphs that are increasingly
more cohesive and connected, translating into graphs that can relate concepts
more efficiently and effectively. The metrics used are defined as follows:

– Connected Components (CC) refers to sub-graphs where every node has
a path to all other nodes in the same sub-graph.

– Clustering Coefficient (CCF) [22] measures the degree at which the
nodes in the graph cluster together, based on triads.

– Average Node Degree (AD) is the average number of edges that are
connected to a node.

– Cohesiveness (CV) [23] measures how difficult it is to split the graph.
– Distribution of Shortest paths measures the frequency of the lengths of

the paths between two nodes in the graph such that the number of edges in
these paths are minimised.

More specifically, the number of CC and the AD are directly affected with
the addition/removal of edges. In the ontology graph, these metrics evaluate the
overall connectedness of the graph. Unchanging values between assembly steps
mean that the number of edges added had a low impact on the graph structure.

4 http://oaei.ontologymatching.org/2018/anatomy
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CCF and CV have a range of [0,1] and measure how closely connected are the
nodes in the graph and how robust are those connections. Ideally, each step of the
building process should increase the value of these measures, therefore producing
an increasingly connected graph where related concepts are more clustered and
harder to separate into disconnected or isolated structures.

The distribution of shortest paths evaluates the impact of the edges added in
each step in terms of efficiency of the graph when querying for similar or related
concepts. An increase in the number of shortest paths demonstrates that new
edges are creating new paths between the concepts in the graph.

3.5 Semantic Type Assignment

Besides providing a standardised structured schema for a KG, is possible to
extract knowledge from the ontology graph and later exploit it to enhance the
KG. For this purpose we propose a method that assigns a semantic type to
ontology classes. The semantic type allows ontologies to be grouped beyond
their original domain into clusters of related concepts. These groups can be
exploited, for example, in inference tasks for consistency checks or for information
summarisation and extraction.

In this step, we associate nodes with a term obtained from specific back-
ground knowledge. For the purpose we used WordNet synonyms for the type as-
signment of general domain ontologies and UMLS Semantic Network [13] types
for the domain-specific biomedical test case.

WordNet semantic type assignment. WordNet is a database of lexical el-
ements that are grouped into sets of cognitive synonyms (synsets). In February
2019, WordNet had 117 659 unique synsets.

We assigned WordNet synsets to general domain concepts by selecting the
first synset that matches the label of each ontology class. When no match is
found, the label is split into its words and the first synset matching each word
is added as a semantic type. Our approach was evaluated by removing manually
assigned semantic tags in the SemCor corpus [11], automatically assigning a
tag using the method previously described and, finally, computing precision and
recall between the new and the original tags.

UMLS semantic type assignment. The UMLS Semantic Network consists on
a set of broad concepts that categorise all concepts in the UMLS Metathesaurus.
In November 2018, the UMLS Semantic Network had 127 unique semantic types.

We assigned semantic types using two methods: direct assignment and auto-
matic extraction. When a class in an ontology cross-references a UMLS source
term, we directly assign the node in the schema with the same type as the
cross-referenced UMLS source term. However, when no semantic type is directly
extracted, it is automatically computed as follows:

1. The preferred label, L, is stemmed and stop words are removed.
2. L is matched with terms from the UMLS Metathesaurus by first finding all

UMLS terms that match at least one word of L and then selecting the terms
with the highest number of intersecting words, if no perfect match is found.

3. If more than one match is found, they are scored with a cosine similarity
function, and the ones with the highest scores are selected.
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The approach is evaluated by removing the labels from ontology classes cross-
referenced with UMLS types and re-computing them with the described ap-
proach, evaluating the original types against the new with precision and recall.

4 Results and Discussion

This section details and discusses the results of the assembly, enrichment and
enhancement of the ontology graph.

4.1 Ontology loading

We performed experiments over ontologies of diverse domains found in the
Linked Open Vocabularies (LOV) [21] portal. Ontologies featured in this por-
tal are assigned subject tags. The three most common tags are “Methods”,
“Metadata”, and “Geography”. From the 659 ontologies available in the LOV in
February 2019, we were able to download and parse 340. We refer to the graphs
obtained from this set of ontologies as General Ontology Graph (GOG).

We also used a domain specific ontology set extracted from the Ontology
Lookup Service (OLS) [9], a repository of biomedical ontologies. Out of 220
ontologies available through the OLS REST API on February 2019, we were
able to download and parse 206. The most common reason for discarding an
ontology was the presence of outdated information, e.g., owl:import statements
referring to ontologies that do not exist anymore. We refer to the graphs obtained
from this set of ontologies as Biomedical Ontology Graph (BOG).

These two test sets provide a rich environment for testing with ontologies
with different characteristics. Biomedical ontologies are domain-specific ontolo-
gies and, therefore, are more likely to have equivalent or related terms between
them. These ontologies are also characterised by their well-defined standards [19],
large size, and complex axioms. Ontologies found in the LOV have diverse do-
mains and, therefore, the alignment of the topics is not guaranteed. These on-
tologies have different levels of formalism and mostly follow LOD guidelines.

4.2 Ontology Matching

The baseline evaluation ontology matching strategy obtained a precision of 53.6%
and a recall of 83.2% when matching the two ground-truth anatomy ontologies.
Despite the reasonably good performance with this matching strategy, a preci-
sion of 53.6% can lead to a significant number of incorrect relations in the graph.
However, the OAEI Anatomy track evaluates the ability of an ontology matching
system to find complete equivalences between two ontologies. In our case, we are
looking for related concepts that do not need to be equivalent, e.g., the matching
approach aligns lateral thyrohyoid ligament with thyrohyoid. These two concepts
are not equivalent and, therefore, the OAEI Anatomy reference alignment does
not contain this mapping. However, these two concepts are related since lateral
thyrohyoid ligament is conceptually related to thyrohyoid. Therefore, in the case
of building a KG, it is still desirable to find this relationship since it can facil-
itate the connection between two different concepts that are not semantically
equivalent but have a real-world anatomical relationship.

Table 1 shows the results of the pairwise ontology matching over the general
and the biomedical sets of ontologies. The general set of ontologies obtained
more alignments than the biomedical set. However, this difference is due to
the difference in the number of ontologies in each set since the median number
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O |O| |A| med(|A|) avg(sim)

General ontologies 420 33 619 2 0.66

Biomedical ontologies 220 14 292 15 0.53

Table 1: Results of the ontology matching process. O is the set of ontologies,
A is the resulting alignment, med(A) is the median number of mappings in an
alignment, and avg(sim) is the average Jaccard similarity of the mappings.

of mappings in the general set was significantly lower than the biomedical set.
These results show that, as expected, ontologies in a more restricted domain will
find a more significant number of overlapping or related concepts. The average
Jaccard similarity in the general set of ontologies was 66%, while the biomedical
set obtained 53%.

4.3 Characterisation and Evaluation

Table 2 compares the ontology graphs over different stages of construction. In
both GOG and BOG, the number of nodes shows a small increase from the
BGraph to the AGraph due to axioms that reference ontology classes outside of
the scope of the ontology set. In these cases, the new ontology classes are added
as new nodes to the AGraph.

The GOG shows an increase of ≈21% in the number of edges between the
BGraph and the AGraph and ≈56% more edges in the MGraph than in the
AGraph. In the BGraph, ≈48% of the nodes are in the Largest Connected Com-
ponent (LCC), but this number increases to ≈62% in the AGraph and ≈88%
in the MGraph. Most of the elements not connected to the LCC are isolated,
forming a new connected component with a single node and no incoming or
outgoing edges. The most common reason for disconnected nodes in the GOG
are inconsistencies in the definition of classes, properties and their relations. For
example, the class http://purl.obolibrary.org/obo/HAO_0002311 is a root
class with no descendants and, therefore, is isolated in the graph.

Overall, in the BOG, the BGraph and the AGraph are structurally similar
since only a small number of edges was added (≈7% more edges). However,
between the AGraph and the MGraph, the differences are more prominent due to
an ≈48.9% increase in the number of edges. The BGraph and AGraph have ≈94%

Graph Stage |V| |E| LCC |CC| |1-CC| CCF AD CV

GOG

BGraph 16 510 16 755 7 889 3 210 2 867 0.022 2.450 0.433

AGraph 16 580 21 141 10 307 2 252 2 071 0.065 2.757 0.576

MGraph 16 580 47 727 14 634 1 517 1 553 0.177 5.639 0.886

BOG

BGraph 4 502 980 6 967 165 4 223 817 66 270 65 392 0.049 3.089 0.562

AGraph 4 502 981 7 456 127 4 227 375 63 522 62 693 0.050 3.160 0.575

MGraph 4 502 981 14 595 189 4 458 547 41 317 40 581 0.129 5.978 0.833

Table 2: Characterisation of the GOG and BOG. V is the set of nodes and
E is the set of edges. LCC - Largest Connected Component; CC - Connected
Components; 1-CC - single node CC; CCF - Clustering Coefficient; AD - Average
Node Degree; CV - Cohesiveness
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of the nodes in the LCC. In the MGraph, ≈99% of the nodes are connected in the
LCC. Most of the single elements connected components are due to ontologies
that do not follow common standards and formalisms to build an ontology or
reuse classes. For example, the ontology Flora Phenotype Ontology5 was created
only with classes and contains no intra or interlinks between classes.

Figure 4a and Figure 4b show the distribution of shortest paths for the
ontology graphs. Due to the large size of the BOG, the distance histogram was
computed for a sample of 60% of the total number of nodes of this graph.
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Fig. 4: Distribution of shortest paths.

In both figures, plot (i) corresponds to the overlap of the distance histogram
of the BGraph with the AGraph, and plot (ii) corresponds to the overlap of
AGraph and MGraph. Overall, both axiom and mapping edges have a significant
impact in the number of shortest paths that connect the nodes, which is directly
related with the increase of the number of elements connected in the LCC, i.e.,
more nodes connected, new shortest paths created. Despite the lower impact of
the edges added to AGraph in terms of structural properties in comparison to
MGraph, the distribution of shortest paths shows a comparable increase in the
number of shortest paths.

These new paths facilitate the discovery of relationships between concepts
in the graph, but also help shorten distances between them. More concretely,
the changes in the distribution of shortest paths can be illustrated, for example,
by the changes in the shortest path between the node with the label cancer
(DOID:162) and malignant cell (CL:0001064). In BGraph, the shortest path
between the two nodes is 10, in AGraph is 4, and in MGraph the concepts nodes
are directly connected, i.e. a shortest path length of 1.

In summary, the characterisation of the proposed ontology graph demon-
strates the contribution of each of the building steps to the overall structure of
the graph. The addition of axioms and mappings improves the connectedness of
the graph and creates new paths between nodes. The ontology matching step
proved to be significant, which shows that, in the context of building a founda-
tion for a KG, ontology matching is an approach that can connect previously
disconnected parts of the graph facilitating the process of finding related con-
cepts. The new edges allow concepts in the graph to be more easily reachable
between each other, facilitating the discovery of new relationships.

5 http://purl.obolibrary.org/obo/flopo.owl
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4.4 Semantic types

The evaluation of the methodology for WordNet type assignment achieved a
precision of 63.2% and a recall of 77.1%. Considering the reasonable performance
of the naive approach, we proceeded to the assignment of types to the ontology
classes in the GOG. The approach identified at least one type for 73.6% of the
nodes. The most common types were item.n.01 with 1 562 nodes, assay.n.01
with 120, and biological.a.01 with 99 nodes. The most common types are broad
terms due to the assignment of all synsets that match each word of the label to
the ontology class. A manual inspection revealed that this implementation detail
was also responsible for most of the wrong type assignments.

For example, the synset person.n.01 is defined in WordNet as “a hu-
man being”. The automatic matcher assigned 29 ontology classes to this
synset. A manual analysis showed that 75.8% of the classes assigned to this
synset closely matched the WordNet concept of person or were related to
it. For example, http://xmlns.com/foaf/0.1/Person, http://d-nb.info/
standards/elementset/gnd#DifferentiatedPerson, and http://purl.org/
goodrelations/v1#Individual are three classes that are grouped under the
synset person. Five of the explicitly seven wrong assignments occur due to the
methodology of matching each word separately if no synset is found. For exam-
ple, Individual epitope immunization in vivo (http://purl.obolibrary.org/
obo/OBI_0001176) matched due to the keyword “individual”.

The UMLS evaluation obtained a precision of 85.1% and a recall of 99%.
Both strategies obtained a reasonably high performance, with the approach de-
veloped for UMLS performing better than the WordNet method. In relation to
the semantic type assignment in the biomedical ontology graph, ≈3.3% nodes
had a direct semantic type assigned. The automatic approach was able to find
a type match for ≈76.9% of the remaining nodes. The most frequent types were
Eukaryote (T204) with 724 749 nodes, Bacterium (T007) with 525 529 nodes,
and Plant (T002) with 247 825.

Overall, the goal of the semantic type assignment was to provide an example
of an approach to extract information from the ontology graph as a KG schema.
In this context, this semantic grouping system clusters concepts into topics and,
considering that both WordNet and UMLS have their own graph structures,
these groups can be further exploited to extract more relationships. For example,
the semantic type Body Part, Organ, or Organ Component (T023) groups every
relevant concept under the same topic. In a search engine scenario, this semantic
type can be used to retrieve all the information of the KG about body parts.

5 Conclusion

This work proposes methods to create an ontology graph that can be exploited
to enhance the knowledge contained in a KG. We analyse these methods by
comparing the evolution of the graph at different stages and assess the impact of
each incremental step in the overall structure of the graph. We add edges to the
ontology graph in three steps: owl:subClassOf axioms, remaining class axioms,
and ontology alignments. Each step yields a more tightly connected and cohesive
graph than the step before. The addition of the extra class axioms over the basic
owl:subClassOf hierarchy shows that complex axioms have a significant impact
on the overall graph structure, specially the number of paths between nodes. In
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the context of a KG schema, taking advantage of these axioms provides more
relationships between concepts that contribute to the global usefulness of a KG.

We also propose to enrich the original ontology by performing pairwise on-
tology matching over all the ontologies in the graph. This approach showed to
have a significant impact in the structure of the graph, especially by connecting
previously disconnected portions of the graph, enabling the discovery of new
relationships and paths between concepts.

Finally, we present a method to exploit the proposed schema by assigning
semantic types to the ontology classes. We use background knowledge extracted
from WordNet and the UMLS Semantic Network to group ontology classes into
their more specific domains. This approach showcases the potential to extract in-
formation from the ontology schema that can be leveraged in different scenarios,
such as finding new relationships between sets of concepts.

6 Limitations and Future Work

In this paper, we proposed and discussed methods that can be leveraged in
different scenarios, however, these results also highlighted several limitations to
the approach that will be improved in the future.

We currently only consider object properties if they have domain and range
assigned. In these cases, the property is added as the label of the edge between
its domain and range. In the future, we will analyse how to leverage ontology
properties has a new assembly step in the graph building process.

Currently, logical definitions are added as two separate edges, when in reality
these definitions represent an intersection between three concepts. Therefore,
the integration of logical definitions as edges will be improved to more closely
represent this relationship. In the future, we will explore how logical definitions
can be fully explored, including assessing the potential of more complex ontology
matching to discover new relationships involving three concepts [17].

Despite the optimisation of the ontology matching step, ontology matching
is a complex subject which was simplified for the purpose of evaluating its appli-
cability in this case. In the future, we will examine how to optimise this process
further, including developing an heuristic for large scale ontology matching. A
robust ontology matching step can also be exploited to make a more compact
graph by merging equivalent concepts in a single node.

In relation to the semantic type assignment, currently we propose naive ap-
proaches that achieve reasonably good results. However, a fully automated and
reliable process would be ideal for semantic type assignment. Further applica-
tions for querying and relationship prediction will be developed to extend the
usefulness of the ontology graph schema. Overall, the approaches proposed and
the analysis show the potential of a unified ontology graph as KG schema to
knowledge extraction and relationship discovery.
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