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ABSTRACT

Few-shot classification may involve differentiating data that belongs to a different
level of labels granularity. Compounded by the fact that the number of available
labeled examples are scarce in the novel classification set, relying solely on the
loss function to implicitly guide the classifier to separate data based on its label
might not be enough; few-shot classifier needs to be very biased to perform well.
In this paper, we propose a model that incorporates a simple inductive bias: focus-
ing on differences by building a dissimilar set of class representations. The model
treats a class representation as a vector and removes its component that is shared
among closely related class representatives. It does so through the combination
of learned attention and vector orthogonalization. Our model works well on our
newly introduced dataset − CIFAR-Hard − that contains different levels of labels
granularity. It also substantially improved the performance on fine-grained classi-
fication dataset, CUB; whereas staying competitive on standard benchmarks such
as mini-Imagenet, Omniglot, and few-shot dataset derived from CIFAR.

1 INTRODUCTION

Progress in artificial intelligence (AI) has been rapid. AI agents have been outperforming humans
in an increasing variety of tasks, such as in recognizing images on ImageNet (He et al., 2016) and in
the ancient game of Go (Silver et al., 2016). However, challenges remain – systems that outperform
humans usually require learning from very large-scale data. In contrast, humans only require few
examples to be able to rapidly adapt to a novel task; humans are still better learners. Few-shot
learning methods – which learn classes from few labeled examples – aim to bridge this gap.

In learning a classification algorithm from a few labeled examples, one may train the algorithm with
a different set of abundantly labeled data (base set); before adapting it to the unknown examples.
However, it might be the case that the available labeled examples are of different granularity level.
For example, it is possible that it is only trained to differentiate between cats and dogs, but is tested
on differentiating different breeds of dogs. The set of labeled examples is also very limited; in the
extreme case, only one labeled example is provided for each class (called one-shot classification).
A few-shot learning algorithm can learn to identify features that are important for doing well on the
base set – these can be adapted to classify the few labeled examples as long as the domain remains
similar. But with so few examples provided and possible differences in the task granularity, few-shot
learning algorithms need to be very biased to perform well. The question is then: what kind of bias
is reasonable?

Our work. In this paper, we propose a model that performs classification in a novel task by fo-
cusing on the differences between closely related classes of its support set. Our bias is loosely
inspired by how scientists often work (Mill’s method of difference): in looking for potential causes
of a phenomenon, a scientist would often focus on the differences in the circumstances (features)
in the instance in which the phenomenon occurred and the circumstances in instances for which
the phenomenon did not occur (Mill, 1875). Our method focuses on the differences by removing
components in each class representative that are shared with closely related classes.

Our contributions.

1. We introduce a method which incorporates a simple yet effective inductive bias: focus-
ing on differences, and show that it works well on classifying closely related classes. Our

1



Under review as a conference paper at ICLR 2020

results show that the method achieves better performance on a standard fine-grained classi-
fication benchmark (CUB dataset) and on our proposed benchmark consisting of a mix of
fine and coarse-grained classification tasks, CIFAR-Hard. On other commonly used bench-
mark datasets, CIFAR-FS, mini-ImageNet, and Omniglot, its performance is competitive
with existing methods.

2. We propose a methodology to build harder few-shot learning datasets without requiring
very large hierarchically labeled datasets. Using this methodology, we build CIFAR-Hard
– a mix of fine-grained and coarse-grained few-shot classification dataset derived from
CIFAR-100. Our empirical evaluation shows that the currently existing methods are not
well equipped to handle this scenario.

2 DISSIMILARITY NETWORK

2.1 FEW-SHOT LEARNING

In few-shot learning, we are given a base set B and a novel set N. The base set contains labeled
examples from a large number of classes while novel set contains classes not found in the base
set. The objective of few-shot learning is to train a classification algorithm P on the training set
Xtrain = B, in such a way that it generalizes to the elements of the novel set N. Some methods
may also train on the small number of labeled examples from the novel set. In that case, the training
set becomes Xtrain = B ∪ Nlabeled, with labeled novel set Nlabeled ⊂ N. In one-shot learning, the
novel set only contains one labeled example for each class, while for k-shot learning, the novel set
contains k examples for each class.

We use the episodic training proposed by Vinyals et al. (2016) to make sure that the training and
test condition match. At every step, we sample some examples to form an episode T ⊂ Xtrain to
train the classification algorithm P . Each episode T consists of a small set of N -labeled examples
(called support set) S = {(xi, yi)}Ni=1 and a set of M examples to be labeled (called query set)
Q = {xi}Mi=1, where xi ∈ RD is a D-dimensional feature vector with label yi (for computing the
loss on the query set), simulating the conditions for learning the novel set N. We denote the set of
labeled examples from the support set with class k ∈ {1, ...,K} in an episode as Sk.

Our method adopts the approach of similarity learning. Instead of learning a distance or similarity
function, we learn a space (embedding) that works well with a fixed similarity-based classifier in
that space. Specifically, our model learns to construct a space that is optimized to separate data that
belong to different classes for a classifier that uses dot-product as its similarity function. We define
two levels of embedding based on how the embedding utilizes task information:

Global task embedding learns an embedding function that is optimized for all episodes that it is
trained upon. The assumption is that the produced embedding will learn a meaningful and general
representation that is sufficient to separate data points on the novel task without knowing what
classes appear in it.

Task-aware embedding removes the assumption that the learned global embedding is sufficient for
the novel task. Instead, it takes the possible classes of the novel task into account. On the novel
task, it will embed the query set conditioned on the support set that is aware of its member, giving
the full context to the prediction. Our model builds an explicit task-aware embedding that separate
a class from the weighted average of its closely-related classes. It is explicit in the sense that our
model explicitly encodes such an inductive bias into its function (architecture). In contrast, implicit
task-aware embedding only relies upon its loss function to adjust its function as to induce separation
between classes.

2.2 MODEL

For each class, our model – which we call the Dissimilarity Network – computes a class representa-
tive, called a prototype, that is used to classify a new instance of data by comparing its similarity to
the prototype, through an inner product. For 1-shot classification, each training example in the novel
task is transformed into the prototype, while for k-shot classification, the mean of the k instance
representations that belong to each class is transformed into the prototype.
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Figure 1: Dissimilarity Network architecture

The Dissimilarity Network computes prototypes that are dissimilar to one another, in the sense that
the components of the class prototypes are orthogonal to the direction of the weighted average of
closely-related classes. This lifts the burden of the classifier as the classes are more easily distin-
guishable – since what remains are their differences. The model works by iteratively enhancing
the representation of the prototypes through a set of learned transformations (embedding functions).
The first transformation builds a global task embedding through a learned dimensionality-reduction
function. The global embedding retains features that are useful for the training tasks but does not
take into account the classes that are present in the novel task. The second transformation transforms
the prototypes into a task-aware embedding using self-attention networks, taking into account other
classes that are present in the task. Finally, the last transformation computes the class prototypes
that are dissimilar, by locally orthogonalizing the representations to the weighted average of other
closely related class representations.

When presented with a new point to classify, it computes the global embedding for that point, trans-
form it using the task-aware embedding, locally orthogonalize the point for each possible class, and
select the most similar prototype’s class as the class of the new point. Figure 1 illustrates how the
model constructs class representations as well as predict the new point.

2.2.1 GLOBAL EMBEDDING

We learn a feature extraction function ff : RD → RH for the images to reduce their representation
to a H-dimensional vector. We used deep convolutional neural networks (Krizhevsky et al., 2012)
which captures the local interaction of neighboring pixels and builds a hierarchical representation
of them. This feature extractor constructs our first level of embedding. It is trained to extract
information that is useful for all the training episodes but is not specialized to a particular novel task.
We use the global embedding to compute the class mean (or prototype) ck of the H-dimensional
representation of the support points,

ck =
1

|Sk|
∑

(xi,yi)∈Sk

ff (xi). (1)

2.2.2 SELF-ATTENTION

By seeing the prototypes as a set of vector: C = {ci}Ki=1, we can learn a set-to-set function that
conditions the member of the set to every other member within the set. This gives task-awareness
to our prototypes; each member is now aware of the other class representatives of the given task.

Our set-to-set operation is based on the self-attention mechanism introduced by Vaswani et al.
(2017). Given a query, an attention mechanism learns to ”attend” – by means of weighted aver-

3



Under review as a conference paper at ICLR 2020

age – to different parts of the set depending on how relevant it is to the query. In self-attention, the
query is the member of the set itself. Our self attention uses embedding functions for query hQ, key
hK , and value hV . Each embedding function is parameterized by a neural network that computes
a mapping RK×H → RK×H . For simplicity we assume that for any input in the form of a set of
vector A, it will automatically be cast into matrix A ∈ RK×H , whereas the output will be cast back
into a set. The self-attention mechanism self -attn : RK×H → RK×H is formulated as follows.

self -attn(C) = softmax
(hQ(C)hK(C)T√

H

)
hV (C) (2)

Intuitively, the self-attention computes a weighted average of the element of the input matrix C ∈
RK×H , representing a set of prototypes C. This operation has the effect of averaging out noisy
components from global embedding that may be relevant for other tasks but are irrelevant to the set
of classes in the current novel task. The weights are obtained using the learned attention function,
which in this case, is parameterized by hQ and hK . In our case, our prototype ck learns to be aware
of the other class representatives C \ ck by incorporating some of their components.

We use bidirectional LSTM (BLSTM) (Hochreiter & Schmidhuber, 1997) for our attention em-
bedding function for query hQ and key hK , while using either identity function or BLSTM
on hV . BLSM computes a concatenation of two sequence of opposing-direction by sequen-
tially applying the element xt ∈ RH of its input x = [x1, ...,xT ] into an LSTM, ht,ut =
LSTM(xt−1,ht−1,ut−1). The computation yields a sequence of vector that each are conditioned
on its neighboring elements. Our BLSTM uses context sharing between key attention embedding
hK and query attention embedding hQ.

We are aware of the sequential nature of BLSTM, which can be counter-intuitive as we are model-
ing a set-to-set operation which should not have any preference for ordering. However, we found
empirically that this setup offers more performance gain compared to the use of traditional linear
function as attention embedding function. The BLSTM may learn to ignore the unimportance of
set ordering due to the nature of episodic training, which exposes it to many permutations of the
possible class-orderings. Moreover, the attention also gives a global context of the member of the
set, which could further alleviate the ordering issues (if any).

2.2.3 FOCUSING ON DIFFERENCES

We encode our inductive bias in the form of neural network architecture, in which we remove the
components that are shared among other class representatives, thereby giving the model the ability
to focus only on the inter-class differences. Since we treat the prototypes as a vector, one natural
way to achieve that is by making the prototypes to be locally orthogonal to the components that are
shared among other classes. We learn to find such components by using dot-product attention.

For a H-dimensional prototype ck ∈ C of class k, it will have a corresponding task-aware vector
prototype wk ∈ W = self -attn(C) following the method described in the Section 2.2.2. Let
W′ = W \wk, the components shared among the other classes k′ 6= k that are locally orthogonal
to the vector prototype wk is computed using attention function attn : RH × RK×H → RH :

attn(wk,W
′) = softmax

(wk ·W ′T
√
H

)
W ′ (3)

Essentially, through weighted averaging, it selects components from the other class prototypes based
on how similar the embedded vector prototype wk is to them.

We make the prototype wk to be orthogonal to the shared components of W \ wk by remov-
ing its projection to the shared components. Specifically, we use the shared components bk =
attn(wk,W \wk) that belongs to class k as the basis of the projection proj(wk, bk) as follows:

proj(wk, bk) =
wk · bk
||bk||2

bk (4)

Intuitively, it maps the vector of prototype wk to represent its direction using the given basis bk
(i.e., projecting it into the basis). It produces components that are linearly dependent on the basis,
thereby removing it: zk = wk − proj(wk, bk) will produce a new prototype representation zk that
is orthogonal to the weighted average of the components of other closely-related prototypes.
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2.2.4 CLASSIFICATION AND LEARNING

To classify a new point x̂, we follow similar transformations as computing the locally orthogonal
prototypes. First global embedding is computed for the point v̂ = ff (x̂). For consistency, we follow
the transformation given by self -attn. However, since we only have a single point v̂, we construct
a set of length K by duplicating the point K times as the input: Ŵ = self -attn({v̂}Ki=1).

If the attention value embedding hV (Section 2.2.2) is an identity function (or any other element-
wise function), any ∀ŵk∈Ŵŵk = v̂ since its taking a weighted average of a set of identical vectors.
When hV is a BLTSM (or function that operates on a set of elements), hV transforms the vector
through a multi-stage non-linear processing.

For a task-aware embedding ŵk ∈ Ŵ, we compute the vector that is locally orthogonal to the
set of prototypes of class k̃ 6= k by computing ẑk = ŵk − proj(ŵk, bk) with basis given by
bk = attn(wk,W \wk) from the Section 2.2.3.

Given an unlabeled data x̂, the transformations gives a set of locally orthogonalized vector {ẑi}Ki=1

for comparison with the locally orthogonal prototypes {zi}Ki=1. Dissimilarity Network then com-
putes a distribution over classes for point x̂ using Softmax over inner product:

p(y = k|x̂) = exp(〈ẑk, zk〉)∑
k′ exp(〈ẑk′ , zk′〉)

(5)

Learning is done using the cross-entropy loss with the label of the instance.

3 RELATED WORKS

There are many works on few-shot learning, which was started on the assumption that currently,
learned tasks can help in making a prediction in a new task (Fei-Fei et al., 2006). It soon gained
interest from many researchers, which introduced many interesting techniques that contribute to
huge strides of progress in few-shot learning. We will quickly review some of the recently proposed
methods and delve deeper into metric learning-based methods that are more related to our work.

Transfer learning-based methods follows the standard transfer learning procedure (network pre-
training & fine-tuning). Gidaris & Komodakis (2018); Qi et al. (2018); Chen et al. (2019) propose
to directly predicting weights of the classifiers on a novel task.

Initialization based methods address few-shot learning by finding a way to better initialize a model.
Ravi & Larochelle (2016) uses LSTM as a meta-optimizer to rapidly adapt neural network on the
novel task, whereas Munkhdalai & Yu (2017) uses external memory to update weights. Another line
of works is concerned about finding a good initialization, as such that finetuning can be done using
fewer steps (Finn et al., 2017; Nichol & Schulman, 2018; Rusu et al., 2018).

Metric and similarity learning-based methods assumes that representation produced by some
model on a task share some similarities with those that are produced by another task. Essentially,
the goal is to learn a comparison model that can distinguish different classes on the novel task by
measuring its distance or similarity to some representation produced by the support set.

Our proposed method is similar to the prototypical networks (Snell et al., 2017) – and subsequently
Mensink et al. (2013) – in its use of mean representation of class (or prototypes). The similarity stops
there, as the prototypical networks directly perform classification by comparing the distance of the
new input to each prototype. They assume that the embedding function that produces the prototypes
can sufficiently capture useful and general enough representation that is transferable to the novel
set; it only computes global task embedding. As shown in our results, their assumption breaks
down when there are changes in class granularity or the label is of fine granularity. In contrast, our
method does not directly classify on the prototypes; instead, it transforms the prototypes, producing
task-aware embeddings that are locally orthogonal to the shared components belonging to different
classes. Thus, classification is performed by computing a Softmax over dot product between the
new point and the task-aware prototypes.

The Dissimilarity Network uses context embedding similar to the full context embedding (FCE) ex-
tension of the matching network (Vinyals et al., 2016). However, there are some glaring differences
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in how they operate. The matching network carries the entire support for the prediction. It predicts
the label of an unknown point by computing the linear combination of the label of its support set;
as the support set grows, the memory increases linearly with it. Their full context embedding con-
ditions the prediction on the entire support set; computing the task-aware embedding is quadratic in
the number of elements of the support set. Moreover, as they do not construct an explicit reference
for the classes to condition into, it is less clear how reasonable separation of a point belonging to
different classes can be maximized. As pointed out by Snell et al. (2017), the FCE extension of the
matching network does not make that much difference.

Our model only maintains a set of prototypes and classifies a new point based on how orthogonal
its representation to the prototypes. Since we condition the prediction only on the prototypes, it
will not grow with the size of the support set. Moreover, computing the task-aware embedding
is only quadratic in the number of prototypes (i.e., labels) – as opposed to the number of support
set. We also explicitly computes the representations to be dissimilar; lifting the reliance on learning
sufficiently separable inter-class representations only to the loss function.

Our similarity function can be set differently. One possible extension is to use learned similarity or
distance function similar to RelationNet (Sung et al., 2018), which we leave for future work.

4 EXPERIMENTS

Datasets & scenarios. We evaluate all models on the standard dataset that is widely used in few-
shot learning: omniglot, miniImageNet, and CUB. Apart from that, we also evaluate all models on
CIFAR dataset with the two splits: hard and normal split (which we will elaborate later).

Evaluation. Our evaluation follows Chen et al. (2019), that is by sampling N -class to form N -way
classification (with N=5 unless otherwise stated). For k-shot task, we pick k labeled instances for
each class to be the support set and 16 instances for query set. All results are averaged over 600
experiments which follow the above settings. We evaluate all models on 1-shot and 5-shot setting,
which is the most common setting adopted in few-shot learning.

Implementation details. All methods are trained using Adam optimizer Kingma & Ba (2014) with
the initial learning rate of 10−3, which we cut half every 2000 episodes. We apply the following
standard data augmentation on all datasets (except CIFAR): random crop, right-left flip, and color
jittering. Following Snell et al. (2017), we use a four-layer convolution backbone (Conv-4) with an
input size of 84x84 as a feature extractor for all methods. We use the open-source implementation of
Chen et al. (2019) for other methods that we reported. We pick the best performing model based on
the validation for meta-learning methods, whereas for baseline and baseline++ Chen et al. (2019),
we follow the recommended settings prescribed in their paper. We trained our model on 800 epochs.
Our best performing model on all datasets, based on validation set, uses identity function for the
value attention embedding hV except on the CUB dataset, which uses BLSTM.

4.1 STANDARD BENCHMARKS

Omniglot (Lake et al., 2011) dataset consist of 1623 handwritten digits from 50 different alphabets.
There are 20 examples per character which is drawn by different people. We follow Vinyals et al.
(2016) procedure for evaluation.

mini-ImageNet is a 100 classes subset of ImageNet (Deng et al., 2009) dataset (ILSVRC-12
dataset), which was first proposed by Vinyals et al. (2016). It consists of 600 images per class.
Recent works follow the setting proposed by Ravi & Larochelle (2016), which consist of randomly
selected 64 base, 16 validation, and 20 novel classes.

CUB or Caltech-UCSD Birds 200-2011 dataset (Wah et al., 2011) is a fine-grained classification
dataset which consist of 200 classes (bird species) and 11,788 images in total. We follow Hilliard
et al. (2018) setting which is composed of 100 base, 50 validation, and 50 novel classes.

CIFAR-FS dataset is derived from CIFAR dataset (Krizhevsky et al., 2009) consist of 60,000 32x32
color images with 100 classes (belonging to 20 superclasses), with 600 images for each class. Our
split consists of randomly sampled 40 base, 15 validation, and 45 novel classes (detail on appendix).
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4.2 HARDER BENCHMARKS

General setting. Our approach requires the dataset that we derived from to have at least two differ-
ent levels of class granularity. For example, CIFAR dataset which has two levels of labels granular-
ity. ImageNet labels also form a hierarchy which – through this method – can be derived into several
hard few-shot classification datasets. In the case where different labels of granularity are absent, one
may be able to construct new labels by exploring the natural hierarchy which may present.

Method. Given a J-labeled dataset D = {(x1, y
coarse
1 , yfine1 ), ..., (xJ , y

coarse
J , yfineJ )} where the

labels comes from a two-level hierarchy: coarse-grained label ycoarsei ∈ Kcoarse and fine-grained
label yfinei ∈ Kfine. Kfine

s denote a subset of labels Kfine that belongs to coarse-grained label
(superclass) s ∈ Kcoarse.

For all coarse-grained label ycoarsei ∈ Kcoarse, select some yfinei ∈ Kfine that is the subclasses of
ycoarsei (i.e., Kfine

ycoarse
i

), producing a set of fine-grained labels from all superclasses Kfine
base . Con-

struct the base set: B = {(xi, y
coarse
i )|(xi, y

coarse
i , yfinei ) ∈ D, yfinei ∈ Kfine

base}. The novel
set can be built by taking the rest of unused data and pair them with their fine-grained labels:
N = {(xi, y

fine
i )|(xi, y

coarse
i , yfinei ) ∈ D, yfinei /∈ Kfine

base}. Validation set is constructed the same
way as novel set – we leave out the detail of its construction for simplicity.

This approach (illustrated in Figure 2) is advantageous as on each task, the labels can vary from
being fine-grained to coarse-grained depending on the random selection. As such, the methods that
rely on the awareness of the overall novel tasks will likely to fail as it builds a general embedding
that works on all but not optimized for the current task. On the other hand, a dynamic method that
conditions the prediction on the support set of the given task will likely to perform better.
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Boxer

Beagle

Pug

Parrot
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Base Validation Novel
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Figure 2: Illustration on construction of harder dataset. The base dataset uses the superclass taxon-
omy (e.g., cat, dog, and bird) instead its subclass (e.g., siamese, boxer, and owl).

CIFAR-Hard is derived from CIFAR-100, using the aforementioned method. We derive our harder
benchmark from CIFAR-100 because it has two different level of labels granularity. The size of the
dataset is also not too big, making it suitable for use as a benchmark. The following is the detail
for each split (more detail on the appendix). 20 coarse-grained base classes from 40 fine-grained
classes (derived from the entire 20 superclasses, 2 classes each). 15 validation classes (derived from
5 superclass, 3 classes each). 45 novel classes (derived from 15 superclass, 5 classes each).

4.3 RESULTS & DISCUSSIONS

Table 1 shows how our method fares against others. Our method performs the best on a fine-grained
classification task such as CUB and improved on a wide margin on its 1-shot classification task.
As we have suspected, there is an increasing need to focus on the difference between classes when
the classification task becomes increasingly fine-grained. Despite also being trained on fine-grained
classification tasks on the CUB dataset, our inductive bias still seems to be helpful in classifying
similar-looking classes as it further separate class representation by explicitly removing latent fea-
tures shared among those classes. At a glance, it appears as if the 1-shot performance improvement
our method is significantly higher than its improvement in 5-shot. However, this is due to the fact that
the Baselinee++ uses retraining, which relies heavily on the availability of labeled data on the novel
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Table 1: 5-shot and 1-shot classification accuracy on all datasets. Four-layer convolution backbone
(Conv-4) with an input size of 84x84 is used as a feature extractor for all methods for a fair compar-
ison. No finetuning is performed on CIFAR-H and CIFAR-FS, all the hyperparameters are the one
used in the mini-ImageNet dataset. All accuracy results are averaged over 600 test episodes and are
reported with 95% confidence intervals. *Results reported by Chen et al. (2019).

5-shot classification accuracy (%)
Method CIFAR-H CUB CIFAR-FS mini-ImageNet Omniglot Average
DissimilarityNet (Ours) 68.45± 0.74 81.23± 0.63 71.10± 0.71 65.40± 0.61 99.27± 0.10 77.09± 0.56
MatchingNet (Vinyals et al., 2016) 63.34± 0.78 72.86± 0.70* 67.14± 0.77 63.48± 0.66* 99.37± 0.11* 73.24± 0.60
ProtoNet (Snell et al., 2017) 64.30± 0.81 70.77± 0.69* 69.96± 0.77 64.24± 0.72* 99.15± 0.12* 73.68± 0.62
MAML (Finn et al., 2017) 62.87± 0.77 72.09± 0.76* 65.98± 0.81 62.71± 0.71* 99.53± 0.08* 72.64± 0.63
RelationNet (Sung et al., 2018) 63.15± 0.83 76.11± 0.69* 68.87± 0.76 66.60± 0.69* 99.30± 0.10* 74.81± 0.61
Baseline++ (Chen et al., 2019) 57.25± 0.77 79.34± 0.61* 59.86± 0.80 66.43± 0.63* 99.38± 0.10* 72.45± 0.58

1-shot classification accuracy (%)
Method CIFAR-H CUB CIFAR-FS mini-ImageNet Omniglot Average
DissimilarityNet (Ours) 51.02± 0.89 65.82± 0.94 54.66± 0.82 49.34± 0.78 97.90± 0.25 63.75± 0.74
MatchingNet (Vinyals et al., 2016) 50.42± 0.92 61.16± 0.89* 53.92± 0.92 48.14± 0.78* 97.78± 0.30* 62.28± 0.76
ProtoNet (Snell et al., 2017) 47.16± 0.90 51.31± 0.91* 50.08± 0.88 44.42± 0.84* 98.01± 0.30* 58.20± 0.77
MAML (Finn et al., 2017) 48.64± 0.93 55.92± 0.95* 51.78± 0.94 46.47± 0.82* 98.57± 0.19* 60.28± 0.77
RelationNet (Sung et al., 2018) 50.78± 0.95 62.45± 0.98* 54.24± 0.93 49.31± 0.85* 97.22± 0.33* 62.80± 0.81
Baseline++ (Chen et al., 2019) 39.30± 0.70 60.53± 0.83* 43.38± 0.73 48.24± 0.75* 95.41± 0.39* 57.37± 0.68

set. If we take a look at the rest of the methods which are based on meta-learning (i.e., optimization-
based and metric learning), they all suffer equally on both 1-shot and 5-shot; especially on 1-shot
as it is of higher variance. The difference between our method and the other methods averaged is
consistent on both shots, which is around 7%.

Our method also significantly surpassed competing methods on the harder benchmark, CIFAR-H,
Its improvement is slightly higher on 5-shot – compared to the 2nd best performing model. It is
expected as the higher the number of support set, the more likely our method finds the most repre-
sentative prototypes; as the variance of the samples for the mean decreases. Due to the nature of how
the dataset is constructed, to perform well on this dataset, methods should be able to dynamically
adapt its classification function based on the level of granularity presented. As our method explicitly
induce dissimilar prototypes, it’s able to fare significantly better compared to others. Overall, there is
an average drop of 3.7% in terms of method’s performance between CIFAR-H and CIFAR-FS – con-
firming CIFAR-H to be in fact, harder. On CIFAR-FS, the normal variant of the CIFAR dataset, our
method performed slightly better on 5-shot classification. On mini-ImageNet, our method performed
comparably with the rest, while being slightly worse on the Omniglot dataset. This is expected, as
adding more inductive bias may only hurt its asymptotic performance.

To summarize, our method performed the best in its intended scenario – when the granularity of the
labels are fine enough (or changing), as such that the model has to be able to dynamically adapt to
it. In the case when the granularity of the labels is fixed, or when the labels are quite coarse, our
method will perform comparably to the others. When accuracy is already high, our method might
fail to reach optimum asymptotic performance due to the additional constraint that we impose.

5 CONCLUSION

We have proposed Dissimilarity Network for few-shot learning based on the idea of focusing on
differences in the class representation. Our approach directly addresses the failure modes of some
few-shot classifiers that do not explicitly take into account the classification task at hand, yielding
non-satisfactory results on some task such as fine-grained novel classification with coarse-grained
base classification task. To demonstrate the necessities of building task-aware embedding for such
task, we came up with a challenging dataset, CIFAR-Hard, which we have shown to be harder than
the CIFAR-FS. Dissimilarity Network introduced an architectural inductive bias which removes
the shared components among classes in the prototypes by orthogonalizing them (i.e., removing
their projected components) to their leave-self-out weighted local average. Our method performs
comparably to the state-of-the-art methods on standard benchmarks such as Omniglot and mini-
ImageNet, and substantially outperform other methods on CUB dataset and on the newly constructed
CIFAR-Hard dataset.
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A APPENDIX

A.1 SPLITS FOR CIFAR

Base: forest, house, television, wolf, cloud, sweet pepper, dinosaur, tank, caterpillar, cup, sun-
flower, whale, can, bottle, road, crocodile, woman, bear, otter, willow tree, snail, aquarium fish,
girl, trout, bowl, worm, pear, streetcar, castle, flatfish, lobster, turtle, poppy, orchid, man, seal, lamp,
lawn mower, beetle, clock

Validation: oak tree, kangaroo, mushroom, porcupine, squirrel, lizard, train, spider, keyboard,
maple tree, bicycle, orange, lion, rabbit, motorcycle

Novel: fox, boy, skyscraper, bridge, mouse, shrew, plain, possum, tiger, tulip, wardrobe, sea, couch,
mountain, leopard, camel, shark, plate, dolphin, table, bee, pickup truck, palm tree, beaver, baby,
bus, butterfly, ray, apple, cattle, crab, pine tree, raccoon, tractor, chair, rose, telephone, chimpanzee,
snake, bed, hamster, skunk, cockroach, rocket, elephant

A.2 SPLITS FOR CIFAR-HARD

Base: aquatic mammals, fish, flowers, food containers, fruit and vegetables, house-
hold electrical devices, household furniture, insects, large carnivores, large man-
made outdoor things, large natural outdoor scenes, large omnivores and herbivores,
medium mammals, non-insect invertebrates, people, reptiles, small mammals, trees, vehicles 1,
vehicles 2

Validation: rabbit, hamster, bed, house, kangaroo, lamp, skyscraper, squirrel, castle, table, chim-
panzee, telephone, television, wardrobe, elephant

Novel: baby, beaver, beetle, bicycle, bottle, bus, butterfly, can, caterpillar, crocodile, cup, dol-
phin, flatfish, forest, girl, lion, lobster, man, mountain, oak tree, orange, orchid, otter, pear,
pickup truck, pine tree, porcupine, possum, ray, rocket, rose, sea, shark, skunk, snail, snake, street-
car, sweet pepper, tank, tiger, tulip, turtle, willow tree, wolf, worm
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