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ABSTRACT

We present a 3D capsule architecture for processing of point clouds that is equiv-
ariant with respect to the SO(3) rotation group, translation and permutation of
the unordered input sets. The network operates on a sparse set of local reference
frames, computed from an input point cloud and establishes end-to-end equivari-
ance through a novel 3D quaternion group capsule layer, including an equivariant
dynamic routing procedure. The capsule layer enables us to disentangle geometry
from pose, paving the way for more informative descriptions and a structured la-
tent space. In the process, we theoretically connect the process of dynamic routing
between capsules to the well-known Weiszfeld algorithm, a scheme for solving
iterative re-weighted least squares (IRLS) problems with provable convergence
properties, enabling robust pose estimation between capsule layers. Due to the
sparse equivariant quaternion capsules, our architecture allows joint object clas-
sification and orientation estimation, which we validate empirically on common
benchmark datasets.

1 INTRODUCTION

It is now well understood that in order to learn a compact representation of the input data, one
needs to respect the symmetries in the problem domain (Cohen et al., 2019; Weiler et al., 2018a).
Arguably, one of the primary reasons of the success of 2D convolutional neural networks (CNN) is
the translation-invariance of the 2D convolution acting on the image grid (Giles & Maxwell, 1987;
Kondor et al., 2018). Recent trends aim to transfer this success into the 3D domain in order to support
many applications such as shape retrieval, shape manipulation, pose estimation, 3D object modeling
and detection. There, the data is naturally represented as sets of 3D points or a point cloud (Qi
et al., 2017a;b). Unfortunately, extension of CNN architectures to 3D point clouds is non-trivial due
to two reasons: 1) point clouds are irregular and unstructured, 2) the group of transformations that
we are interested in is more complex as 3D data is often observed under arbitrary non-commutative
SO(3) rotations. As a result, achieving appropriate embeddings requires 3D networks that work on
points to be equivariant to these transformations, while also being invariant to the permutations of
the point set.

In order to fill this important gap, we propose the quaternion equivariant point capsule network or
QE-Network that is suited to process point clouds and is equivariant to SO(3) rotations compactly
parameterized by quaternions (Fig. 2), in addition to preserved translation and permutation equiv-
ariance. Inspired by the local group equivariance (Lenssen et al., 2018; Cohen et al., 2019), we
efficiently cover SO(3) by restricting ourselves to the sparse set of local reference frames (LRF)
that collectively characterize the object orientation. The proposed capsule layers (Hinton et al.,
2011) deduces equivariant latent representations by robustly combining those local LRFs using the
proposed Weiszfeld dynamic routing. Hence, our latent features specify to local orientations disen-
tangling the pose from object existence. Such explicit storage is unique to our work and allows us to
perform rotation estimation jointly with object classification. Our final architecture is a hierarchy of
QE-networks, where we use classification error as the only training cue and adapt a Siamese version
when the relative rotation is to be regressed. We neither explicitly supervise the network with pose
annotations nor train by augmenting rotations. Overall, our contributions are:

1. We propose a novel, fully SO(3)-equivariant capsule architecture that is tailored for simul-
taneous classification and pose estimation of 3D point clouds. This network produces in-
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(a) Input Point Cloud (b) Initial LRFs (c) LRFs After First Pooling (d) Multi-channel LRFs Prior to QE-Network-2

(b) Initial LRFs (c) LRFs Prior to QE-Network-1(a) Input Point Cloud (d) Multi-channel LRFs Prior to QE-Network-2

Figure 1: Our network operates by processing local reference frames (LRF) on the object. Initial
LRFs (b) are obtained by computing normal & tangent vectors on the point set in (a). (c) shows the
LRFs randomly sampled from (a) and these are inputs to the first layer of our network. Subsequently,
we obtain a multi-channel LRF that is a set of reference frames per pooling center (d). Holistically,
our network aggregates the LRFs to arrive at rotation equivariant capsules.

variant latent representations while explicitly decoupling the orientation into capsules, thus
attaining equivariance. Note that equivariance results have not been previously achieved
regarding the quaternion parameterization of the 3D special orthogonal group.

2. By utilizing LRFs on points, we reduce the space of orientations that we consider and hence
can work sparsely on a subset of the group elements.

3. We theoretically prove the equivariance properties of our 3D network regarding the quater-
nion group. Moreover, to the best of our knowledge, we for the first time establish a con-
nection between the dynamic routing of Sabour et al. (2017) and Generalized Weiszfeld
iterations (Aftab et al., 2015). By that, we theoretically argue for the convergence of the
employed dynamic routing.

4. We experimentally demonstrate the capabilities of our network on classification and orien-
tation estimation of 3D shapes.

2 PRELIMINARIES AND TECHNICAL BACKGROUND

In this paper we will speak of the equivariance of point clouds under the actions of quaternions. We
now provide the necessary background required for the grasp of this content.

2.1 EQUIVARIANCE

Definition 1 (Equivariant Map). For a G-space acting on X , the map Φ : G × X 7→ X is said to
be equivariant if its domain and co-domain are acted on by the same symmetry group (Cohen &
Welling, 2016; Cohen et al., 2018a):

Φ(g1 ◦ x) = g2 ◦ Φ(x) (1)

where g1 ∈ G and g2 ∈ G. Equivalently Φ(T (g1) x) = T (g2) Φ(x), where T (·) is a linear
representation of the group G. Note that T (·) does not have to commute. It suffices for T (·) to be a
homomorphism: T (g1 ◦ g2) = T (g1) ◦ T (g2). In this paper we use a stricter form of equivariance
and consider g2 = g1.
Definition 2 (Equivariant Network). An architecture or network is said to be equivariant if all of
its layers are equivariant maps. Due to the transitivity of the equivariance, stacking up equivariant
layers will result in globally equivariant networks e.g., rotating the input will produce output vectors
which are transformed by the same rotation (Lenssen et al., 2018; Kondor & Trivedi, 2018).

2.2 THE QUATERNION GROUP H1

The choice of 4-vector quaternions has multiple motivations: 1. All 3-vector formulations suffer
from infinitely many singularities as angle goes to 0, whereas quaternions avoid those. 2. 3-vectors
also suffer from infinitely many redundancies (the norm can grow indefinitely). Quaternions have a
single redundancy: q = −q, a condition that is in practice easy to enforce. 3. Computing the actual
‘manifold mean’ on the Lie algebra requires iterative techniques with subsequent updates on the
tangent space. Such iterations are computationally harmful for a differentiable GPU implementation.
Definition 3 (Quaternion). A quaternion q is an element of Hamilton algebra H1, extending the
complex numbers with three imaginary units i, j, k in the form: q = q11 + q2i + q3j + q4k =
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Algorithm 1: Quaternion Equivariant Dynamic Routing

1 input : Input points {x1, ...,xK} ∈ RK×3, input capsules (LRFs) Q = {q1, . . . ,qL} ∈ H1
L,

with L = N c ·K, N c is the number of capsules per point, activations α = (α1, . . . , αL)T ,
trainable transformations T = {ti,j}i,j ∈ H1

L×M

2 output: Updated frames Q̂ = {q̂1, . . . , q̂M} ∈ H1
M , updated activations α̂ = (α̂1, . . . , α̂M )T

3 for All primary (input) capsules i do
4 for All latent (output) capsules j do
5 vi,j ← qi ◦ ti,j // compute votes

6 for All latent (output) capsules j do
7 q̂j ← A

(
{v1,j . . .vK,j},α

)
// initialize output capsules

8 for k iterations do
9 for All primary (input) capsules i do

10 wi,j ← αi · sigmoid
(
− δ(q̂j ,vi,j)

)
// compute the current weight

11 q̂j ← A
(
{v1,j . . .vL,j},w:,j

)
// see Eq (4)

12 α̂j ← sigmoid
(
− 1

K

L∑
1
δ(q̂j ,vi,j)

)
// recompute activations

(q1, q2, q3, q4)
T, with (q1, q2, q3, q4)

T ∈ R4 and i2 = j2 = k2 = ijk = −1. q1 ∈ R denotes the
scalar part and v = (q2, q3, q4)

T ∈ R3, the vector part. The conjugate q̄ of the quaternion q is given
by q̄ := q1 − q2i− q3j− q4k. A unit quaternion q ∈ H1 with 1

!
= ‖q‖ := q · q̄ and q−1 = q̄, gives

a compact and numerically stable parametrization to represent orientation of objects on the unit
sphere S3, avoiding gimbal lock and singularities (Busam et al., 2017). Identifying antipodal points
q and −q with the same element, the unit quaternions form a double covering group of SO (3). H1

is closed under the non-commutative multiplication or the Hamilton product:

(p ∈ H1) ◦ (r ∈ H1) = [p1r1 − vp · vr ; p1vr + r1vp + vp × vr]. (2)

Definition 4 (Linear Representation of H1). We follow Birdal et al. (2018) and use the

T(q) ,

q1 −q2 −q3 −q4
q2 q1 −q4 q3
q3 q4 q1 −q2
q4 −q3 q2 q1

.
To be concise we will use capital letters to refer to the matrix representation of quaternions e.g.Q ≡
T (q), G ≡ T (g). Note that T (·), the injective homomorphism to the orthonormal matrix ring, by
construction satisfies the condition in Dfn. 1 (Steenrod, 1951): det(Q) = 1,Q> = Q−1, ‖Q‖ =
‖Qi,:‖ = ‖Q:,i‖ = 1 and Q − q1I is skew symmetric: Q + Q> = 2q1I. It is easy to verify these
properties. T linearizes the Hamilton product or the group composition: g ◦ q , T (g)q , Gq.

2.3 3D POINT CLOUDS

Definition 5 (Point Cloud). We define a 3D surface to be a differentiable 2-manifold embedded in
the ambient 3D Euclidean space: M2 ∈ R3 and a point cloud to be a discrete subset sampled on
M2: X ∈ {xi ∈M2 ∩ R3}.
Definition 6 (Local Geometry). For a smooth point cloud {xi} ∈ M2 ⊂ RN×3, a local reference
frame (LRF) is defined as an ordered basis of the tangent space at x, TxM, consisting of orthonor-
mal vectors: L(x) = [∂1,∂2,∂3 ≡ ∂1 × ∂2]. Usually the first component is defined to be the
surface normal ∂1 , n ∈ S2 : ‖n‖ = 1 and the second one is picked according to a modality
dependent heuristic.

Note that recent trends such as (Cohen et al., 2019) acknowledge the ambiguity and either employ a
gauge (tangent frame) equivariant design or propagate the determination of a certain direction until
the last layer (Poulenard & Ovsjanikov, 2018). Here, we will assume that ∂2 can be uniquely and
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Figure 2: Our quaternion equivariant (QE) network for processing local patches: Our input is a 3D
point set X on which we query local neighborhoods {xi}with precomputed LRFs {qi}. Essentially,
we learn the parameters of a fully connected network that continuously maps the canonicalized local
point set to transformations ti, which are used to compute hypotheses (votes) from input poses. By a
special dynamic routing procedure that uses the activations determined in a previous layer, we arrive
at latent capsules that are composed of a set of orientations q̂i and new activations α̂i. Thanks to
the decoupling of local reference frames, α̂i is invariant and orientations q̂i are equivariant to input
rotations. All the operations and hence the entire QE-network are equivariant achieving a guaranteed
disentanglement of the rotation parameters. Hat symbol (q̂) refers to ’estimated’.

repeatably computed, a reasonable assumption for the point sets we consider (Petrelli & Di Stefano,
2011). For the cases where this does not hold, we will rely on the network’s robustness. We will
explain our method of choice in Sec. 4 and visualize LRFs of an airplane object in Fig. 1.

3 SO(3)-EQUIVARIANT 3D CAPSULE NETWORKS

Disentangling orientation from representations requires guaranteed equivariances and invariances.
Yet, the original capsule networks of Sabour et al. (2017) cannot achieve equivariance to general
groups. To this end, Lenssen et al. (2018) proposed to use a manifold-mean and a special aggregation
that makes sure that the trainable transformations get pose-aligned points as input. We will extend
this idea to the non-abelian SO(3) and design capsule networks sparsely operating on a set of LRFs
computed on local neighborhoods of points, parameterized by quaternions. In the following, we first
explain our novel capusle layers, the main building block of our architecture. We then show how to
stack those layers via a simple aggregation resulting in an SO(3)-equivariant 3D capsule network
that yields invariant representations (or activations) as well as equivariant rotations (latent capsules).

3.1 QUATERNION EQUIVARIANT CAPSULE LAYERS

To construct equivariant layers on the group of rotations, we are required to define a left-equivariant
averaging operatorA that is invariant under permutations of the group elements, as well as a distance
metric δ that remains unchanged under the action of the group. For these, we make the following
choices:
Definition 7 (Geodesic Distance). The Riemannian (geodesic) distance in the manifold of rotations
lead to the following geodesic distance δ(·) ≡ dquat(·):

d(q1,q2) ≡ dquat(q1,q2) = 2 cos−1(|〈q1,q2〉|) (3)

Definition 8 (Quaternion Mean µ(·)). For a set of Q rotations S = {qi} and associated weights
w = {wi}, the weighted mean operator A(S,w) : H1

n × Rn 7→ H1
n is defined through the

following maximization procedure (Markley et al., 2007):

q̄ = arg max
q∈S3

q>Mq (4)

where M ∈ R4×4 is defined as: M ,
Q∑
i=1

wiqiq
>
i . The average quaternion is the eigenvector of

M corresponding to the maximum eigenvalue. This operation lends itself to both analytic (Magnus,
1985) and automatic differentiation (Laue et al., 2018).

Theorem 1. Quaternions, the employed mean A(S,w) and geodesic distance δ(·) enjoy the fol-
lowing properties:
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Figure 3: Our entire capsule architecture. We hierarchically send all the local patches to our Q-
network as shown in Fig. 2. At each level the points are pooled in order to increase the receptive
field, gradually reducing the LRFs into a single capsule per class. We use classification and pose
estimation (in the siamese case) as supervision cues to train the point-to-transform maps.

1. A(g ◦ S,w) is left-equivariant: A(g ◦ S,w) = g ◦ A(S,w).

2. Operator A is invariant under permutations: A({qσ(1), . . . ,qσ(Q)},wσ) =
A({q1, . . . ,qQ},w).

3. The transformations g ∈ H1 preserve the geodesic distance δ(·) given in Dfn. 7.

Proof. The proofs are given in the supplementary material.

We also note that the above mean is closed form, differentiable and can be implemented batchwise.
We are now ready to construct the group dynamic routing (DR) by agreement that is equivariant
thanks to Thm. 1. The core idea is to route from or assign the primary capsules that constitute the
input LRF set, to the latent capsules by an iterative clustering which respects the group structure. At
each step, we assign the weighted group mean to each output capsule. The weights w ← σ(x,y) are
inversely propotional to the distance between the vote quaternion and the new quaternion (cluster
center). See Alg. 1 for details. In the following, we analyze our variant of routing as an interesting
case of the affine, Riemannian Weiszfeld algorithm (Aftab et al., 2015; 2014).
Lemma 1. For σ(x,y) = δ(x,y)q−2 the equivariant routing procedure given in Alg. 1 is a variant
of the affine subspace Wieszfeld algorithm (Aftab et al., 2015; 2014) that is a robust algorithm for
computing the Lq geometric median.

Proof Sketch. The proof follows from the definition of Weiszfeld iteration (Aftab et al., 2014) and
the mean and distance operators defined in Sec. 3.1. We first show that computing the weighted
mean is equivalent to solving the normal equations in the iteratively reweighted least squares (IRLS)
scheme (Burrus, 2012). Then, the inner-most loop correspond to the IRLS or Weiszfeld iterations.
We provide the detailed proof in supplementary material.

Note that, in practice one is quite free to choose the weighting function σ(·) as long as it is inversely
proportional to the geodesic distance and concave (Aftab & Hartley, 2015). We leave the analyses
of the variants of these algorithms as a future work. The original dynamic routing can also be
formulated as a clustering procedure with a KL divergence regularization. This holistic view paves
the way to better routing algorithms (Wang & Liu, 2018). Our perspective is akin yet more geometric
due to the group structure of the parameter space. Thanks to the connection to Weiszfeld algorithm,
the convergence behavior of our dynamic routing can be directly analyzed within the theoretical
framework presented by Aftab et al. (2014; 2015).
Theorem 2. Under mild assumptions provided in the appendix, the sequence of the DR-iterates
generated by the inner-most loop almost surely converges to a critical point.

Proof Sketch. Proof, given in the appendix, is a direct consequence of Lemma 1 and directly exploits
the connection to the Weiszfeld algorithm.

3.2 EQUIVARIANT 3D POINT CAPSULE NETWORK ARCHITECTURE

The essential ingredient of our architecture, QE-Network, is shown in Fig. 2. We also provide a
corresponding pseudocode in Alg. 3 of suppl. material. The input of the QE-Network are a local
patch of points with coordinates xi ⊂ RK×3, rotations parametrized as quaternions qi ⊂ H1

K×Nc

and activations αi ⊂ RK×Nc

. qi also represents input primary capsules and local reference frames.
N c is the number of input capsule channels per point and it is equal to the number of output capsules
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Table 1: Classification accuracy on ModelNet40 dataset (Wu et al., 2015) for different methods as
well as ours. We also report the number of parameters optimized for each method. X/Y means that
we train with X and test with Y.

PN PN++ KD-treeNet Point2Seq Sph.CNNs PRIN PPF Ours (Var.) Ours

NR/NR 88.45 89.82 86.20 92.60 - 80.13 70.16 85.27 74.43
NR/AR 12.47 21.35 8.49 10.53 43.92 68.85 70.16 11.75 74.07
# Params 3.5M 1.5M 3.6M 1.8M 0.5M 1.5M 3.5M 0.4M 0.4M

(M ) from the last layer. In the initial layer, qi represents the pre-computed LRFs and N c is equal
to 1. Given points xi and rotations qi, we compute the quaternion average µi in channel-wise as the
initial pose candidates: µi ⊂ H1

Nc

. These candidates are used to bring the receptive field in multiple
canonical orientations by rotating the points: x′i = (µi

−1 ◦xi) ⊂ RK×Nc×3. Since the points in the
local receptive field lie in continuous R3, training a discrete set of pose transformations ti,j based on
local coordinates is not possible. Instead, we employ a point-to-transform network t(·) : RNc×3 →
RM×Nc×4 that maps the point in multiple canonical orientations to transformations. The network is
shared over all points to compute the transformations ti,j = (t(x′1), ..., t(x′K))i,j ⊂ RK×M×Nc×4,
which are used to calculate the votes for dynamic routing as vi,j = qi ◦ ti,j . The network t(·)
consists of fully-connected layers that regresses the transformations, similar to common operators
for continuous convolutions (Schütt et al., 2017; Wang et al., 2018; Fey et al., 2018). It is the
continuous alternative to directly optimizing transformations lying in a grid kernel, as it is done in
the original dynamic routing by Sabour et al. (2017). Note that t(·) predicts quaternions by unit-
normalizing the regressed output: ti,j ⊂ H1

K×M×Nc

. Although Riemannian layers of Bécigneul &
Ganea (2018) or spherical predictions of Liao et al. (2019) can improve the performance, the simple
strategy works reasonably for our case. After computing the votes, we utilize the input activationαi
to iteratively refine the output capsules (weighted average of votes) q̂i and activations α̂i by routing
by agreement as shown in Alg. 1.

In order to gradually increase the receptive field, we stack QE-networks creating a deep hierarchy,
pooling the points and the LRFs before each layer. Note that we are allowed to do so thanks to
the properties of equivariance. In particular, we input N = 64 patches to our architecture that
is composed of two QE-networks. We call the centers of these patches pooling centers. In the
first layer, each of those centers is linked to their immediate vicinity leading to K = 9-star local
connectivity from which we compute the 64× 64× 4 intermediary capsules. The input LRFs of the
first layer are sampled from pre-calculated LRF-set and the input activation is set to 1. The LRFs in
the second layer l = 2 are the output capsules of the first layer, l = 1 and are routed to the output
capsules that are as many as the number of classes C, M2 = C. The activation of the second layer
is updated by the output of the first layer as well. This construction is shown in Fig. 3. Specifically,
for l = 1, we use K = 9, Nl

c = 1,Ml = 64 and for l = 2, K = 64, Nl
c = 64,Ml = C = 40. This

way, in this last layer all the pooling centers act as a single patch (K = 64). A single QE-network
acts on this patch to create the final C × 4 capsules and C activations. More details are reported in
Alg. 3 of the appendix.

4 EXPERIMENTAL EVALUATIONS

Implementation Details We implement our network in PyTorch and use the ADAM opti-
mizer (Kingma & Ba, 2014) with a learning rate of 0.001. The point-transformation mapping net-
work is implemented by two FC-layers composed of 64 hidden units. We set the initial activation of
the input LRF to 1.0. In each layer, we use 3 iterations of DR. For classification we use the spread
loss (Sabour et al., 2018) and the rotation loss is identical to δ(·).

Surface normals are computed by local plane fits (Hoppe et al., 1992). We compute the second axis
of the LRF, ∂2, by FLARE (Petrelli & Di Stefano, 2012), that uses the normalized projection of
the point within the periphery of the support showing the largest distance, onto the tangent plane
of the center: ∂2 = pmax−p

‖pmax−p‖ . Note that using other LRFs such as SHOT (Tombari et al., 2010) or
the more modern GFrames of Melzi et al. (2019) is possible. We found FLARE to be sufficient for
our experiments. Prior to all operations, we flip all the LRF quaternions such that they lie on the
northern hemisphere : {qi ∈ S3 : qwi > 0}.
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Table 2: Error of rotation estimation in different categories of ModelNet10. Right side of the table
denotes the objects with rotational symmetry, which we include for completeness. PCA-S refers to
running PCA only on a resampled instance, while PCA-SR applies both rotations and resampling.

Method Avg. No Sym Chair Bed Sofa Toilet Monitor Table Desk Dresser NS Bathtub

Mean LRF 0.41 0.35 0.32 0.36 0.34 0.41 0.34 0.45 0.60 0.50 0.46 0.32
PCA-S 0.40 0.42 0.60 0.53 0.46 0.32 0.12 0.47 0.23 0.33 0.43 0.55
PCA-SR 0.67 0.67 0.69 0.70 0.67 0.68 0.61 0.67 0.67 0.67 0.66 0.70
PointNetLK 0.37 0.38 0.43 0.31 0.40 0.40 0.31 0.40 0.33 0.39 0.38 0.34
IT-net 0.27 0.19 0.10 0.22 0.17 0.20 0.28 0.31 0.41 0.44 0.40 0.39

Ours 0.27 0.17 0.11 0.20 0.16 0.18 0.19 0.43 0.40 0.48 0.33 0.31
Ours (siamese) 0.20 0.09 0.08 0.10 0.08 0.11 0.08 0.40 0.35 0.34 0.32 0.30

3D Shape Classification. We use ModelNet40 dataset of (Wu et al., 2015; Qi et al., 2017b) to
assess our classification performance. Each shape is composed by 10K points. We assign the LRFs
to a subset of the uniformly sampled points, N = 512 (Birdal & Ilic, 2017). We train the networks
without any rotation augmentation (NR) and put them to test under arbitrary SO(3) rotations (AR).
Our results are shown in Tab. 1 along with that of PointNet (PN) (Qi et al., 2017a), PointNet++
(PN++) (Qi et al., 2017a), KD-treeNet (Li et al., 2018a), Point2Seq (Liu et al., 2019b), Spherical
CNNs (Esteves et al., 2018), PRIN (You et al., 2018) and PPF-FoldNet (PPF) (Deng et al., 2018a).
We also present a version of our algorithm (Var) that avoids the canonicalization within the QE-
network. This is a non-equivariant network that we still train without data augmentation. While this
version gets comparable results to the state of the art for the NR/NR case, it cannot handle random
SO(3) variations (AR). Note that PPF uses the point-pair-feature (Birdal & Ilic, 2015) encoding and
hence creates invariant input representations. For the scenario of NR/AR, our equivariant version
outperforms all the other methods, including equivariant spherical CNNs (Esteves et al., 2018) by a
significant gap of at least 5% even when (Esteves et al., 2018) uses the mesh. The object rotational
symmetries in this dataset are responsible for a significant portion of the errors we make. It is worth
mentioning that we also trained TFNs (Thomas et al., 2018) for that task, but their memory demand
made it infeasible to scale to this application.

Number of Parameters. Use of LRFs helps us to restrict the rotation group to certain elements
and thus we can use networks with significantly less parameters (as low as 0.44M ) compared to
others as shown in Tab. 1. Number of parameters in our network depends upon the number of
classes, e.g. for ModelNet10 we have 0.047M parameters.

Rotation estimation in 3D point clouds. Our network can estimate both the canonical and rela-
tive object rotations without pose-supervision. To evaluate this desired property, we used the well
classified shapes on ModelNet10 dataset, a sub-dataset of Modelnet40 (Wu et al., 2015). We gen-
erate multiple instances per shape by transforming the instance with five arbitrary SO(3) rotations.
As we are also affected by the sampling of the point cloud, we resample the mesh five times and
generate different pooling graphs across all the instances of the same shape. Our QE-architecture
can estimate the pose in two ways: 1) by directly using the output capsule with the highest activa-
tion, 2) by a siamese architecture that computes the relative quaternion between the capsules that are
maximally activated as shown in Fig. 4. Both modes of operation are free of the data augmentation
and we give further schematics of the latter in our appendix Fig. 5. Our results against the baselines
including a naive averaging of the LRFs (Mean LRF) and principal axis alignment (PCA) are re-
ported in Tab. 2 as the relative angular error (RAE). We further include results of PointNetLK Aoki
et al. (2019) and IT-Net (Yuan et al., 2018), two state of the art 3D networks that iteratively aligns
two point sets. These methods are in nature similar to iterative closest point (ICP) algorithm (Besl &
McKay, 1992) but 1) do not require an initialization (first iteration estimates the pose), 2) learn data
driven updates. Methods that use mesh inputs such as Spherical CNNs (Esteves et al., 2018) cannot
be included here as the random sampling of the same surface would not affect those. We also avoid
methods that are just invariant to rotations (and hence cannot estimate the pose) such as Tensorfield
Networks (Thomas et al., 2018). Finally, note that , IT-net (Yuan et al., 2018) and PointLK need
to train a lot of epoches (e.g. 500) with random SO(3) rotation augmentation in order to get the
models that cover the full SO(3), whereas we train only for ∼ 100 epochs. We include more details
about the baselines in the appendix under Fig. 8.
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Figure 4: Shape alignment on the monitor (left) and toilet (right) objects via our siamese equiv-
ariant capsule architecture. The shapes are assigned to the the maximally activated class. The
corresponding pose capsule provides the rotation estimate.

RAE between the ground truth and the prediction is computed as the relative angle in degrees:
d(q1,q2)/π. Note that resampling and random rotations render the job of all methods difficult.
However, both our version that tries to find a canonical alignment and the siamese variant which
seeks a relative rotation are better than the baselines. As pose estimation of objects with rotational
symmetry is a challenging task we also report results on the non-symmetric subset (No Sym).

Table 3: Ablation study on point density.
LRF Input LRF-10K LRF-2K LRF-1K

Dropout 50% 66% 75% 100% 100% 100%

Class. Err 77.8 83.3 83.4 87.8 85.46 79.74
Angle. Err 0.34 0.27 0.25 0.09 0.10 0.12

Robustness against point and LRF resampling.
Density changes in the local neighborhoods of the
shape are an important cause of error for our net-
work. Hence, we ablate by applying random re-
samplings (patch-wise dropout) to the objects in
ModelNet10 dataset and repeating the pose estima-
tion and classification as described above. The first part (LRF-10K) of Tab. 3 shows our findings
against gradual increases of the number of patches. Here, we sample 2K LRFs from the 10K LRFs
computed on an input point 10K. 100% dropout corresponds to 2K points in all columns. On second
ablation, we reduce the amount of points on which we compute the LRFs, to 2K and 1K respectively.
As we can see from the table, our network is robust towards the changes in the LRFs as well as the
density of the points.

5 RELATED WORK

Deep learning on point sets. The capability to process raw, unordered point clouds within a neu-
ral network is introduced by the prosperous PointNet (Qi et al., 2017a) thanks to the point-wise
convolutions and the permutation invariant pooling functions. Many works have extended Point-
Net primarily to increase the local receptive field size (Qi et al., 2017b; Li et al., 2018b; Shen et al.,
2018; Wang et al., 2019). Point-clouds are generally thought of as sets. This makes any permutation-
invariant network that can operate on sets an amenable choice for processing points (Zaheer et al.,
2017; Rezatofighi et al., 2017). Unfortunately, common neural network operators in this category
are solely equivariant to permutations and translations but to no other groups.

Equivariance in Neural Networks. The early attempts to achieve invariant data representa-
tions usually involved data augmentation techniques to accomplish tolerance to input transforma-
tions (Maturana & Scherer, 2015; Qi et al., 2016; 2017a). Motivated by the difficulty associated
with augmentation efforts and acknowledging the importance of theoretically equivariant or invari-
ant representations, the recent years have witnessed a leap in theory and practice of equivariant
neural networks (Bao & Song, 2019; Kondor & Trivedi, 2018).

While laying out the fundamentals of the group convolution, G-CNNs (Cohen & Welling, 2016)
guaranteed equivariance with respect to finite symmetry groups. Similarly, Steerable CNNs (Cohen
& Welling, 2017) and its extension to 3D voxels (Worrall & Brostow, 2018) considered discrete
symmetries only. Other works opted for designing filters as a linear combination of harmonic basis
functions, leading to frequency domain filters (Worrall et al., 2017; Weiler et al., 2018b). Apart
from suffering from the dense coverage of the group using group convolution, filters living in the

8
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frequency space are less interpretable and less expressive than their spatial counterparts, as the basis
does not span the full space of spatial filters.

Achieving equivariance in 3D is possible by simply generalizing the ideas of the 2D domain to
3D by voxelizing 3D data. However, methods using dense grids (Chakraborty et al., 2018; Cohen
& Welling, 2017) suffer from increased storage costs, eventually rendering the implementations
infeasible. An extensive line of work generalizes the harmonic basis filters to SO(3) by using e.g.,
a spherical harmonic basis instead of circular harmonics (Cohen et al., 2018b; Esteves et al., 2018;
Cruz-Mota et al., 2012). In addition to the same downsides as their 2D, these approaches have in
common that they require their input to be projected to the unit sphere (Jiang et al., 2019), which
poses additional problems for unstructured point clouds. A related line of research are methods
which define a regular structure on the sphere to propose equivariant convolution operators (Liu
et al., 2019a; Boomsma & Frellsen, 2017)

To learn a rotation equivariant representation of a 3D shape, one can either act on the input data or on
the network. In the former case, one either presents augmented data to the network (Qi et al., 2017a;
Maturana & Scherer, 2015) or ensures rotation-invariance in the input (Deng et al., 2018a;b; Khoury
et al., 2017). In the latter case one can enforce equivariance in the bottleneck so as to achieve an
invariant latent representation of the input (Mehr et al., 2018; Thomas et al., 2018; Spezialetti et al.,
2019). Further, equivariant networks for discrete sets of views (Esteves et al., 2019b) and cross-
domain views (Esteves et al., 2019a) have been proposed. Here, we aim for a different way of
embedding equivariance in the network by means of an explicit latent rotation parametrization in
addition to the invariant feature.

Marcos et al. (2017) developed Vector Field Networks, which was followed by the 3D Tensor Field
Networks (TFN) (Thomas et al., 2018) that are closest to our work. Based upon a geometric algebra
framework, the authors did achieve localized filters that are equivariant to rotations, translations and
permutations. Moreover, they are able to cover the continuous groups. However, TFN are designed
for physics applications, is memory consuming and a typical implementation is neither likely to
handle the datasets we consider nor can provide orientations in an explicit manner.
Capsule Networks. The idea of capsule networks was first mentioned by Hinton et al. (2011),
before Sabour et al. (2017) proposed the dynamic routing by agreement, which started the recent
line of work investigating the topic. Since then, routing by agreement has been connected to several
well-known concepts, e.g. the EM algorithm Sabour et al. (2018), clustering with KL divergence
regularization Wang & Liu (2018) and equivariance (Lenssen et al., 2018). They have been extended
to autoencoders (Kosiorek et al., 2019) and GANs Jaiswal et al. (2019). Further, capsule networks
have been applied for specific kinds of input data, e.g. graphs (Xinyi & Chen, 2019), 3D point
clouds (Zhao et al., 2019) or medical images (Afshar et al., 2018).

6 CONCLUSION AND DISCUSSION

In this work, we have presented a new framework for achieving permutation invariant and SO(3)
equivariant representations on 3D point clouds. Proposing a variant of the capsule networks, we
operate on a sparse set of rotations specified by the input LRFs thereby circumventing the effort to
cover the entire SO(3). Our network natively consumes a compact representation of the group of 3D
rotations - quaternions, and we have theoretically shown its equivariance. We have also established
convergence results for our Weiszfeld dynamic routing by making connections to the literature of
robust optimization. Our network is among the few for having an explicit group-valued latent space
and thus naturally estimates the orientation of the input shape, even without a supervision signal.
Limitations. In the current form our performance is severely affected by the shape symmetries.
The length of the activation vector depends on the number of classes and for achieving sufficiently
descriptive latent vectors we need to have a significant number of classes. On the other side, this
allows us to perform with merit on problems where the number of classes are large. Although, we
have reported robustness to those, the computation of LRFs are still sensitive to the point density
changes and resampling. LRFs themselves are also ambiguous and sometimes non-unique.
Future work. Inspired by Cohen et al. (2019) and Poulenard & Ovsjanikov (2018) our feature
work will involve establishing invariance to the direction in the tangent plane. We also plan to apply
our network in the broader context of 3D object detection under arbitrary rotations and look for
equivariances among point resampling.
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A PROOF OF PROPOSITION 1

Before presenting the proof we recall the three individual statements contained in Prop. 1:

1. A(g ◦ S,w) is left-equivariant: A(g ◦ S,w) = g ◦ A(S,w).
2. Operator A is invariant under permutations: A({qσ(1), . . . ,qσ(Q)},wσ) =
A({q1, . . . ,qQ},w).

3. The transformations g ∈ H1 preserve the geodesic distance δ(·).

Proof. We will prove the propositions in order.

1. We start by transforming each element and replace qi by (g ◦ qi) of the cost in Eq (4):

q>Mq = q>
( Q∑
i=1

wiqiq
>
i

)
q (5)

= q>
( Q∑
i=1

wi(g ◦ qi)(g ◦ qi)
>
)
q (6)

= q>
( Q∑
i=1

wiGqiq
>
i G>

)
q (7)

= q>
(
GM1G

> + · · ·+ GMQG>
)
q

= q>G
(
M1G

> + · · ·+ MQG>
)
q (8)

= q>G
(
M1 + · · ·+ MQ

)
G>q (9)

= q>GMG>q (10)

= p>Mp, (11)

where Mi = wiqiq
>
i and p = G>q. From orthogonallity of G it follows p =

G−1q =⇒ g ◦ p = q and hence g ◦ A(S,w) = A(g ◦ S,w).

2. The proof follows trivially from the permutation invariance of the symmetric summation
operator over the outer products in Eq (8).

3. It is sufficient to show that |q>1 q2| = |(g ◦ q1)>(g ◦ q2)| for any g ∈ H1:

|(g ◦ q1)>(g ◦ q2)| = |q>1 G>Gq2| (12)

= |q>1 Iq2| (13)

= |q>1 q2|, (14)

where g ◦ q ≡ Gq. The result is a direct consequence of the orthonormality of G.

B PROOF OF LEMMA 1

We will begin by recalling some preliminary definitions and results that aid us to construct the
connection between the dynamic routing and the Weiszfeld algorithm.
Definition 9 (Affine Subspace). A d-dimensional affine subspace ofRN is obtained by a translation
of a d-dimensional linear subspace V ⊂ RN such that the origin is included in S:

S =
{ d+1∑
i=1

αixi |
d+1∑
i=1

αi = 1
}
. (15)

Simplest choices for S involve points, lines and planes of the Euclidean space.
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Definition 10 (Orthogonal Projection onto an Affine Subspace). An orthogonal projection of a point
x ∈ RN onto an affine subspace explained by the pair (A, c) is defined as:

Πi(x) , projS(x) = c + A(x− c). (16)

c denotes the translation to make origin inclusive and A is a projection matrix typically defined via
the orthonormal bases of the subspace.
Definition 11 (Distance to Affine Subspaces). Distance from a given point x to a set of affine
subspaces {S1, S2 . . . Sk} can be written as Aftab et al. (2015):

C(x) =

k∑
i=1

d(x, Si) =

k∑
i=1

‖x− projSi
(x)‖2. (17)

Lemma 2. Given that all the antipodal counterparts are mapped to the northern hemisphere, we
will now think of the unit quaternion or versor as the unit normal of a four dimensional hyperplane
h, passing through the origin:

hi(x) = q>i x + qd := 0. (18)

qd is an added term to compensate for the shift. When qd = 0 the origin is incident to the hyperplane.
With this perspective, quaternion qi forms an affine subspace with d = 4, for which the projection
operator takes the form:

projSi
(p) = (I− qiq

>
i )p (19)

Proof. We consider Eq (19) for the case where c = 0 and A = (I−qq>). The former follows from
the fact that our subspaces by construction pass through the origin. Thus, we only need to show that
the matrix A = I−qq> is an orthogonal projection matrix onto the affine subspace spanned by q. To
this end, it is sufficient to validate that A is symmetric and idempotent: A>A = AA = A2 = A.
Note that by construction q>q is a symmetric matrix and hence A itself. Using this property and
the unit-ness of the quaternion, we arrive at the proof:

A>A = (I− qq>)>(I− qq>) (20)

= (I− qq>)(I− qq>) (21)

= I− 2qq> + qq>qq> (22)

= I− 2qq> + qq> (23)

= I− qq> , A (24)

It is easy to verify that the projections are orthogonal to the quaternion that defines the subspace by
showing projS(q)>q = 0:

q>projS(q) = q>Aq = q>(I− qq>)q = q>(q− qq>q) = q>(q− q) = 0. (25)
(26)

Also note that this choice corresponds to tr(qq>) =
∑d+1
i=1 αi = 1.

Lemma 3. The quaternion mean we suggest to use in the main paper Markley et al. (2007) is
equivalent to the Euclidean Weiszfeld mean on the affine quaternion subspaces.

Proof. We now recall and summarize the Lq-Weiszfeld Algorithm on affine subspaces Aftab et al.
(2015), which minimizes a q-norm variant of the cost defined in Eq (17):

Cq(x) =

k∑
i=1

d(x, Si) =

k∑
i=1

‖x− projSi
(x)‖q. (27)

Defining Mi = I−Ai, Alg. 2 summarizes the iterative procedure.

Note that when q = 2, the algorithm reduces to the computation of a non-weighted mean (wi =
1 ∀i), and a closed form solution exists for Eq (29) and is given by the normal equations:

x =
( k∑
i=1

wiMi

)−1( k∑
i=1

wiMici

)
(30)
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Algorithm 2: Lq Weiszfeld Algorithm on Affine Subspaces Aftab et al. (2015).

1 input: An initial guess x0 that does not lie any of the subspaces {Si}, Projection operators Πi, the
norm parameter q

2 xt ← x0

3 while not converged do
4 Compute the weights wt = {wti}:

wti = ‖Mi(x
t − ci)‖q−2 ∀i = 1 . . . k (28)

5 Solve:

xt+1 = arg min
x∈RN

k∑
i=1

wti‖Mi(x− ci)‖2 (29)

For the case of our quaternionic subspaces c = 0 and we seek the solution that satisfies:( k∑
i=1

Mi

)
x =

(1

k

k∑
i=1

Mi

)
x = 0. (31)

It is well known that the solution to this equation under the constraint ‖x‖ = 1 lies in nullspace

of M = 1
k

k∑
i=1

Mi and can be obtained by taking the singular vector of M that corresponds to the

largest singular value. Since Mi is idempotent, the same result can also be obtained through the
eigendecomposition:

q? = arg max
q∈S3

qMq (32)

which gives us the unweighted Quaternion mean Markley et al. (2007).

C PROOF OF THEOREM 1

Once the Lemma 1 is proven, we only need to apply the direct convergence results from the literature.
Consider a set of points Y = {y1 . . .yK} where K > 2 and yi ∈ H1. Due to the compactness, we
can speak of a ballB(o, ρ) encapsulating all yi. We also define theD = {x ∈ H1 |Cq(x) < Cq(o)},
the region where the loss decreases.

We first state the assumptions that permit our theoretical result. These assumptions are required
by the works that establish the convergence of such Weiszfeld algorithms Luenberger et al. (1984);
Aftab & Hartley (2015); Aftab et al. (2014) :

H1. y1 . . .yK should not lie on a single geodesic of the quaternion manifold.
H2. D is bounded and compact. The topological structure of SO(3) imposes a bounded convexity
radius of ρ < π/2.
H3. The minimizer in Eq (29) is continuous.
H4. The weighting function σ(·) is concave and differentiable.
H5. Initial quaternion (in our network chosen randomly) does not belong to any of the subspaces.

Note that H5 is not a strict requirement as there are multiple ways to circumvent (simplest being
a re-initialization). Under these assumptions, the sequence produced by Eq (29) will converge to a
critical point unless xt = yi for any t and i Aftab et al. (2014). For q = 1, this critical point is on
one of the subspaces specified in Eq (18) and thus is a geometric median.

Note that due to the assumption H2, we cannot converge from any given point. For randomly
initialized networks this is indeed a problem and does not guarantee practical convergence. Yet, in
our experiments we have not observed any issue with the convergence of our dynamic routing. As
our result is one of the few ones related to the analysis of DR, we still find this to be an important
first step.
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For different choices of q : 1 ≤ q ≤ 2, the weights take different forms. In fact, this IRLS type of
algorithm is shown to converge for a larger class of weighting choices as long as the aforementioned
conditions are met. That is why in practice we use a simple sigmoid function.

D OUR SIAMESE ARCHITECTURE AND THE ALGORITHM

For estimation of the relative pose with supervision, we benefit from a Siamese variation of our
network. In this case, latent capsule representations of two point sets X and Y jointly contribute to
the pose regression as shown in Fig. 5.

QE - Network

𝐗 ⊂ ℳ𝟏

QE - Network

QE - Network

QE - Network

QE - Network
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Quaternion Equivariant Capsule Architecture

Figure 5: Our siamese architecture used in the estimation of relative poses. We use a shared net-
work to process two distinct point clouds (X,Y) to arrive at the latent representations (CX ,αX)
and (CY ,αY ) respectively. We then look for the highest activated capsules in both point sets and
compute the rotation from the corresponding capsules. Thanks to the rotations disentangled into
capsules, this final step simplifies to a relative quaternion calculation.

We show additional results from the computation of local reference frames and the multi-channel
capsules deduced from our network in Fig. 6.

Finally, the overall algorithm of our network is summarized under Alg. 3.

Algorithm 3: Quaternion Equivariant Network

1 input : Input points of one patch {x1, ...,xK} ∈ RK×3, input capsules (LRFs)
Q = {q1, . . . ,qL} ∈ H1

L, with L = N c ·K, N c is the number of capsules per point,
activations α = (α1, . . . , αL)T

2 output: Updated frames Q̂ = {q̂1, . . . , q̂M} ∈ H1
M , updated activations α̂ = (α̂1, . . . , α̂M )T

3 for Each input channel nc of all the primary capsules channels N c do
4 µ(nc)← A(Q(nc)) // Input quaternion average, see Eq (4)
5 for Each point xi of this patch do
6 x′i ← µ(nc)

−1 ◦ xi // rotate point in a canonical orientation

7 {x′i} ∈ RK×Nc×3// Points in multiple(Nc) canonical frames
8 for Each point x′i of this patch do
9 t← t(x′i) // Point to Transform, t(·) : RNc×3 → RNc×M×4

10 T ≡ {ti} ∈ H1
K×Nc

i×M ← {t} ∈ H1
L×M

11 (Q̂, α̂)← DynamicRouting(X,Q,α, T ) // see Alg. 1

Alg. 3 summarizes the overall pipeline of our QE-net depicted in Fig. 3. We use multiple layers in
a hierarchical architecture. In the first layer, the input primary capsules are represented by LRFs
computed with FLARE algorithm Petrelli & Di Stefano (2012). Therefore, the number of input
capsule channels N c in the first layer is equal to 1. Its activation is also defaulted to 1. The output
of a former layer is propagated to the input of the latter, creating the hierarchy.

17



Under review as a conference paper at ICLR 2020

(a) Input Point Cloud (b) Initial LRFs (c) LRFs Prior to QE-Network-1 (d) Multi-channel LRFs Prior to QE-Network-2

Figure 6: Additional intermediate results on car (first row) and chair (second row) objects. This
figure supplements Fig. 1 of the main paper.
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Figure 7: Confusion matrix on ModelNet10 for classification.

E ADDITIONAL DETAILS ON EVALUATIONS

Details on the evaluation protocol. For Modelnet40 dataset used in Tab. 1, we used the official
split with 9,843 shapes for training and 2,468 different shapes for testing. For rotation estimation
in Tab. 2, we used the official Modelenet10 dataset split with 3991 for training and 908 shapes for
testing. 3D point clouds (10K points) are randomly sampled from the mesh surfaces of each shape Qi
et al. (2017a;b). The objects in training and testing dataset are different, but they are from the same
categories so that they can be oriented meaningfully. During training, we did not augment the dataset
with random rotations. All the shapes are trained with single orientation (well-aligned). We call this
trained with NR. During testing, we randomly generate multiple arbitrary SO(3) rotations for each
shape and evaluate the average performance for all the rotations. This is called test with AR. This
protocol is used in both our algorithms and the baselines.

Confusion of classification in ModelNet. We now report the confusion matrix in the task of
classification on the all the objects of ModelNet10. The classification and rotation estimation affects
one another. As we can see from Fig. 7, the first five categories that exhibit less rotational symmetry
has the higher classification accuracy than their rotationally symmetric counterparts.
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Distribution of errors reported in Tab. 2. We now provide more details on the errors attained by
our algorithm as well as the state of the art. To this end, we report, in Fig. 8 the histogram of errors
that fall within quantized ranges of orientation errors. It is noticeable that our Siamese architecture
behaves best in terms of estimating the objects rotation. For completeness, we also included the
results of the variants presented in our ablation studies: Ours-2kLRF, Ours-1kLRF. They evaluate the
model on the re-calculated LRFs in order to show the robustness towards to various point densities.
We have also modified IT-Net and PointNetLK only to predict rotation because the original works
predict both rotations and translations. Finally, note here that we do not use data augmentation for
training our networks (see AR), while both for PointNetLK and for IT-Net we do use augmentation.

Ours Ours-sia Ours-2kLRF Ours-1kLRF IT-net PointNetLK Mean-LRF PCA
< 15° 23.18% 58.16% 53.64% 41.36% 49.68% 45.40% 16.24% 29.80%
< 30° 49.53% 79.12% 76.88% 66.40% 68.40% 49.28% 33.84% 32.00%
< 60° 69.87% 87.48% 86.68% 78.76% 79.48% 55.84% 57.64% 33.80%
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Figure 8: Cumulative error histograms of rotation estimation on ModelNet10. Each row (< θ◦) of
this extended table shows the percentage of shapes that have rotation error less than θ. The colors of
the bars correspond to the rows they reside in. The higher the errors are contained in the first bins
(light blue) the better. Vice versa, the more the errors are clustered toward the 60◦ the worse the
performance of the method.
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