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University of Amsterdam
p.d.forre@uva.nl

Nate Kushmann
Microsoft Research
nkushman@microsoft.com

Zeynep Akata
University of Tuebingen
zeynep.akata@uni-tuebingen.de

ABSTRACT

The information bottleneck principle provides an information-theoretic method
for representation learning, by training an encoder to retain all information which
is relevant for predicting the label while minimizing the amount of other, excess
information in the representation. The original formulation, however, requires la-
beled data to identify the superfluous information. In this work, we extend this
ability to the multi-view unsupervised setting, where two views of the same un-
derlying entity are provided but the label is unknown. This enables us to identify
superfluous information as that not shared by both views. A theoretical analysis
leads to the definition of a new multi-view model that produces state-of-the-art re-
sults on the Sketchy dataset and label-limited versions of the MIR-Flickr dataset.
We also extend our theory to the single-view setting by taking advantage of stan-
dard data augmentation techniques, empirically showing better generalization ca-
pabilities when compared to common unsupervised approaches for representation
learning.

1 INTRODUCTION

The goal of deep representation learning (LeCun et al., 2015) is to transform a raw observational
input, x, into a, typically lower-dimensional, representation, z, that contains the information relevant
for a given task or set of tasks. Significant progress has been made in deep learning via supervised
representation learning, where the labels, y, for the downstream task are known while p(y|x) is
learned directly (Sutskever et al., 2012; Hinton et al., 2012). Due to the cost of acquiring large
labeled datasets, a recently renewed focus on unsupervised representation learning seeks to generate
representations, z, that are useful for a wide variety of different tasks where little to no labeled data
is available (Devlin et al., 2018; Radford et al., 2019).

Our work is based on the information bottleneck principle (Tishby et al., 2000) where a represen-
tation becomes less affected by nuisances by discarding all information from the input that is not
useful for a given task, resulting in increased robustness. In the supervised setting, one can directly
apply the information bottleneck principle by minimizing the mutual information between the data x
and its representation z, I(x; z), while simultaneously maximizing the mutual information between
z and the label y (Alemi et al., 2017). In the unsupervised setting, discarding only superfluous infor-
mation is more challenging, as without labels the model cannot directly identify which information
is relevant. Recent literature (Devon Hjelm et al., 2019; van den Oord et al., 2018) has focused on the
InfoMax objective maximizing I(x, z) instead of minimizing it, to guarantee that all the predictive
information is retained by the representation, but doing nothing to discard the irrelevant information.

In this paper, we extend the information bottleneck method to the unsupervised multi-view setting.
To do this, we rely on a basic assumption of the multi-view literature – that each view provides
the same task-relevant information (Zhao et al., 2017). Hence, one can improve generalization
by discarding all the information not shared by both views from the representation. We do this
by maximizing the mutual information between the representations of the two views (Multi-View
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InfoMax objective) while at the same time eliminating the information not shared between them,
since it is guaranteed to be superfluous. The resulting representations are more robust for the given
task as they have eliminated view specific nuisances.

Our contributions are three-fold: (1) We extend the information bottleneck principle to the unsu-
pervised multi-view setting and provide a rigorous theoretical analysis of its application. (2) We
define a new model 1 that empirically leads to state-of-the-art results in the low-label setting on two
standard multi-view datasets, Sketchy and MIR-Flickr. (3) By exploiting data augmentation tech-
niques, we empirically show that the representations learned by our model in single-view settings
are more robust than existing unsupervised representation learning methods, connecting our theory
to the choice of augmentation strategy.

2 PRELIMINARIES AND FRAMEWORK

The challenge of representation learning can be formulated as finding a distribution p(z|x) that maps
data observations x ∈ X into a representation z ∈ Z, capturing some desired characteristics. When-
ever the end goal involves predicting a label y, we consider only z that are discriminative enough to
identify y. This requirement can be quantified by considering the amount of label information that
remains accessible after encoding the data, and is known as sufficiency of z for y (Achille & Soatto,
2018):
Definition 1. Sufficiency: A representation z of x is sufficient for y if and only if I(x;y|z) = 0.

Any model that has access to a sufficient representation z must be able to predict y at least as
accurately as if it has access to the original data x instead. In fact, z is sufficient for y if and
only if the amount of information regarding the task is unchanged by the encoding procedure (see
Proposition B.1 in the Appendix):

I(x;y|z) = 0 ⇐⇒ I(x;y) = I(y; z). (1)

Among sufficient representations, the ones that result in better generalization for unlabeled data
instances are particularly appealing. When x has higher information content than y, some of the
information in x must be irrelevant for the prediction task. This can be better understood by subdi-
viding I(x; z) into two components by using the chain rule of mutual information (see Appendix A):

I(x; z) = I(x; z|y)︸ ︷︷ ︸
superfluous information

+ I(y; z)︸ ︷︷ ︸
predictive information

. (2)

Conditional mutual information I(x; z|y) represents the information in z that is not predictive of y,
i.e. superfluous information. While I(y; z) determines how much label information is accessible
from the representation. Note that this last term is independent of the representation as long as z
is sufficient for y (see Equation 1). As a consequence, a sufficient representation contains minimal
data information whenever I(x; z|y) is minimized.

Minimizing the amount of superfluous information can be done directly only in supervised settings.
In fact, reducing I(x; z) without violating the sufficiency constraint necessarily requires making
some additional assumptions on the predictive task (see Theorem B.1 in the Appendix). In the next
section we describe the basis of our technique, a strategy to safely reduce the information content of
a representation even when the label y is not observed, by exploiting redundant information in the
form of an additional view on the data.

3 MULTI-VIEW INFORMATION BOTTLENECK

As a motivating example, consider v1 and v2 to be two images of the same object from different
view-points and let y be its label. Assuming that the object is clearly distinguishable from both
v1 and let v2, any representation z containing all information accessible from both views would
also contain the necessary label information. Furthermore, if z captures only the details that are
visible from both pictures, it would eliminate the view-specific details and reduce the sensitivity of
the representation to view-changes. The theory to support this intuition is described in the following
where v1 and v2 are jointly observed and referred to as data-views.

1Code available at https://github.com/mfederici/Multi-View-Information-Bottleneck
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3.1 SUFFICIENCY AND ROBUSTNESS IN THE MULTI-VIEW SETTING

In this section we extend our analysis of sufficiency and minimality to the multi-view setting.

Intuitively, we can guarantee that z is sufficient for predicting y even without knowing y by en-
suring that z maintains all information which is shared by v1 and v2. This intuition relies on a
basic assumption of the multi-view environment – that the two views provide the same predictive
information. To formalize this we define redundancy.
Definition 2. Redundancy: v1 is redundant with respect to v2 for y if and only if I(y;v1|v2) = 0

Intuitively, a view v1 is redundant for a task whenever it is irrelevant for the prediction of y if v2 is
already observed. Whenever v1 and v2 are mutually redundant (v1 is redundant with respect to
v2 for y, and vice-versa), we can show the following:
Corollary 1. Let v1 and v2 be two mutually redundant views for a target y and let z1 be a repre-
sentation of v1. If z1 is sufficient for v2 (I(v1;v2|z1) = 0) then z1 is as predictive for y as the joint
observation of the two views (I(v1v2;y) = I(y; z1)).

In other words, whenever it is possible to assume mutual redundancy, any representation which
contains all the information shared by both views (the redundant information) is as predictive as
their joint observation.

By factorizing the mutual information between v1 and z1 analogously to Equation 2, we can identify
two components:

I(v1; z1) = I(v1; z1|v2)︸ ︷︷ ︸
superfluous information

+ I(v2; z1)︸ ︷︷ ︸
predictive information for v2

.

Since I(v2; z1) has to be maximal if we want the representation to be sufficient for the label, we
conclude that I(v1; z1) can be reduced by minimizing I(v1; z1|v2). This term intuitively represents
the information z1 contains which is unique to v1 and is not predictable by observing v2. Since we
assumed mutual redundancy between the two views, this information must be irrelevant for the
predictive task and, therefore, it can be safely discarded. The proofs and formal assertions for the
above statements and Corollary 1 can be found in Appendix B.

The less the two views have in common, the more I(v1; z1) can be reduced without violating suffi-
ciency for the label, and consequently, the more robust the resulting representation. At the extreme,
v1 and v2 share only label information, in which case we can show that z1 is minimal for y and our
method is identical to the supervised information bottleneck method without needing to access the
labels. Conversely, if v1 and v2 are identical, then our method degenerates to the InfoMax principle
since no information can be safely discarded (see Appendix E).

3.2 THE MULTI-VIEW INFORMATION BOTTLENECK LOSS FUNCTION

Given v1 and v2 that satisfy the mutual redundancy condition for a label y, we would like to define
an objective function for the representation z1 of v1 that discards as much information as possible
without losing any label information. In Section 3.1 we showed that we can obtain sufficiency for
y by ensuring that the representation z1 of v1 is sufficient for v2 , and that decreasing I(z1;v1|v2)
will increase the robustness of the representation by discarding irrelevant information. So we can
combine these two requirements using a relaxed Lagrangian objective to obtain the minimal suffi-
cient representation z1 for v2:

L1(θ;λ1) = Iθ(z1;v1|v2)− λ1 Iθ(v2; z1), (3)

where θ denotes the dependency on the parameters of the encoder pθ(z1|v1), and λ1 represents
the Lagrangian multiplier introduced by the constrained optimization. Symmetrically, we define a
loss L2 to optimize the parameters ψ of a conditional distribution pψ(z2|v2) that defines a minimal
sufficient representation z2 of the second view v2 for v1:

L2(ψ;λ2) = Iψ(z2;v2|v1)− λ2 Iψ(v1; z2), (4)

By defining z1 and z2 on the same domain Z and re-parametrizing the Lagrangian multipliers, the
average of the two loss functions L1 and L2 can be upper bounded as follows:
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Figure 1: Visualization our Multi-View Information Bottleneck model for both multi-view and
single-view settings, where Îξ(z1; z2) refers to the sample-based parametric mutual information
estimation. Whenever p(v1) and p(v2) have the same distribution, the two encoders can share their
parameters.

LMIB(θ, ψ;β) = −Iθψ(z1; z2) + β DSKL(pθ(z1|v1)||pψ(z2|v2)), (5)

where DSKL represents the symmetrized KL divergence obtained by averaging the expected value
of DKL(pθ(z1|v1)||pψ(z2|v2)) and DKL(pψ(z2|v2)||pθ(z1|v1)) for joint observations of the two
views, while the coefficient β defines the trade-off between sufficiency and robustness of the repre-
sentation, which is a hyper-parameter in this work. The resulting Multi-View Infomation Bottleneck
(MIB) model (Equation 5) is visualized in Figure 1, while the batch-based computation of the loss
function is summarized in Algorithm 1.

The symmetrized KL divergence DSKL(pθ(z1|v1)||pψ(z2|v2)) can be computed directly when-
ever pθ(z1|v1) and pψ(z2|v2) have a known density, while the mutual information between the two
representations Iθψ(z1; z2) can be maximized by using any sample-based differentiable mutual in-
formation lower bound. We tried the Jensen-Shannon IJS (Devon Hjelm et al., 2019; Poole et al.,
2019) and the InfoNCE INCE (van den Oord et al., 2018) estimators. These both require introducing
an auxiliary parameteric model Cξ(z1, z2) which is jointly optimized during the training procedure
using re-parametrized samples from pθ(z1|v1) and pψ(z2|v2). The full derivation for the MIB loss
function can be found in Appendix F.

3.3 SELF-SUPERVISION AND INVARIANCE

Our method can also be applied when multiple views are not available by taking advantage of stan-
dard data augmentation techniques. This allows learning invariances directly from the augmented
data, rather than requiring them to be built into the model architecture.

By picking a class T of data augmentation functions t : X→W that do not affect label information,
it is possible to artificially build views that satisfy mutual redundancy for y. Let t1 and t2 be two
random variables over T, then v1 := t1(x) and v2 := t2(x) must be mutually redundant for y.
Since data augmentation functions in T do not affect label information (I(v1;y) = I(v2;y) =
I(x;y)), a representation z1 of v1 that is sufficient for v2 must contain same amount of predictive
information as x. Formal proofs for this statement can be found in Appendix B.4.

Whenever the two transformations for the same observation are independent (I(t1; t2|x) = 0),
they introduce uncorrelated variations in the two views, which will be discarded when creating a
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representation using our training objective. As an example, if T represents a set of small translations,
the two resulting views will differ by a small shift. Since this information is not shared, any z1 which
is optimal according to the MIB objective must discard fine-grained details regarding the position.

To enable parameter sharing between the encoders, we generate the two views v1 and v2 by inde-
pendently sampling two functions from the same function class T with uniform probability. As a
result, t1 and t2 will have the same distribution, and so the two generated views will also have the
same marginals (p(v1) = p(v2)). For this reason, the two conditional distributions pθ(z1|v1) and
pψ(z2|v2) can share their parameters and only one encoder is necessary. Full (or partial) parameter
sharing can be also applied in the multi-view settings whenever the two views have the same (or
similar) marginal distributions.

4 RELATED WORK

The relationship between our method and past work on representation learning is best described
using the Information Plane (Tishby et al., 2000). In this setting, each representation z of x for a
predictive task y can be characterised by the amount of information regarding the raw observation
I(x; z) and the corresponding measure of accessible predictive information I(y; z) (x and y axis
respectively on Figure 2). Ideally, a good representation would be maximally informative about the
label while retaining a minimal amount of information from the observations (top left corner of the
parallelogram). Further details on the Information Plane and the bounds visualized in Figure 2 are
described in Appendix C.

0

0

I(x;y)

H(x)I(x;y) H(x|y)I(x;v2)

I
(y
;z
)

I(x; z)

Feasible region

Sufficiency

InfoMax

MV-InfoMax

β-VAE

Supervised IB

MIB (ours)

Figure 2: Information Plane determined by
I(x; z) (x-axis) and I(y; z) (y-axis). Different ob-
jectives are compared based on their target.

Thanks to recent progress in mutual informa-
tion estimation (Nguyen et al., 2008; Ishmael
Belghazi et al., 2018; Poole et al., 2019), the
InfoMax principle (Linsker, 1988) has gained
attention for unsupervised representation learn-
ing (Devon Hjelm et al., 2019; van den Oord
et al., 2018). Since the InfoMax objective in-
volves maximizing I(x; z), the resulting repre-
sentation aims to preserve all the information
regarding the raw observations (top right corner
in Figure 2).

Concurrent work has applied the InfoMax prin-
ciple in the Multi-View setting (Ji et al., 2019;
Hénaff et al., 2019; Tian et al., 2019; Bachman
et al., 2019), aiming to maximize mutual infor-
mation between the representation z of a first data-view x and a second one v2. The target repre-
sentation for the Multi-View InfoMax (MV-InfoMax) models should contain at least the amount of
information in x that is predictive for v2, targeting the region I(z;x) ≥ I(x;v2) on the Informa-
tion Plane (purple dotted line in Figure 2). Since the MV-InfoMax has no incentive to discard any
information regarding x from z, a representation that is optimal according to the InfoMax principle
is also optimal for any MV-InfoMax model. Our model with β = 0 (Equation 5) belongs to this
family of objectives since the incentive to remove superfluous information is removed. Despite their
success, Tschannen et al. (2019) has shown that the effectiveness of the InfoMax models is due to
inductive biases introduced by the architecture and estimators rather than the training objective it-
self, since the InfoMax and MV-InfoMax objectives can be trivially maximized by using invertible
encoders.

On the other hand, Variational Autoencoders (VAEs) (Kingma & Welling, 2014) define a train-
ing objective that balances compression and reconstruction error (Alemi et al., 2018) through an
hyper-parameter β. Whenever β is close to 0, the VAE objective aims for a lossless representation,
approaching the same region of the Information Plane as the one targeted by InfoMax (Barber &
Agakov, 2003). When β approaches large values, the representation becomes more compressed,
showing increased generalization and disentanglement (Higgins et al., 2017; Burgess et al., 2018),
and, as β approaches infinity, I(z;x) goes to zero. During this transition from low to high β, how-
ever, there are no guarantees that VAEs will retain label information (Theorem B.1 in the Appendix).
The path between the two regimes depends on how well the label information aligns with the induc-
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tive bias introduced by encoder (Jimenez Rezende & Mohamed, 2015; Kingma et al., 2016), prior
(Tomczak & Welling, 2018) and decoder architectures (Gulrajani et al., 2017; Chen et al., 2017).

The idea of discarding irrelevant information was introduced in Tishby et al. (2000) and identified
as one of the possible reasons behind the generalization capabilities of deep neural networks by
Tishby & Zaslavsky (2015) and Achille & Soatto (2018). Representations based on the information
bottleneck principle explicitly minimize the amount of superfluous information in the representation
while retaining all the label information from the data (top-left corner of the Information Plane in
Figure 2). This direction of research has been explored for both single-view (Alemi et al., 2018)
and multi-view settings (Wang et al., 2019), even if explicit label supervision is required to train the
representation z.

In contrast to all of the above, our work is the first to explicitly identify and discard superfluous
information from the representation in the unsupervised multi-view setting. This is because unsu-
pervised models based on the β-VAE objective remove information indiscriminately without iden-
tifying which part is relevant for teh predictive task, and the InfoMax and Multi-View InfoMax
methods do not explicitly try to remove superfluous information at all. The MIB objective, on the
other hand, results in the representation with the least superfluous information, i.e. the most robust
among the representations that are optimal according to Multi-View InfoMax, without requiring any
additional label supervision.

5 EXPERIMENTS

In this section we demonstrate the effectiveness of our model against state-of-the-art baselines in
both the multi-view and single-view setting. In the single-view setting, we also estimate the coor-
dinates on the Information Plane for each of the baseline methods as well as our method to validate
the theory in Section 3.

The results reported in the following sections are obtained using the Jensen-Shannon IJS (Devon
Hjelm et al., 2019; Poole et al., 2019) estimator, which resulted in better performance for MIB and
the other InfoMax-based models (Table 2 in the supplementary material). In order to facilitate the
comparison between the effect of the different loss functions, the same estimator is used across the
different models.

5.1 MULTI-VIEW TASKS

We compare MIB on the sketch-based image retrieval (Sangkloy et al., 2016) and Flickr multiclass
image classification (Huiskes & Lew, 2008) tasks with domain specific and prior multi-view learning
methods.

5.1.1 SKETCH-BASED IMAGE RETRIEVAL

Dataset. The Sketchy dataset (Sangkloy et al., 2016) consists of 12,500 images and 75,471 hand-
drawn sketches of objects from 125 classes. As in Liu et al. (2017), we also include another 60,502
images from the ImageNet (Deng et al., 2009) from the same classes, which results in total 73,002
natural object images. As per the experimental protocol of Zhang et al. (2018), a total of 6,250
sketches (50 sketches per category) are randomly selected and removed from the training set for
testing purpose, which leaves 69,221 sketches for training the model.

Experimental Setup. The sketch-based image retrieval task is a ranking of 73,002 natural images
according to the unseen test (query) sketch. Retrieval is done for our model by generating represen-
tations for the query sketch as well as all natural images, and ranking the image by the euclidean
distance of their representation from the sketch representation. The baselines use various domain
specific ranking methodologies. Model performance is computed based on the class of the ranked
pictures corresponding to the query sketch. The training set consists of pairs of image v1 and sketch
v2 randomly selected from the same class, to ensure that both views contain the equivalent label
information (mutual redundancy).

Following recent work (Zhang et al., 2018; Dutta & Akata, 2019), we use features extracted from
images and sketches by a VGG (Simonyan & Zisserman, 2014) architecture trained for classification
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v1 ∈ R4096 v2 ∈ R4096 y ∈ [125]

“cat”

“apple”

Method mAP@all Prec@200
SaN (Yu et al., 2017) 0.208 0.292
GN Triplet (Sangkloy et al., 2016) 0.529 0.716
Siamese CNN (Qi et al., 2016) 0.481 0.612
Siamese-AlexNet (Liu et al., 2017) 0.518 0.690
Triplet-AlexNet (Liu et al., 2017) 0.573 0.761
DSH∗ (Liu et al., 2017) 0.711 0.866
GDH∗ (Zhang et al., 2018) 0.810 -
MV-InfoMax2 0.008 0.008
MIB 0.856±0.005 0.848±0.005
MIB∗ (64-bits) 0.851± 0.004 0.834±0.003

Table 1: Examples of the two views and class label from the Sketchy dataset (on the left) and
comparison between MIB and other popular models in literature on the sketch-based image retrieval
task (on the right). ∗ denotes models that use a 64-bits binary representation. The results for MIB
corresponds to β = 1.

on the TU-Berlin dataset (Eitz et al., 2012). The resulting flattened 4096-dimensional feature vectors
are fed to our image and sketch encoders to produce a 64-dimensional representation. Both encoders
consist of neural networks with hidden layers of 2048 and 1024 units respectively. Size of the
representation and regularization strength β are tuned on a validation sub-split. We evaluate MIB on
five different train/test splits and report mean and standard deviation in Table 5.1.1. Further details
on our training procedure and architecture are in Appendix G.

Results. Table 5.1.1 shows that the our model achieves strong performance for both mean average
precision (mAP@all) and precision at 200 (Prec@200), suggesting that the representation is able
to capture the common class information between the paired pictures and sketches. The effective-
ness of MIB on the retrieval task can be mostly attributed to the regularization introduced with the
symmetrized KL divergence between the two encoded views. In addition to discarding view-private
information, this term actively aligns the representations of v1 and v2, making the MIB model
especially suitable for retrieval tasks

5.1.2 MIR-FLICKR

Dataset. The MIR-Flickr dataset (Huiskes & Lew, 2008) consists of 1M images annotated with
800K distinct user tags. Each image is represented by a vector of 3,857 hand-crafted image features
(v1), while the 2,000 most frequent tags are used to produce a 2000-dimensional multi-hot encoding
(v2) for each picture. The dataset is divided into labeled and unlabeled sets that respectively contain
975K and 25K images, where the labeled set also contains 38 distinct topic classes together with the
user tags. Training images with less than two tags are removed, which reduces the total number of
training samples to 749,647 pairs (Sohn et al., 2014; Wang et al., 2016). The labeled set contains 5
different splits of train, validation and test sets of size 10K/5K/10K respectively.

Experimental Setup. Following standard procedure in the literature (Srivastava & Salakhutdinov,
2014; Wang et al., 2016), we train our model on the unlabeled pairs of images and tags. Then
a multi-label logistic classifier is trained from the representation of 10K labeled train images to
the corresponding macro-categories. The quality of the representation is assessed based on the
performance of the trained logistic classifier on the labeled test set. Each encoder consists of a
multi-layer perceptron of 4 hidden layers with ReLU activations learning two 1024-dimensional
representations z1 and z2 for images v1 and tags v2 respectively. Examples of the two views,
labels, and further details on the training procedure are in Appendix G.

Results. Our MIB model is compared with other popular multi-view learning models in Figure 3
for β = 0 (Multi-View InfoMax), β = 1 and β = 10−3 (best on validation set). Although the
tuned MIB performs similarly to Multi-View InfoMax with a large number of labels, it outperforms
it when fewer labels are available. Furthermore, by choosing a larger β the accuracy of our model
drastically increases in scarce label regimes, while slightly reducing the accuracy when all the labels
are observed (see right side of Figure 3). This effect is likely due to a violation of the mutual

2These results are included only for completeness, as the Multi-View InfoMax objective does not produce
consistent representations for the two views so there is no straight-forward way to use it for ranking.
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Method mAP
Original Inputs† 0.48
CCA† 0.529
Contrastive† (Hermann & Blunsom, 2014) 0.565
DCCA† (Andrew et al., 2013) 0.573
MVAE-var† (Ngiam et al., 2011) 0.595
VCCA† (Wang et al., 2016) 0.605
VCCA-private† 0.615
bi-VCCA-private† 0.626
MV-InfoMax 0.751±0.02
MIB (β = 10−3) 0.749±0.02
MIB (β = 1) 0.688±0.02 2 × 102 2 × 103 2 × 104

Number of Labeled Examples

0.55

0.60

0.65

0.70

0.75

m
AP

Model
MV-InfoMax
MIB ( = 10 3)
MIB ( = 1)

Figure 3: Left: mean average precision (mAP) of the classifier trained on different multi-view
representations for the MIR-Flickr task. Right: comparing the performance for different values of
β and percentages of given labeled examples (from 1% up to 100%). Each model uses encoders of
comparable size, producing a 1024 dimensional representation. † results from Wang et al. (2016).

redundancy constraint (see Figure 6 in the supplementary material) which can be compensated with
smaller values of β for less aggressive compression.

A possible reason for the effectiveness of MIB against some of the other baselines may be its ability
to use mutual information estimators that do not require reconstruction. Both Multi-View VAE
(MVAE) and Deep Variational CCA (VCCA) rely on a reconstruction term to capture cross-modal
information, which can introduce bias that decreases performance.

5.2 SELF-SUPERVISED SINGLE-VIEW TASK

In this section, we compare the performance of different unsupervised learning models by measuring
their data efficiency and empirically estimating the coordinates of their representation on the Infor-
mation Plane. Since accurate estimation of mutual information is extremely expensive (McAllester
& Stratos, 2018), we focus on relatively small experiments that aim to uncover the difference be-
tween popular approaches for representation learning.

Dataset. The dataset is generated from MNIST by creating the two views, v1 and v2, via the
application of data augmentation consisting of small affine transformations and independent pixel
corruption to each image. These are kept small enough to ensure that label information is not
effected. Each pair of views is generated from the same underlying image, so no label information
is used in this process (details in Appendix G).

Experimental Setup. To evaluate, we train the encoders using the unlabeled multi-view dataset just
described, and then fix the representation model. A logistic regression model is trained using the
resulting representations along with a subset of labels for the training set, and we report the accu-
racy of this model on a disjoint test set as is standard for the unsupervised representation learning
literature (Tschannen et al., 2019; Tian et al., 2019; van den Oord et al., 2018). We estimate I(x; z)
and I(y; z) using mutual information estimation networks trained from scratch on the final repre-
sentations using batches of joint samples {(x(i),y(i), z(i))}Bi=1 ∼ p(x,y)pθ(z|x). All models are
trained using the same encoder architecture consisting of 2 layers of 1024 hidden units with ReLU
activations, resulting in 64-dimensional representations. The same data augmentation procedure was
also applied for single-view architectures and models were trained for 1 million iterations with batch
size B = 64.

Results. Figure 4 summarizes the results. The empirical measurements of mutual information re-
ported on the Information Plane are consistent with the theoretical analysis reported in Section 4:
models that retain less information about the data while maintaining the maximal amount of pre-
dictive information, result in better classification performance at low-label regimes, confirming the
hypothesis that discarding irrelevant information yields robustness and more data-efficient represen-
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Figure 4: Comparing the representations obtained with different objectives on MNIST dataset. The
empirical estimation of the coordinates on the Information Plane (in nats on the left) is followed
by the respective classification accuracy for different number of randomly sampled labels (from 1
example per label up to 6000 examples per label). Representations that discard more observational
information tend to perform better in scarce label regimes. The measurements used to produce the
two graphs are reported in Appedix G.4.1.

tations. Notably, the MIB model with β = 1 retains almost exclusively label information, hardly
decreasing the classification performance when only one label is used for each data point.

6 CONCLUSIONS AND FUTURE WORK

In this work, we introduce Multi-View Information Bottleneck, a novel method for taking advantage
of multiple data-views to produce robust representations for downstream tasks. In our experiments,
we compared MIB empirically against other approaches in the literature on three such tasks: sketch-
based image retrieval, multi-view and unsupervised representation learning. The strong performance
obtained in the different areas show that Multi-View Information Bottleneck can be practically ap-
plied to various tasks for which the paired observations are either readily available or artificially
produced. Furthermore, the positive results on the MIR-Flickr dataset show that our model can
work well in practice even when mutual redundancy holds only approximately.

There are multiple extensions that we would like to explore in future work. One interesting direction
would be considering more than two views. In Appendix D we discuss why the mutual redundancy
condition cannot be trivially extended to more than two views, but we still believe such an exten-
sion is possible. Secondly, we believe that exploring the role played by different choices of data
augmentation could bridge the gap between the Information Bottleneck principle and the literature
on invariant neural networks (Bloem-Reddy & Whye Teh, 2019), which are able to exploit known
symmetries and structure of the data to remove superfluous information.

ACKNOWLEDGMENTS

We thank Andy Keller, Karen Ullrich, Maximillian Ilse and the anonymous reviewers for their feed-
back and insightful comments. This work has received funding from the ERC under the Horizon
2020 program (grant agreement No. 853489). The Titan Xp and Titan V used for this research were
donated by the NVIDIA Corporation.

REFERENCES

Alessandro Achille and Stefano Soatto. Emergence of Invariance and Disentanglement in Deep
Representations. JMLR, 2018.

Alexander A. Alemi, Ian Fischer, Joshua V. Dillon, and Kevin Murphy. Deep Variational Informa-
tion Bottleneck. In ICLR, 2017.

Alexander A. Alemi, Ben Poole, Ian Fischer, Joshua V. Dillon, Rif A. Saurous, and Kevin Murphy.
Fixing a Broken ELBO. In ICML, 2018.

Galen Andrew, Raman Arora, Jeff Bilmes, and Karen Livescu. Deep canonical correlation analysis.
In ICML, 2013.

9



Published as a conference paper at ICLR 2020

Philip Bachman, R Devon Hjelm, and William Buchwalter. Learning Representations by Maximiz-
ing Mutual Information Across Views. arXiv, 2019.

David Barber and Felix Agakov. The im algorithm: A variational approach to information maxi-
mization. In NIPS, 2003.

Benjamin Bloem-Reddy and Yee Whye Teh. Probabilistic symmetry and invariant neural networks.
arXiv, 2019.

Christopher P. Burgess, Irina Higgins, Arka Pal, Loic Matthey, Nick Watters, Guillaume Desjardins,
and Alexander Lerchner. Understanding disentangling in β-VAE. arXiv, 2018.

Xi Chen, Diederik P. Kingma, Tim Salimans, Yan Duan, Prafulla Dhariwal, John Schulman, Ilya
Sutskever, and Pieter Abbeel. Variational Lossy Autoencoder. In ICLR, 2017.

J. Deng, W. Dong, R. Socher, L. Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In CVPR, 2009.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv, 2018.

R Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon, Karan Grewal, Phil Bachman, Adam
Trischler, and Yoshua Bengio. Learning deep representations by mutual information estimation
and maximization. In ICLR, 2019.

Anjan Dutta and Zeynep Akata. Semantically tied paired cycle consistency for zero-shot sketch-
based image retrieval. In CVPR, 2019.

Mathias Eitz, James Hays, and Marc Alexa. How do humans sketch objects? ACM TOG, 2012.

Y. Gong, S. Lazebnik, A. Gordo, and F. Perronnin. Iterative quantization: A procrustean approach
to learning binary codes for large-scale image retrieval. TPAMI, 2013.

Ishaan Gulrajani, Kundan Kumar, Faruk Ahmed, Adrien Ali Taiga, Francesco Visin, David Vazquez,
and Aaron Courville. PixelVAE: A Latent Variable Model for Natural Images. In ICLR, 2017.
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A PROPERTIES OF MUTUAL INFORMATION AND ENTROPY

In this section we enumerate some of the properties of mutual information that are used to prove the
theorems reported in this work. For any random variables w, x, y and z:

(P1) Positivity:

I(x;y) ≥ 0, I(x;y|z) ≥ 0

(P2) Chain rule:

I(xy; z) = I(y; z) + I(x; z|y)

(P3) Chain rule (Multivariate Mutual Information):

I(x;y; z) = I(y; z)− I(y; z|x)

(P4) Positivity of discrete entropy:
For discrete x

H(x) ≥ 0, H(x|y) ≥ 0

(P5) Entropy and Mutual Information

H(x) = H(x|y) + I(x;y)

B THEOREMS AND PROOFS

In the following section we prove the statements reported in the main text of the paper. Whenever
a random variable z is defined to be a representation of another random variable x, we state that z
is conditionally independent from any other variable in the system once x is observed. This does
not imply that z must be a deterministic function of x, but that the source of stochasticity for z is
independent of the other random variables. As a result whenever z is a representation of x:

I(z;a|xb) = 0,

for any variable (or groups of variables) a and b in the system.

B.1 ON SUFFICIENCY

Proposition B.1. Let x and y be random variables with joint distribution p(x,y). Let z be a
representation of x, then z is sufficient for y if and only if I(x;y) = I(y; z)

Hypothesis:

(H1) z is a representation of x: I(y; z|x) = 0

Thesis:

(T1) I(x;y|z) = 0 ⇐⇒ I(x;y) = I(y; z)

Proof.

I(x;y|z) (P3)
= I(x;y)− I(x;y; z) (P3)

= I(x;y)− I(y; z)− I(y; z|x)
(H1)
= I(x;y)− I(y; z)

Since both I(x;y) and I(y; z) are non-negative (P1), I(x;y|z) = 0 ⇐⇒ I(y; z) = I(x;y)
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B.2 NO FREE GENERALIZATION

Theorem B.1. Let x, z and y be random variables with joint distribution p(x,y, z). Let z′ be a
representation of x that satisfies I(x; z) > I(x; z′), then it is always possible to find a label y for
which z′ is not predictive for y while z is.

Hypothesis:

(H1) z′ is a representation of x: I(y; z′|x) = 0

(H2) I(x; z) > I(x; z′)

Thesis:

(T1) I(x; z
′) < I(x; z) =⇒ ∃y.I(y; z) > I(y; z′) = 0

Proof. By construction.

1. We first factorize x as a function of two independent random variables (Proposition 2.1
Achille & Soatto (2018)) by picking y such that:

(C1) I(y; z
′) = 0

(C2) x = f(z′,y)

for some deterministic function f . Note that such y always exists.

2. Since x is a function of y and z′:

(C4) I(x; z|yz′) = 0

Considering I(y; z):

I(y; z)
(P3)
= I(y; z|x) + I(x;y; z)

(P1)

≥ I(x;y; z)

(P3)
= I(x; z)− I(x; z|y)

(P3)
= I(x; z)− I(x; z|yz′)− I(x; z; z′|y)

(C2)
= I(x; z)− I(x; z; z′|y)

(P3)
= I(x; z)− I(x; z′|y) + I(x; z′|yz)

(P1)

≥ I(x; z)− I(x; z′|y)
(P3)
= I(x; z)− I(x; z′) + I(x;y; z′)

(P3)
= I(x; z)− I(x; z′) + I(y; z′)− I(y; z′|x)

(P1)

≥ I(x; z)− I(x; z′)− I(y; z′|x)
(H1)
= I(x; z)− I(x; z′)

(H2)
> 0

Since I(y; z′) = 0 by construction and I(y; z) > 0, the y built in 1. satisfies the conditions reported
in the thesis.
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Corollary B.1.1. Let z′ be a representation of x that discards observational information. There is
always a label y for which a z′ is not predictive, while the original observations are.
Hypothesis:

(H1) x is discrete

(H2) z′ discards information regarding x: I(z′;x) < H(x)

Thesis:

(T1) ∃y.I(y;x) > I(y; z′) = 0

Proof. By construction using Theorem B.1.

1. Set z = x:

(C1) I(x; z)
(P5)
= H(x)−H(x|z) (H1)

= H(x)

2. I(z′;x) < H(x)
(C1)
=⇒ I(z′;x) < I(x; z)

Since the hypothesis are met, we conclude that there exist y such that I(y;x) > I(y; z′) = 0

B.3 MULTI-VIEW

B.3.1 MULTI-VIEW REDUNDANCY AND SUFFICIENCY

Proposition B.2. Let v1, v2, y be random variables with joint distribution p(v1,v2,y). Let z1 be
a representation of v1, then:

I(v1;y|z1) ≤ I(v1;v2|z1) + I(v1;y|v2)

Hypothesis:

(H1) z1 is a representation of v1: I(y; z1|v2v1) = 0

Thesis:

(T1) I(v1;y|z1) ≤ I(v1;v2|z1) + I(v1;y|v2)

Proof. Since z1 is a representation of v1:

(C1) I(y; z1|v2v1) = 0

Therefore:

I(v1;y|z1)
(P3)
= I(v1;y|z1v2) + I(v1;v2;y|z1)

(P3)
= I(v1;y|v2)− I(v1;y; z1|v2) + I(v1;v2;y|z1)

(P3)
= I(v1;y|v2)− I(y; z1|v2) + I(y; z1|v2v1) + I(v1;v2;y|z1)

(P1)

≤ I(v1;y|v2) + I(y; z1|v2v1) + I(v1;v2;y|z1)
(H1)
= I(v1;y|v2) + I(v1;v2;y|z1)

(P3)
= I(v1;y|v2) + I(v1;v2|z1)− I(v1;v2|z1y)

(P1)

≤ I(v1;y|v2) + I(v1;v2|z1)
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Proposition B.3. Let v1 be a redundant view with respect to v2 for y. Any representation z1 of v1

that is sufficient for v2 is also sufficient for y.

Hypothesis:

(H1) z1 is a representation of v1: I(y; z1|v2v1) = 0

(H2) v1 is redundant with respect to v2 for y: I(y;v1|v2) = 0

Thesis:

(T1) I(v1;v2|z1) = 0 =⇒ I(v1;y|z1) = 0

Proof. Using the results from Theorem B.2:

I(v1;y|z1)
(ThB.2)

≤ I(v1;y|v2) + I(v1;v2|z1)
(H2)
= I(v1;v2|z1)

Therefore I(v1;v2|z1) = 0 =⇒ I(v1;y|z1) = 0

Theorem B.2. Let v1, v2 and y be random variables with distribution p(v1,v2,y). Let z be a
representation of v1, then

I(y; z1) ≥ I(y;v1v2)− I(v1;v2|z1)− I(v1;y|v2)− I(v2;y|v1)

Hypothesis:

(H1) z1 is a representation of v1: I(y; z1|v1v2) = 0

Thesis:

(T1) I(y; z1) ≥ I(y;v1v2)− I(v1;v2|z1)− I(v1;y|v2)− I(v2;y|v1)

Proof.

I(y; z1)
(P3)
= I(y; z1|v1v2) + I(y;v1v2; z1)

(H1)
= I(y;v1v2; z1)

(P3)
= I(y;v1v2)− I(y;v1v2|z1)

(P2)
= I(y;v1v2)− I(y;v1|z1)− I(y;v2|z1v1)

(P3)
= I(y;v1v2)− I(y;v1|z1)− I(y;v2|v1) + I(y;v2; z1|v1)

(P3)
= I(y;v1v2)− I(y;v1|z1)− I(y;v2|v1) + I(y; z1|v1)− I(y; z1|v1v2)

(H1)
= I(y;v1v2)− I(y;v1|z1)− I(y;v2|v1) + I(y; z1|v1)

(P1)

≥ I(y;v1v2)− I(y;v1|z1)− I(y;v2|v1)

(PropB.2)

≥ I(y;v1v2)− I(v1;y|v2)− I(v1;v2|z1)− I(y;v2|v1)

Corollary B.2.1. Let v1 and v2 be mutually redundant views for y. Let z1 be a representation of
v1 that is sufficient for v2. Then:

I(y; z1) = I(v1v2;y)

Hypothesis:
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(H1) z1 is a representation of v1: I(y; z1|v1v2) = 0

(H2) v1 and v2 are mutually redundant for y: I(y;v1|v2) + I(y;v2|v1) = 0

(H3) z1 is sufficient for v2: I(v2;v1|z) = 0

Thesis:

(T1) I(y; z1) = I(v1v2;y)

Proof. Using Theorem B.2

I(y; z1)
(ThB.2)

≥ I(y;v1v2)− I(v1;y|v2)− I(v1;v2|z1)− I(y;v2|v1)

(H2)
= I(y;v1v2)− I(v1;v2|z1)

(H3)
= I(y;v1v2)

Since I(y; z1) ≤ I(y;v1v2) is a consequence of the data processing inequality, we conclude that
I(y; z1) = I(y;v1v2)

B.4 SUFFICIENCY AND AUGMENTATION

Let x and y be random variables with domain X and Y respectively. Let T be a class of functions
t : X→W and let t1 and t2 be a random variables over T that depends only on x. For the theorems
and corollaries discussed in this section, we are going to consider the independence assumption that
can be derived from the graphical model G reported in Figure 5.

xt1 t2

y

t1(x) t2(x)z1

Figure 5: Visualization of the graphical model G that relates the observations x, label y, functions
used for augmentation t1, t2 and the representation z1.

Proposition B.4. Whenever I(t1(x);y) = I(t2(x);y) = I(x;y) the two views t1(x) and t2(x)
must be mutually redundant for y.

Hypothesis:

(H1) Independence relations determined by G

Thesis:

(T1) I(t1(x);y) = I(t2(x);y) = I(x;y) =⇒ I(t1(x);y|t2(x)) + I(t2(x);y|t1(x)) = 0

Proof.

1. Considering G we have:
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(C1) I(t1(x);y|xt2(x)) = 0

(C2) I(y; t2(x)|x) = 0

2. Since t2(x) is uniquely determined by x and t2:

(C3) I(t2(x);y|xt2) = 0

3. Consider I(t1(x);y|t2(x))

I(t1(x);y|t2(x))
(P3)
= I(t1(x);y|xt2(x)) + I(t1(x);y;x|t2(x))

(C1)
= I(t1(x);y;x|t2(x))

(P3)
= I(y;x|t2(x))− I(y;x|t1(x)t2(x))

(P1)

≤ I(y;x|t2(x))
(P3)
= I(y;x)− I(y;x; t2(x))

(P3)
= I(y;x)− I(y; t2(x)) + I(y; t2(x)|x)

(P3)
= I(y;x)− I(y; t2(x)) + I(y; t2(x)|t2x) + I(y; t2(x); t2|x)

(C3)
= I(y;x)− I(y; t2(x)) + I(y; t2(x); t2|x)

(P3)
= I(y;x)− I(y; t2(x)) + I(y; t2(x)|x)− I(y; t2(x)|t2x)

(P1)

≥ I(y;x)− I(y; t2(x)) + I(y; t2(x)|x)
(C2)

≥ I(y;x)− I(y; t2(x))

Therefore I(y;x) = I(y; t2(x)) =⇒ I(t1(x);y|t2(x)) = 0

The proof for I(y;x) = I(y; t1(x)) =⇒ I(t2(x);y|t1(x)) = 0 is symmetric, therefore we
conclude I(t1(x);y) = I(t2(x);y) = I(x;y) =⇒ I(t1(x);y|t2(x)) + I(t2(x);y|t1(x)) =
0

Theorem B.3. Let I(t1(x);y) = I(t2(x);y) = I(x;y). Let z1 be a representation of t1(x) . If
z1 is sufficient for t2(x) then I(x;y) = I(y; z1).

Hypothesis:

(H1) Independence relations determined by G

(H2) I(t1(x);y) = I(t2(x);y) = I(x;y)

Thesis:

(T1) I(t1(x); t2(x)|z1) = 0 =⇒ I(x;y) = I(y; z1)

Proof. Since t1(x) is redundant for t2(x) (Proposition B.4) any representation z1 of t1(x) that is
sufficient for t2(x) must also be sufficient for y (Theorem B.2). Using Proposition B.1 we have
I(y; z1) = I(y; t1(x)). Since I(y; t1(x)) = I(y;x) by hypothesis, we conclude I(x;y) =
I(y; z1)

C INFORMATION PLANE

Every representation z of x must satisfy the following constraints:
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• 0 ≤ I(y; z) ≤ I(x;y): The amount of label information ranges from 0 to the total predic-
tive information accessible from the raw observations I(x;y).

• I(y; z) ≤ I(x; z) ≤ I(y; z)+H(x|y): The representation must contain more information
about the observations than about the label. When x is discrete, the amount of discarded
label information I(x;y)− I(y; z) must be smaller than the amount of discarded observa-
tional information H(x)− I(x; z), which implies I(x; z) ≤ I(y; z) +H(x|y).

Proof. Since z is a representation of x:

(C1) I(y; z|x) = 0

Considering the four bounds separately:

1. I(y; z) ≥ 0: Follows from P1

2. I(x; z) ≥ I(y; z): Follows from:

I(x; z)
(P3)
= I(x; z|y) + I(x;y; z)

(P1)

≥ I(x;y; z)

(P3)
= I(y; z)− I(y; z|x)

(C1)
= I(y; z)

3. I(y; z) ≤ I(y;x): Data processing inequality

I(y; z)
(P3)
= I(y; z|x) + I(y; z;x)

(C1)
= I(y; z;x)

(P3)
= I(x;y)− I(x;y|z)

(P1)

≤ I(x;y)

4. I(x; z) ≤ I(y; z) +H(x|y): For discrete x:

I(x; z)
(P3)
= I(x; z|y) + I(x;y; z)

(P3)
= I(x; z|y) + I(y; z)− I(y; z|x)

(C1)
= I(x; z|y) + I(y; z)

(P4)

≤ I(x; z|y) +H(x|yz) + I(y; z)

(P5)
= H(x|y) + I(y; z)

Note that the discreetness of x is required only to prove bound 4. For continuous x bounds 1, 2 and
3 still hold.

D NON-TRANSITIVITY OF MUTUAL REDUNDANCY

The mutual redundancy condition between two views v1 and v2 for a label y can not be trivially ex-
tended to an arbitrary number of views, as the relation is not transitive because of some higher order
interaction between the different views and the label. This can be shown with a simple example.

Given three views v1, v2 and v3 and a task y such that:
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• v1 and v2 are mutually redundant for y

• v2 and v3 are mutually redundant for y

Then, we show that v1 is not necessarily mutually redundant with respect to v3 for y.

Let v1, v2 and v3 be fair and independent binary random variables. Defining y as the exclusive or
operator applied to v1 and v3 ( y := v1 XOR v3), we have that I(v1;y) = I(v3;y) = 0. In this
settings, v1 and v2 are mutually redundant for y:

I(v1;y|v2) = H(v1|v2)−H(v1|v2y) = H(v1)−H(v1) = 0

I(v2;y|v1) = H(v2|v1)−H(v2|v1y) = H(v2)−H(v2) = 0

Analogously, v2 and v3 are also mutually redundant for y as the three random variables are not
predictive for each other. Nevertheless, v1 and v3 are not mutually redundant for y:

I(v1;y|v3) = H(v1|v3)−H(v1|v3y)︸ ︷︷ ︸
0

= H(v1) = 1

I(v3;y|v1) = H(v3|v1)−H(v3|v1y)︸ ︷︷ ︸
0

= H(v3) = 1

Where H(v1|v3y) = H(v3|v1y) = 0 follows from v1 = v3 XOR y and v3 = v1 XOR y, while
H(v1) = H(v3) = 1 holds by construction.

This counter-intuitive higher order interaction between multiple views makes our theory non-trivial
to generalize to more than two views.

E EQUIVALENCES OF DIFFERENT OBJECTIVES

Different objectives in literature can be seen as a special case of the Multi-View Information Bot-
tleneck principle. In this section we show that the supervised version of Information Bottleneck is
equivalent to the corresponding Multi-View version whenever the two redundant views have only
label information in common. A second subsection show equivalence between InfoMax and Multi-
View Information Bottleneck whenever the two views are identical.

E.1 MULTI-VIEW INFORMATION BOTTLENECK AND SUPERVISED INFORMATION
BOTTLENECK

Whenever the two mutually redundant views v1 and v2 have only label information in common (or
when one of the two views is the label itself) the Multi-View Information Bottleneck objective is
equivalent to the respective supervised version. This can be shown by proving that I(v1; z1|v2) =
I(v1; z1|y), i.e. a representation z1 of v1 that is sufficient and minimal for v2 is also sufficient and
minimal for y.

Proposition E.1. Let v1 and v2 be mutually redundant views for a label y that share only label
information. Then a sufficient representation z1 of v1 for v2 that is minimal for v2 is also a minimal
representation for y.

Hypothesis:

(H1) v1 and v2 are mutually redundant for y: I(v1;y|v2) + I(v2;y|v1) = 0

(H2) v1 and v2 share only label information: I(v1;v2) = I(v1;y)

(H3) z1 is sufficient for v2: I(v1;v2|z1) = 0

Thesis:

(T1) I(v1; z1|v2) = I(v1; z1|y)

Proof.
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1. Consider I(v1; z):

I(v1; z1)
(P3)
= I(v1; z1|v2) + I(v1;v2; z1)

(P3)
= I(v1; z1|v2) + I(v1;v2)− I(v1;v2|z1)

(H3)
= I(v1; z1|v2) + I(v1;v2)

(H1)
= I(v1; z1|v2) + I(v1;y)

2. Using Corollary 1, from (H2) and (H3) follows I(v1;y|z1) = 0

3. I(v1; z) can be alternatively expressed as:

I(v1; z1)
(P3)
= I(v1; z1|y) + I(v1;y; z1)

(P3)
= I(v1; z1|y) + I(v1;y)− I(v1;y|z1)

(Cor1)
= I(v1; z1|y) + I(v1;y)

Equating 1 and 3, we conclude I(v1; z1|v2) = I(v1; z1|y), therefore z1 which minimizes
I(v1; z1|v2) is also minimizing I(v1; z1|y). When I(v1; z1|y) is minimal, I(y; z1) is also minimal
(see equation 2).

E.2 MULTI-VIEW INFORMATION BOTTLENECK AND INFOMAX

Whenever v1 = v2, a representation z1 of v1 that is sufficient for v2 must contain all the orig-
inal information regarding v1. Furthermore since I(v1; z1|v2) = 0 for every representation, no
superfluous information can be identified and removed. As a consequence, a minimal sufficient rep-
resentation z1 of v1 for v2 is any representation for which mutual information is maximal, hence
InfoMax.

F LOSS COMPUTATION

Starting from Equation 3, we consider the average of the losses L1(θ;λ1) and L2(ψ;λ2) that aim to
create the minimal sufficient representations z1 and z2 respectively:

L 1+2
2
(θ, ψ;λ1, λ2) =

Iθ(v1; z1|v2) + Iψ(v2; z2|v1)

2
+
λ1Iθ(v1;v2|z1) + λ2Iψ(v1;v2|z1)

2
(6)

Considering z1 and z2 on the same domain Z, Iθ(v1; z1|v2) can be expressed as:

Iθ(v1; z1|v2) = Ev1,v2∼p(v1,v2)Ez∼pθ(z1|v1)

[
log

pθ(z1 = z|v1 = v1)

pθ(z1 = z|v2 = v2)

]
= Ev1,v2∼p(v1,v2)Ez∼pθ(z1|v1)

[
log

pθ(z1 = z|v1 = v1)

pψ(z2 = z|v2 = v2)

pψ(z2 = z|v2 = v2)

pθ(z1 = z|v2 = v2)

]
= DKL(pθ(z1|v1)||pψ(z2|v2))−DKL(pθ(z2|v1)||pψ(z2|v2))

≤ DKL(pθ(z1|v1)||pψ(z2|v2))

Note that the bound is tight whenever pψ(z2|v2) coincides with pθ(z1|v2). This happens when-
ever z1 and z2 produce a consistent encoding. Analogously Iψ(v2; z2|v1) is upper bounded by
DKL(pψ(z2|v2)||pθ(z1|v1)).

Iθ(v2; z1) can be rephrased as:

Iθ(z1;v2)
(P2)
= Iθψ(z1; z2v2)− Iθψ(z1; z2|v2)

=∗ Iθψ(z1; z2v2)

= Iθψ(z1; z2) + Iθψ(z1;v2|z2)
≥ Iθψ(z1; z2)
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Where ∗ follows from z2 representation of v2. The bound reported in this equation is tight whenever
z2 is sufficient for z1 (Iθψ(z1;v2|z2) = 0). This happens whenever z2 contains all the information
regarding z1 (and therefore v1). Once again, the same bound can symmetrically be used to show
Iθ(z2;v1) ≥ Iθψ(z1; z2). Therefore, the loss function in Equation 6 can be upper-bounded with:

L 1+2
2
(θ, ψ;λ1, λ2) ≤ DSKL(pθ(z1|v1)||pψ(z2|v2))−

λ1 + λ2
2

Iθψ(z1; z2) (7)

Where:

DSKL(pθ(z1|v1)||pψ(z2|v2)) :=
1

2
DKL(pθ(z1|v1)||pψ(z2|v2)) +

1

2
DKL(pψ(z2|v2)||pθ(z1|v1))

Lastly, multiplying both terms with β := 2
λ1+λ2

and re-parametrizing the objective, we obtain:

LMIB(θ, ψ;β) = −Iθψ(z1; z2) + β DSKL(pθ(z1|v1)||pψ(z2|v2)) (8)

G EXPERIMENTAL PROCEDURE AND DETAILS

G.1 MODELING

The two stochastic encoders pθ(z1|v1) and pψ(z2|v2) are modeled by Normal distributions
parametrized with neural networks (µθ,σ2

θ) and (µψ,σ
2
ψ) respectively:

pθ(z1|v1) := N
(
z1|µθ(v1),σ

2
θ(v1)

)
pψ(z2|v2) := N

(
z2|µψ(v2),σ

2
ψ(v2)

)
Since the density of the two encoders can be evaluated, the symmetrized KL-divergence in equa-
tion 4 can be directly computed. On the other hand, Iθψ(z1; z2) requires the use of a mutual infor-
mation estimator.

To facilitate the optimization, the hyper-parameter β is slowly increased during training, starting
from a small value ≈ 10−4 to its final value with an exponential schedule. This is because the
mutual information estimator is trained together with the other architectures and, since it starts from
a random initialization, it requires an initial warm-up. Starting with bigger β results in the encoder
collapsing into a fixed representation. The update policy for the hyper-parameter during training
has not shown strong influence on the representation, as long as the mutual information estimator
network has reached full capacity.

All the experiments have been performed using the Adam optimizer with a learning rate of 10−4
for both encoders and the estimation network. Higher learning rate can result in instabilities in
the training procedure. The results reported in the main text relied on the Jensen-Shannon mutual
information estimator (Devon Hjelm et al., 2019) since the InfoNCE counterpart (van den Oord
et al., 2018) generally resulted in worse performance that could be explained by the effect of the
factorization of the critic network (Poole et al., 2019).

G.2 SKETCHY EXPERIMENTS

• Input: The two views for the sketch-based classification task consist of 4096 dimensional
sketch and image features extracted from two distinct VGG-16 network models which were
pre-trained on images and sketches from the TU-Berlin dataset Eitz et al. (2012) for end-
to-end classification. The feature extractors are frozen during the training procedure of for
the two representations. Each training iteration used batches of size B = 128.

• Encoder and Critic architectures: Both sketch and image encoders consist of multi-layer
perceptrons of 2 hidden ReLU units of size 2,048 and 1,024 respectively with an output of
size 2x64 that parametrizes mean and variance for the two Gaussian posteriors. The critic
architecture also consists of a multi layer perceptron of 2 hidden ReLU units of size 512.

• β update policy: The initial value of β is set to 10−4. Starting from the 10,000th training
iteration, the value of β is exponentially increased up to 1.0 during the following 250,000
training iterations. The value of β is then kept fixed to one until the end of the training
procedure (500,000 iterations).
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• Evaluation: All natural images are used as both training sets and retrieval galleries. The
64 dimensional real outputs of sketch and image representation are compared using Eu-
clidean distance. For having a fair comparison other methods that rely on binary hashing
(Liu et al., 2017; Zhang et al., 2018), we used Hamming distance on a binarized represen-
tation (obtained by applying iterative quantization Gong et al. (2013) on our real valued
representation). We report the mean average precision (mAP@all) and precision at top-
rank 200 (Prec@200) Su et al. (2015) on both the real and binary representation to evaluate
our method and compare it with prior works.

G.3 MIR-FLICKR EXPERIMENTS

Figure 6: Examples of pictures v1, tags v2 and category labels y for the MIR-Flickr dataset (Srivas-
tava & Salakhutdinov, 2014). As visualized is the second row, the tags are not always predictive of
the label. For this reason, the mutual redundancy assumption holds only approximately.

v1 ∈ R3857 v2 ∈ {0, 1}2000 y ∈ {0, 1}38

“watermelon”,
“hilarious”,

“chihuahua”,
“dog”

“animals”,
“dog”,
“food”

“colors”,
“cores”,
“centro”,

“comercial”,
“building”

“clouds”,
“sky”,

“structures”

• Input: Whitening is applied to the handcrafted image features. Batches of size B = 128
are used for each update step.

• Encoders and Critic architectures: The two encoders consists of a multi layer perceptron
of 4 hidden ReLU units of size 1,024, which exactly resemble the architecture used in
Wang et al. (2016). Both representations z1 and z2 have a size of 1,024, therefore the
two architecture output a total of 2x1,024 parameters that define mean and variance of the
respective factorized Gaussian posterior. Similarly to the Sketchy experiments, the critic is
consists of a multi-layer perceptron of 2 hidden ReLU units of size 512.

• β update policy: The initial value of β is set to 10−8. Starting from 150000th iteration, β is
set to exponentially increase up to 1.0 (and 10−3) during the following 150,000 iterations.

• Evaluation: Once the models are trained on the unlabeled set, the representation of the
25,000 labeled images is computed. The resulting vectors are used for training and eval-
uating a multi-label logistic regression classifier on the respective splits. The optimal pa-
rameters (such as β) for our model are chosen based on the performance on the validation
set. In Table 3, we report the aggregated mean of the 5 test splits as the final value mean
average precision value.

G.4 MNIST EXPERIMENTS

• Input: The two views v1 and v2 for the MNIST dataset are generated by applying small
translation ([0-10]%), rotation ([-15,15] degrees), scale ([90,110]%), shear ([-15,15] de-
grees) and pixel corruption (20%). Batches of size B = 64 samples are used during train-
ing.

• Encoders, Decoders and Critic architectures: All the encoders used for the MNIST
experiments consist of neural networks with two hidden layers of 1,024 units and ReLU
activations, producing a 2x64-dimensional parameter vector that is used to parameterize
mean and variance for the Gaussian posteriors. The decoders used for the VAE experiments
also consist of the networks of the same size. Similarly, the critic architecture used for
mutual information estimation consists of two hidden layers of 1,204 units each and ReLU
activations.
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• β update policy: The initial value of β is set to 10−3, which is increased with an exponen-
tial schedule starting from the 50,000th until 1the 50,000th iteration. The value of β is then
kept constant until the 1,000,000th iteration. The same annealing policy is used to trained
the different β-VAEs reported in this work.

• Evaluation: The trained representation are evaluated following the well-known protocol
described in Tschannen et al. (2019); Tian et al. (2019); Bachman et al. (2019); van den
Oord et al. (2018). Each logistic regression is trained 5 different balanced splits of the
training set for different percentages of training examples, ranging from 1 example per la-
bel to the whole training set. The accuracy reported in this work has been computed on
the disjoint test set. Mean and standard deviation are computed according to the 5 different
subsets used for training the logistic regression. Mean and variance for the mutual informa-
tion estimation reported on the Information Plane (Figure 4) are computed by training two
estimation networks from scratch on the final representation of the non-augmented train
set. The two estimation architectures consist of 2 hidden layers of 2048 and 1024 units
each, and have been trained with batches of size B = 256 for a total of approximately
25,000 iterations. The Jensen-Shannon mutual information lower bound is maximized dur-
ing training, while the numerical estimation are computed using an energy-based bound
(Poole et al., 2019; Devon Hjelm et al., 2019). The final values for I(x; z) and I(y; z) are
computed by averaging the mutual information estimation on the whole dataset. In order
to reduce the variance of the estimator, the lowest and highest 5% are removed before av-
eraging. This practical detail makes the estimation more consistent and less susceptible to
numerical instabilities.

G.4.1 RESULTS AND VISUALIZATION

In this section we include additional quantitative results and visualizations which refer to the single-
view MNIST experiments reported in section 5.2.

Table 2 reports the quantitative results used for to produce the visualizations reported in Figure 4,
including the comparison between the performance resulting from different mutual information esti-
mators. As the Jensen-Shannon estimator generally resulted in better performance for the InfoMax,
MV-InfoMax and MIB models, all the experiments reported on the main text make use of this esti-
mator. Note that the InfoMax model with the IJS estimator is equivalent to the global model reported
in Devon Hjelm et al. (2019), while MV-InfoMax with the INCE estimator results in a similar archi-
tecture to the one introduced in Tian et al. (2019).

Model I(x; z) [nats] I(z;y) [nats] Test Accuracy [%]
10 Ex 50 Ex 3750 Ex 60000 Ex

VAE (beta=0) 12.5 ± 0.7 2.3 ± 0.2 43.8 ± 1.6 65.6 ± 3.3 89.0 ± 0.4 91.3 ± 0.1
VAE (beta=4) 7.5 ± 1.0 2.0 ± 0.2 55.9 ± 2.6 81.4 ± 4.0 94.2 ± 0.3 96.0 ± 0.2
VAE (beta=8) 3.0 ± 0.5 1.0 ± 0.1 43.8 ± 2.8 61.1 ± 4.8 81.9 ± 1.1 87.2 ± 0.6
InfoMax (INCE) 12.8 ± 0.5 2.3 ± 0.2 25.4 ± 1.9 39.6 ± 3.3 69.2 ± 0.7 74.6 ± 0.6
InfoMax (IJS) 13.7 ± 0.7 2.2 ± 0.2 35.0 ± 2.8 52.5 ± 2.8 74.4 ± 1.1 78.2 ± 1.2
MV-InfoMax (INCE) 12.2 ± 0.7 2.3 ± 0.2 50.2 ± 3.6 75.8 ± 3.8 94.6 ± 0.4 96.5 ± 0.1
MV-InfoMax (IJS) 11.1 ± 1.0 2.3 ± 0.2 54.0 ± 6.1 78.3 ± 4.4 94.1 ± 0.3 95.90 ± 0.08
MIB (β = 1, INCE) 4.6 ± 0.7 2.1 ± 0.2 81.8 ± 5.0 92.7 ± 0.9 97.19 ± 0.08 97.75 ± 0.05
MIB (β = 1, IJS) 2.4 ± 0.2 2.1 ± 0.2 97.1 ± 0.2 97.2 ± 0.2 97.70 ± 0.06 97.82 ± 0.01

Table 2: Comparison of the amount of input information I(x; z), label information I(z;y), and
accuracy of a linear classifier trained with different amount of labeled Examples (Ex) for the models
reported in Figure 4. Both the results obtained using the Jensen-Shannon IJSD (Devon Hjelm et al.,
2019; Poole et al., 2019) and the InfoNCE INCE (van den Oord et al., 2018) estimators are reported.

Figure 7 reports the linear projection of the embedding obtained using the MIB model. The latent
space appears to roughly consists of ten clusters which corresponds to the different digits. This
observation is consistent with the empirical measurement of input and label information I(x; z) ≈
I(z;y) ≈ log 10, and the performance of the linear classifier in scarce label regimes. As the cluster
are distinct and concentrated around the respective centroids, 10 labeled examples are sufficient to
align the centroid coordinates with the digit labels.

24



Published as a conference paper at ICLR 2020

Figure 7: Linear projection of the embedding obtained by applying the MIB encoder to the MNIST
test set. The 64 dimensional representation is projected onto the two principal components. Different
colors are used to represent the 10 digit classes.

H ABLATION STUDIES

H.1 DIFFERENT RANGES OF DATA AUGMENTATION

Figure 8 visualizes the effect of different ranges of corruption probabily as data augmentation strat-
egy to produce the two views v1 and v2. The MV-InfoMax Model does not seem to get any ad-
vantage from the use increasing amount of corruption, and it representation remains approximately
in the same region of the information plane. On the other hand, the models trained with the MIB
objective are able to take advantage of the augmentation to remove irrelevant data information and
the representation transitions from the top right corner of the Information Plane (no-augmentation)
to the top-left. When the amount of corruption approaches 100%, the mutual redundancy assump-
tion is clearly violated, and the performances of MIB deteriorate. In the initial part of the transi-
tions between the two regimes (which corresponds to extremely low probability of corruption) the
MIB models drops some label information that is quickly re-gained when pixel corruption becomes
more frequent. We hypothesize that this behavior is due to a problem with the optimization proce-
dure, since the corruption are extremely unlikely, the Monte-Carlo estimation for the symmetrized
Kullback-Leibler divergence is more biased. Using more examples of views produced from the same
data-point within the same batch could mitigate this issue.
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Figure 8: Visualization of the coordinates on the Information Plane (plot on the left) and predic-
tion accuracy (center and right) for the MV-InfoMax and MIB objectives with different amount of
training labels and corruption percentage used for data-augmentation.

H.2 EFFECT OF β

The hyper-parameter β (Equation 5) determines the trade-off between sufficiency and minimality of
the representation for the second data view. When β is zero, the training objective of MIB is equiv-
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alent to the Multi-View InfoMax target, since the representation has no incentive to discard any
information. When 0 < β ≤ 1 the sufficiency constrain is enforced, while the superfluous informa-
tion is gradually removed from the representation. Values of β > 1 can result in representations that
violate the sufficiency constraint, since the minimization of I(x; z|v2) is prioritized. The trade-off
resulting from the choice of different β is visualized in Figure 9 and compared against β-VAE. Note
that in each point of the pareto-front the MIB model results in a better trade-off between I(x; z)
and I(y; z) when compared to β-VAE. The effectiveness of the Multi-View Information Bottleneck
model is also justified by the corresponding values of predictive accuracy.
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Figure 9: Visualization of the coordinates on the Information Plane (plot on the left) and predic-
tion accuracy (center and right) for the β-VAE, Multi-View InfoMax and Multi-View Information
Bottleneck objectives with different amount of training labels and different values of the respective
hyperparameter β.
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