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ABSTRACT

Training agents to operate in one environment often yields overfitted models
that are unable to generalize to the changes in that environment. However, due
to the numerous variations that can occur in the real-world, the agent is often
required to be robust in order to be useful. This has not been the case for agents
trained with reinforcement learning (RL) algorithms. In this paper, we investigate
the overfitting of RL agents to the training environments in visual navigation
tasks. Our experiments show that deep RL agents can overfit even when trained
on multiple environments simultaneously. We propose a regularization method
which combines RL with supervised learning methods by adding a term to the
RL objective that would encourage the invariance of a policy to variations in the
observations that ought not to affect the action taken. The results of this method,
called invariance regularization, show an improvement in the generalization of
policies to environments not seen during training.

1 INTRODUCTION

Learning control policies from high-dimensional sensory input has been gaining more traction lately
due to the popularity of deep reinforcement learning (DRL) Mnih et al. (2015); Levine et al. (2015);
Zhang et al. (2018b); Rakelly et al. (2019), which enables learning the perception and control modules
simultaneously. However, most of the work done in RL chooses to evaluate the learned policies in
the same environment in which training occurred Cobbe et al. (2018).

Using the same environments to train and test agents does not give any insight into the generalization
abilities of the learned policy. There could be a number of changes in the environment at test time that
would degrade the agent’s performance. Variations could appear in the visual aspects that determine
the agent’s observation, the physical structure that determines the agent’s state and even some aspects
that are related to the agent’s goal (Figure 1). For example, different observations of the same room
are encountered at different times of the day (different lighting conditions). New obstacles could
be present. Levels of a game could be different, yet playing a few levels should often be enough to
figure out how to play the rest. Such variations might result in a new environment where the control
model that defined the training environment has changed. A robust policy should generalize from its
experience and perform the same skills in the presence of these variations.

DRL agents have been notorious for overfitting to their training environments Cobbe et al. (2018).
An agent could have drastically different performance on testing environments even if it manages
to maximize the reward during training Zhang et al. (2018a). Supervised learning algorithms have
been shown to have some generalization guarantees when adding proper regularization Mohri et al.
(2018). However, these guarantees are weakened in reinforcement learning algorithms where the
source of the data is not i.i.d.. In order to make use of the progress of DRL algorithms in practice we
need policies that are robust to possible changes in the sensory inputs, surrounding structure and even
some aspects of the task.

In this paper we study the notion of generalization that is appropriate for visual navigation control
policies that are learned with DRL. We present: (1) a study of the generalization of visual control
policies to certain changes in the underlying dynamical system; (2) an alternative training method that
combines DRL with supervised learning, thus using DRL to learn a controller while leveraging the
generalization properties of supervised learning. In our experiments we use the VizDoom platform
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Kempka et al. (2016) which is easily customizable and enables the generation of numerous variants
of a given environment.

2 PRELIMINARIES

Figure 1: The figure shows how environments may
differ in their visual aspects, like textures of the
surfaces. The textures provide a differentiator for
each environment, where without them the envi-
ronments would have shared the same state space.

Visual navigation for mobile robots combines
the domains of vision and control. Navigation
can be described as finding a suitable and safe
path between a starting state and a goal state
Bonin-Font et al. (2008). Classical approaches
split the problem into a sequence of sub-tasks,
such as map construction, localization, planning
and path following Bonin-Font et al. (2008).
However, each sub-task requires some hand-
engineering that is specific to the environment
and task which makes it hard to adapt it to dif-
ferent scenarios without performing some tun-
ing. Deep learning approaches enable the use of
highly non-linear classifiers that can adapt their
inner representations to learn to robustly solve
complicated tasks Goodfellow et al. (2016).

In this work, we use reinforcement learning al-
gorithms coupled with deep learning approaches
to solve the task of navigating an agent towards
a goal object using only its visual observations as input. The field of view of the agent is limited, i.e.,
it does not observe the full environment, and we do not provide an explicit map of the environment to
that agent.

2.1 PROBLEM STATEMENT

We model the problem of visual navigation as a partially observed Markov decision process
(POMDP) (Spaan, 2012). A POMDP is given by a tuple

P := 〈S,A,Ω, R, T,O, P0〉,
where S is the set of states, A is the set of actions and Ω is the set of observations, all which are
assumed to be finite sets. The reward function is R : S × A → R. The conditional transition
probability mass function is T : S × A × S → [0, 1], with the interpretation that T (s, a, s′) =
p(st+1 = s′|st = s, at = a) is the probability that the next state is s′ given that the current
state is s and that action a is taken. The conditional observation probability mass function is
O : S × A × Ω → [0, 1], with the interpretation that O(s, a, o) = p(ot = o|st = s, at−1 = a) is
the probability of observing o in state s when the last action taken was a, and we allow for a special
observation probability O(s, o) = p(o0 = o|s0 = s) when in the initial state s and no action has yet
been taken. Finally, P0 is the initial state probability mass function, so that P0(s) = p(s0 = s) is the
probability that the initial state is s.

In DRL, we work with a parameterized policy πθ(h, a) = pθ(at = a|ht = h) with parame-
ters θ ∈ Θ, giving the probability of taking action a given observation-action history ht :=
(o0, a0, o1, a1, . . . , at−1, ot). The objective is to adjust the parameters θ to attain a high value
for the discounted reward

JP(θ) := EπθP

[ ∞∑
t=0

γtR(st, at)
]

with discount factor γ ∈ [0, 1). The expectation is over state-observation-action sequences
(st, ot, at)∞t=0 where the initial state s0 is drawn from P0 and other elements of such a sequence are
drawn from T,O and πθ respectively (Sutton & Barto, 1998).

Many methods for attempting to approximate optimal policies have been proposed. For instance,
policy gradient methods perform gradient ascent on estimates of the expected discounted reward. In
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this work we use the proximal policy optimization (PPO) algorithm, which arguably shows relatively
robust performance on a wide range of different tasks (Schulman et al., 2017).

2.2 FORMALIZING GENERALIZATION

As in classification, we wish to learn from a finite training set but still perform well on previously-
unseen examples from a test set. To formalize this, we have a distribution D over POMDPs,
representing multiple environments or tasks, and we sample ntrain POMDPs from this distribution
P1,P2, . . . ,Pntrain . In the context of navigation, these POMDPs might differ in terms of their
observation distributions, perhaps representing views of the same environment at different times
of day or year, in terms of their transition distributions, perhaps representing maps with different
geometries, or in terms of their reward distributions, perhaps corresponding to the specification
of different goal states. Given this sample, we then learn a policy πθ from a finite collection of
state-observation-action sequences from these POMDPs. In order to have a meaningful common
policy across these POMDPs, we require that they have common state, action and observation
spaces S,A and Ω. By analogy with the notion of generalization risk in classification (Mohri et al.,
2018), we say that policy πθ generalizes well if it attains a high value for the expectation of the
discounted reward over the full distribution of POMDPs, which we call the discounted generalization
reward, so that EP∼DJP(θ) is high in some sense.This is our own terminology as we did not find a
semantically-equivalent term in the literature.

It is not hard to see that the discounted generalization reward is actually the discounted reward
JPD (θ) of a single larger POMDP PD, whose state space may however no longer be finite. To
see this, let us associate a unique identifier i(P) with any POMDP sampled from D and let ID
be the set of all such unique identifiers. In the large POMDP PD, the state space is the Cartesian
product S × ID of the original states and these unique identifiers, but the action and observation
spaces are just A and Ω. The initial state distribution is obtained by first sampling a POMDP P ∼ D
and then sampling senv ∼ PP0 from that POMDP’s initial state distribution. The initial state in the
large POMDP is then the concatenation (senv, i(P)). Thus one might succinctly state the problem
of generalization in POMDPs as follows: given a distribution D over POMDPs with common state,
action and observation spaces and access to a sample of state-observation-action sequences from a
sample of POMDPs drawn from D, choose a policy πθ that obtains a high value for the discounted
reward JPD (θ).

3 RELATED WORK

Training in synthetic environments enables the simulation of huge amounts of experience in a span
of a few hours. Simulations are convenient to use when training reinforcement learning agents that
are often highly sample inefficient Sutton & Barto (1998). There is, frequently, a gap between the
synthetic world and the real-world, mainly due to the manner in which the simulators depict the
real-world dynamics and visual appearances. Often, these simulated worlds capture the richness and
noise of the real-world with low-fidelity Tobin et al. (2017). Many have tried to propose transfer
learning techniques to bridge the reality gap in order to still make use of fast simulators for training
Taylor & Stone (2009).

One popular method to bridge the reality gap is by randomizing some aspects of the training
environment Sadeghi & Levine (2016). This domain randomization technique has been shown to be
successful for the transfer of grasping policies from simulated training environments to the real-world
Tobin et al. (2017). However, the learned models resulting from that work are not control policies, but
perception modules. Previous work has showed some success in transferring the perception module
learned in simulation to the real world, but not the controller.

Cobbe et al. (2018) conduct a large scale study on generalization using a new environment, that
resembles an arcade game, which they call CoinRun. They experiment by training on different
background images and different level structures. They test with different regularization strategies
and network architectures finding that the RL agent has a surprising tendency to overfit even to
large training sets. Zhang et al. (2018a) reach a similar conclusion, when learning in grid-world
environments, and state that the agents have a tendency to memorize levels of the training set. Unlike
Cobbe et al. (2018), however, they argue that the methods that inject stochasticity into the dynamics
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of the system to prevent memorization, such as sticky actions Machado et al. (2017) and random
initializations Hausknecht & Stone (2015), often do not help. In our work we are interested in
generalization when navigating under partial observability unlike the fully observable CoinRun or
grid-world environments.

Domain adaptation methods have also been used for simulated to real transfer. They allow
models trained on a source domain to generalize to a target domain. Bousmalis et al. (2017) train a
generative model to adapt the synthetic images of the simulator to appear like the real environment. It
was shown to successfully transfer a grasping policy trained in simulation to the real world. However,
they do not discuss whether the policy generalizes when variations happen in the target domain.

Another aspect of generalization is the transfer of learned skills to solve different tasks. In other
words, generalization to the goal of the trained agent g. Achieving different tasks would require
the agent to have the ability to maximize different reward functions. Schaul et al. (2015) consider
working with value functions that contain the goal g as part of the agent’s state. They call them
universal value functions. The reward will then become a function of a state-action-goal tuple (s, a, g)
instead of a classical state-action pair. In the paper, the authors present universal value function
approximators (UVFA). A method that attempts to learn a universal value function estimate Vθ(s, g).
They show that UVFA’s can generalize for unseen state-goal pairs in grid-world setup.

Deep reinforcement learning has been used to train control policies. These DRL based methods
generally propose to learn motor control commands from raw camera images, thus mapping pixels to
commands that control the robot’s motors Levine et al. (2015). DRL algorithms have been used for
various navigation tasks such as goal conditioned navigation Mirowski et al. (2016); Zhu et al. (2016)
and mapless navigation Mirowski et al. (2018).

4 GENERALIZATION IN VISUAL CONTROL

Control policies learned from high-dimensional visual input are often brittle and lack the robustness
to operate in novel situations. Our main contribution is to propose a regularization term that can
be added to the RL objective to improve the robustness of the learned policy to variations in the
observations, presented in Section 4.2. However, to motivate the necessity of our proposed method
we study domain randomization in Section 4.1; one of the current main practices that aims at learning
a policy that generalizes well.

4.1 DOMAIN RANDOMIZATION

Domain randomization is typically used to train policies that can generalize to variations and noise
in the observations. It is done by training on several POMDP’s that share the same S,A,Ω spaces,
however they could in their observation distribution. The motivation behind domain randomization is
that it is assumed to be an effective technique to provide a policy that is invariant to the changes that
would appear in the observations. We explore the problem of navigating the agent towards a goal
object with random noise added to the agent’s observations. If the agent is able to perform the task in
an environment defined by a POMDP P1 then it should still be able to perform the task in another
POMDP P2, if certain features f of the environment that are specific to successfully achieving the
task exist and are invariant to these variations, i.e., f(P1) = f(P2).

In Section 5.1, we study domain randomization when added to RL training and the ability of resulting
policies to generalize in unseen POMDPs. We want to investigate if the policy does in fact overfit to
the training POMDPs and whether we mitigate that overfitting by training the policies on multiple
POMDPs.

4.2 INVARIANCE REGULARIZATION (PROPOSED METHOD)

In the previous sections, we discussed how overfitting to the training environment can be a big
problem in RL. Furthermore, we should be careful not to jump to the conclusion that training on
different environments will ensure policies that generalize well to new environments. It is merely an
assumption that has been shown to empirically hold up when used in a supervised learning context.
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However, we show in this work that this assumption might not hold for reinforcement learning
techniques. This is compatible with the findings in Cobbe et al. (2018) and Zhang et al. (2018a).

We reason that in order to generalize well, the training objective should include a term that encourages
policy generalization. Therefore, putting the weight of the problem of generalizing explicitly in the
objective function itself. Formally, a function h of variable x is invariant to a transformation φ of x
if h(x) = h(φ(x)). We can deduce the same definition for the invariance of a policy π to changes
in the observation given by some transformation T , π(o) = π(T (o)). We add this regularization
penalty term to the RL objective as shown in Equation (1):

max
θ

Lppo(O;πθ) −
λ

NM

N∑
i=1

M∑
j=1

d(πθ(oi), πθ(Tj(oi))), (1)

where Lppo is the PPO objective Schulman et al. (2017), θ is the set of parameters that define the
policy πθ, d is a distance function between the two conditional distributions, and λ is a weighting
coefficient of the penalty. O = {o1, o2, ...oN} is a sequence of N observations.

T is a transformation of the observations. Given an observation o and a transformation on that
observation T where the transformation still holds the semantic context of the underlying state,
but with added visual variations. We can think of the difference between observing a room with
observation o and observing the same room with observation T (o) as the color of the wall for
example. Therefore, let us say that we observe o in POMDP P and observe T (o) in POMDP PT
then f(P) = f(PT ), where f(P) is the set of invariant features of the environment defined by the
POMDP P . We further discuss the nature of T in the experiments section. M is the number of
transformations of each observations.

The penalty d in Equation 1 resembles adding a constraint on the PPO objective, where the new
objective dictates that the policy should simultaneously obtain a high reward while behaving similarly
for the observations o and T (o). The idea is similar, in spirit, to trust region policy optimization
Schulman et al. (2015) where a penalty term, resembling that which would result from imposing a trust-
region constraint, is added to ensure monotonic improvement of the average return with each policy
update. We call this method in Equation 1 invariance regularization (IR) since the regularization
term indicates the invariance of the learned policy to a transformation of given observations.

We propose two ways to solve the RL problem in Equation 1. The first is to directly optimize
the full objective by adding the penalty to the original PPO loss. The second method splits the
training process to two stages of training RL first and then performing a supervised learning step to
minimize d(π(o), π(T (o))) which presents an elegant form that combines reinforcement learning
with supervised learning, more details of the second method is available in Appendix A.

In the next section, we will discuss experiments using both methods. Before that, we will describe a
study on the effectiveness of domain randomization as a mean to reducing overfitting in DRL agents.

5 EXPERIMENTS

In this section we present the results of two experiments. The first is about training RL with
domain randomization. We discuss the ability of the learned policies to generalize to unseen
environments when trained on variations of the training environment. The next part presents the
results obtained when using the invariance regularization (IR) method, proposed in Section 4.2, with
domain randomization and shows that it improves the success rate considerably.

We performed these experiments because we are interested in the following questions: (1) Does
training on environments with random variations (as domain randomization suggests) learn a repre-
sentation of the invariant f with which the policy can generalize to other environments that share
the same invariant features? (2) Can we find a training algorithm that would empirically guarantee
finding these invariant features f?

5.1 DOMAIN RANDOMIZATION

We leverage the customizability of VizDoom maps Kempka et al. (2016) with hundreds of unique
textures to generate train/test scenarios. The agent is required to reach an object in order to get a

5



Under review as a conference paper at ICLR 2020

Num training envs: 1 10 50 100 500
PPO

RGB 0.21 +− 0.04 0.17 +− 0.04 0.35 +− 0.13 0.35 +− 0.16 0.34 +− 0.14
RGB-D 0.05 +− 0.04 0.89 +− 0.05 0.90 +− 0.05 0.61 +− 0.37 0.77 +− 0.33

Grayscale 0.36 +− 0.04 0.33 +− 0.13 0.37 +− 0.04 0.47 +− 0.14 0.41 +− 0.22
PPO-IR (split)

RGB - 0.64 +− 0.05 0.69 +− 0.03 0.72 +− 0.016 0.75 +− 0.02
RGB-D - 0.85 +− 0.02 0.90 +− 0.05 0.94 +− 0.01 0.95 +− 0.02

Grayscale - 0.69 +− 0.01 0.76 +− 0.02 0.75 +− 0.02 0.76 +− 0.02
PPO-IR (full objective)

RGB - 0.79 +− 0.05 0.79 +− 0.03 0.81 +− 0.03 0.81 +− 0.02
RGB-D - 0.98 +− 0.01 0.97 +− 0.01 0.99 +− 0.01 0.99 +− 0.01

Grayscale - 0.79 +− 0.03 0.79 +− 0.01 0.79 +− 0.02 0.80 +− 0.02

Table 1: Average success rate and standard deviation of agents, that are trained on a different number
of randomly environments, when tested on 50 test environments whose textures are not seen during
training. The bold values represent the algorithm that resulted in the best average success rate
according to an amount of training environments and an input type. We see that our method brings
stability to the average results and improves generalization even when no depth is added.

reward. We train an actor-critic style agent Konda & Tsitsiklis (1999) to solve the task. The network
consists of three convolutional layers and 2 fully connected layers, followed by the policy and value
function estimator layers. The policy output is a four-dimensional fully-connected layer, where the
four dimensions corresponds to four actions; move forward, turn right, turn left and do nothing. The
ouput of the policy layer is a log-probability of each action. The value layer is a single unit that
predicts the value function. This network architecture was proposed by Mnih et al. (2015). ReLUs
are used as the non-linear operations in all layers Nair & Hinton (2010). As mentioned, we optimize
the PPO objective Schulman et al. (2017) with a binary reward function (+1 if goal is reached, 0
otherwise) and a discount factor γ = 0.99.

We generate the variations of the training environment by changing the textures on the surfaces using
the numerous textures provided by VizDoom Kempka et al. (2016). We train agents on a subset of
1, 10, 50, 100 and 500 rooms from the generated environments and test on 50 rooms with textures
from a hold-out set which are not seen in training. We detail this experimental setup in Appendix
B. We experiment with different types of visual input; RGB, RGB-D and Grayscale. The number
of training iterations is fixed at 5 × 106 to ensure repeatability of our experiment. The results are
therefore potentially pessimistic, and in future work we would like to choose the number of iterations
for each network independently so as to maximize generalization performance. The agent and the
goal object are initialized at random positions in the environment at the start of each episode.

The role of depth. Adding a depth channel to the observation plays a significant role in generaliza-
tion. Depth is invariant to many changes in the visible spectrum of the observations. This might lead
the training agent to partly find an invariance in observations in its implicit perception model, which
in this case can be as simple as focusing on the depth channel only. Therefore, it was not surprising
to see, in Table 1, that the depth agents (RGB-D) generalize better than the agents without any depth
information.

Table 1 shows the success rate of the PPO models with respect to the number of training environments
used and the input type (RGB, RGB-D). The results are averaged over 5 seeds, a standard practice in
the RL literature today. We notice the superior performance of the agent with depth than the agent
without depth. The fact that the RGB agent is not able to generalize well even when exposed to
numerous environments tells us that it might not be learning the invariance relating the environments.
On the other hand, the RGB-D agents perform well on the testing environments even when the agents
are only exposed to 10 random training environments.

Looking at the RGB and RGB-D experiments, the agents trained on 100 and 500 environments
generalize worse on average than the ones trained on 10 and 50, which indicates that some agents
might be overfitting. This is inspite of the fact that these agents are able to maximize the reward in
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the training set regardless of the set size. Looking at the max statistic of these results (not shown in
this paper) the 100 and 500 experiments outperform the rest. However, the 100 and 500 experiments
have a higher variance in the success rates of different seeds than the 10 and 50 experiments. High
variance in the test results of the 100/500 RGB-D experiments shows that some seeds are able to
achieve a near perfect score on the testing environment and others completely fail, thus there is then
no empirical guarantee that RL agents will generalize when exposed to numerous environments.

The average success rate for the RGB input without the depth shows that domain randomization
alone might not be an effective method to adapt the policy to variations in the observations, at
least not in the context of RL. In fact, it shows little progress, e.g., the RGB agent exposed to one
environment achieves around a 20% success on the testing environments and the agents exposed to
50+ environments achieve less than 40% success. These results are consistent when running with a
grayscale channel (see Table 1).

While training by randomizing the environment did show some success in making supervised learning
models generalize better, it fails to do so in RL policies. It is clear from these results, that adding
random variations and relying solely on the RL objective is not enough to ensure generalization.
Much of the success of domain randomization in previous works Tobin et al. (2017) was reported
using supervised learning. Also, the generalization abilities of machine learning algorithms have been
linked to supervised learning setups. Therefore, it would make sense to adapt supervised learning
techniques to regularize the models trained with DRL.

5.2 INVARIANCE REGULARIZATION EXPERIMENTS

In this section we will discuss the results obtained from training the agent using the method proposed
in Section 4.2. As mentioned in Section 4.2, we propose two methods of using the proposed IR
penalty. The first is to add to the PPO objective as in Equation 1, this method is referred to as (full
objective) in the results. The second, which is referred to as (split) in the results, is to split the
objective into two parts; RL step and a supervised learning step (more details available in Appendix
A). The value of λ in Equation 1 used in all IR (full objective) experiments is 1.0.

As for the nature of transformation T of the observations, we tested with the same randomly textured
environments from VizDoom, that were used in the previous section, in order to be able to make fair
comparisons with the pure RL and domain randomization agents. Regarding the distance penalty term
d in Equation 1, we did preliminary experiments with the KL divergence, L1, L2 and cross-entropy
losses and the KL divergence returned the best results. Table 1 shows the results for combining PPO
with the IR penalty using the two proposed implementations.

Observing the split method’s results, we see that the proposed training procedure returns stable success
rates that are improves as more environments are added. The split version was able to outperform
vanilla PPO and substantially improve the generalization especially in the cases of RGB/Grayscale
inputs. Training with the full objective, however, returned the best results that outperform vanilla
PPO with domain randomization and the split version of the IR algorithm. Similar to the split version,
training on the full objective shows stable performance for the different inputs across different seeds.

The results, in Table 1, also show that the trained models, on the full objective, are achieving
test success rate, with only 10 training environments, that is close if not identical to the agents
trained on 50, 100 and 500 environments. These results suggests that training with the full objective
version of the IR algorithms does not require a large number of environments to learn the invariant
features. Notice the average testing success rate is similar across the different number of training
environments since the model learns the invariant features from only 10 environments and adding
more environments that share the same invariant features will not make a difference. We can verify
that hypothesis when looking at the RGB-D testing results in the full objective part. All agents
achieve a near perfect score which we attribute to the availability of an invariant feature map in the
input (the depth channel) which only the agents trained with the full objective are able to catch.

5.2.1 COMPARISONS WITH OTHER REGULARIZATION TECHNIQUES

Regularization has been shown to help in the generalization of supervised learning models Srivastava
et al. (2014). Using regularization in supervised learning often improves the performance of the
trained models on test sets. However, regularization has not been frequently used in DRL setups,
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Figure 2: Different regularization methods tested on the RGB input. (Left): The average success
rate show that some of these methods achieve similar results to ours in some instances. (Right): The
lower SPL of the other regularization methods relative to ours indicates some randomness in their
learned policies

possibly due to the previously-common poor practise of testing and training in the same environment
so there is no generalization gap Cobbe et al. (2018).

We compare our method with some regularization techniques that are frequently used; dropout,
batchnorm and L2. The first experiment has a dropout layer added after each convolutional layer
Srivastava et al. (2014), the second has a batchnorm layer added after every convolutional layer
Ioffe & Szegedy (2015) and the last uses L2 regularization. We choose the dropout probability to be
0.1 and the L2 weight to be 10−4, the same values that were proposed by Cobbe et al. (2018). As
in the previous setup, we train five models (different seeds) for each technique and evaluate on 50
environments whose textures are sampled from a hold-out set. We report the experiments done with
RGB input only as it poses a harder problem and a larger gap than RGB-D.

Figure 2 (left) shows the average success rate over 5 seeds for the four methods. We see that our
proposed method is the only one that is steadily improving when more environments are added. The
batchnorm models performed worst while dropout and L2 achieved similar success rates to the split
version of our method given 50 and 500 training environments. However, the entropy of the learned
policies is substantially higher when dropout and L2 are added to the model.

We hypothesize that the high entropy policies are able to generalize by acting randomly in some
instances and this makes them more robust in certain situations. We show the success weighted
shortest path length (SPL) in Figure 2 (right). A random behavior that displays robustness (has a high
success probability) would return a relatively lower SPL due to the fact that this random behavior
will probably not take the shortest possible path to the goal. Details of the formulation of SPL are
available in Appendix C. Figure 2 (right) shows that the dropout and L2 agents have a lower SPL
than the IR agents indicating that these policies with higher entropy are inefficient.

6 DISCUSSION AND CONCLUSIONS

We present a study of the generalization capabilities of visual navigation agents trained with deep
reinforcement learning algorithms. We formalize what it means to generalize in the context of a
POMDP. We find that the tendency of RL agent to overfit even when exposed to large training sets is
quite visible. We show that using domain randomization with RL, without adding invariant features
to the input such as the depth maps, is not enough to generalize. In the second part, we proposed
Invariance Regularization (IR), a method that attempts to regularize the RL model with a supervised
learning loss. It improves the generalization success and displays stable performance across different
seeds.

In this work, we focused our experimentation on generalization to changes in the input observation.
However, it is also interesting to generalize the learned skills to different architectural designs of the
environment, just as one one wishes to generalize to different levels of the game as proposed in the
retro competition Nichol et al. (2018). Another avenue of future work is to explore the appropriate
transformation function T of the observations.One might consider an adaptive form of T learned
with data augmentation Cubuk et al. (2018) or adversarial examples Goodfellow et al. (2015).
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APPENDIX

A IR SPLIT VERSION

Algorithm 1 RL with iterative supervision

Initialize k1, k2, θ0, Ti={1...,N}, env
while not converged do

for i = 1 . . . , k1 do
// Train πθ on env on the RL objective
θi ← maxθ Lppo(oenv;πθi−1)

end for
for j = 1 . . . , k2 do

// Train π on env and T (env)
Sample {oenvt , πθk1

(oenvt )}
Generate {oTi(env)

t , πθk1
(oTi(env)
t )}i=1...N

θj ← minθ d(πθk1
(oenv)||πθj−1(Ti(oenv));

end for
end while
return πθ

The first part consists of training RL on the observations of the original training environment, while
the second part can be seen as a supervised learning objective on the transformed observations, as
shown in Algorithm 1.

The first step trains RL on one environment and then use the actions that the trained policy would have
taken in that environment to tune the model with supervised learning on the textured environments.
In the reported experiments using the split version, the model is trained with one iteration of the
algorithm. Therefore, the training process has two stages, train RL then train with a supervised
learning setup, without iterating between both.

B EXPERIMENTAL SETUP

As stated in Section 5.1, we run training on a subset of 1, 10, 50, 100 and 500 rooms where the
surfaces in each room are sampled from the variety of textures available in Vizdoom. The resulting
policies are tested on 50 rooms with textures from a hold-out set which are not seen in training.
During training we run several agents in parallel to quickly collect observation-action-reward data in
multiple environments. Another advantage of this parallelization is the ability to run each agent on
a variation of the training environment. Due to hardware limitations, we cannot run one agent for
each environment, at least not when we have a large number of training environments, i.e., 100 or
500. Therefore, each agent samples one environment from the training set and runs on it for some n
episodes before sampling another one (n = 25 episodes).

C SUCCESS WEIGHTED SHORTEST PATH LENGTH (SPL)

SPL was proposed by Anderson et al. (2018) as a way of measuring the navigation agents success
rates while taking into account the time it takes agents to succeed 1.

SPL = 1
N

N∑
i=1

Si
li
pi
, (2)

where N is the number of runs, Si is the binary indicator of the success of episode i, li is the length
of the shortest possible path and pi is the length of the path taken by the agent.

1The SPL formula suggested by Anderson et al. (2018) contains a max(pi, li) at the denominator instead of
pi, as written in Equation 2. We removed this factor as the max is redundant since pi ≥ li.
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