
 
[ongoing] NeurIPS 2019 Reproducibility Challenge 
 
Selected the paper Fast AutoAugment (FAA) [1] 

● Fast AutoAugment learns augmentation policies using a more efficient search strategy 
based on density matching. 

● Fast AutoAugment speeds up the search time by orders of magnitude while maintaining the 
comparable performances of original AutoAugment [2] paper 

Excerpt from our proposed work - “We are interested in evaluating FAA’s effectiveness in 
out-of-distribution settings, that is, whether the policies learned are significantly more effective than 
randomized data augmentation strategies when the models are deployed in unseen test data.“ 
 

 

[Report] Fast AutoAugment  

Introduction 
Deep learning has received increasing attention from researchers in machine learning community 
and has been successfully applied to various real-world applications. 
 
Deep learning has a very strong dependence on massive training data compared to traditional 
machine learning method, because it needs a large amount of data to understand the latent pattern 
of data. Sufficient training data is one of the major deciding factors in feasibility of a deep learning. 
The collection of data is a time consuming and expensive task which makes it difficult to build large 
scale dataset. Data augmentation is one of the solutions to tackle the problem of lack of data to 
some extent. The “Fast Autoaugmentation” proposes the method of searching a policy for data 
augmentation as a density matching problem between a pair of train dataset. Let D be a probability 
distribution on X ×Y and assume dataset D is sampled from this distribution. For a given 
classification model M(·|θ) : X → Y that is parameterized by θ, the expected accuracy and the 
expected loss of M(·|θ) on dataset D are denoted by R(θ|D) and L(θ|D), respectively 
 
We perform an ablation study to gauge the transferability of learned augmentation policy on one 
dataset to other dataset following the paradigm of transfer learning.  
Transfer learning relaxes the hypothesis that the training data must be independent and identically 
distributed (i.i.d) with the test data, which motivates us to use the transfer learning against the 
problems of insufficient training data. In  transfer learning, the training data and test data are not 
required to be i.i.d., and model in the target domain are not needed to be trained from scratch, 
which can significantly reduce the amount of training data required. 
 

Experimentation 
https://github.com/Ankit-Dhankhar/Fast-Auto-Augmentation 
We performed all experiments on a single GeForce RTX 2080Ti GPU of 11 GB memory. System 
had 256 GB RAM, 16 cores where CPU is 2 x Intel(R) Xeon(R) CPU E5-2650 v2 @ 2.60GHz. 
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We ran experiments on smaller dataset like MNIST, Fashion MNIST, Kuzushiji MNIST and Caltech 
101 dataset with Imagenet augmentation policy. And we found that Imagenet policy generalize to 
other datasets as well. We performed ablation study to verify the results. 
 
 

Dataset Top-1 Accuracy without 
augmentation* 

Top-1 accuracy with fast auto 
augmentation policy 

Caltech 76.07% 79.72% 

MNIST 99.55% 99.57% 

Kuzishiji MNIST 98.79% 99.05% 

Fashion MNIST 93.54% 95.75% 

*Without augmentation refers to Cutout augmentation technique 
 
Cutout augmentation technique is used in both methods without augmentation and fast 
autoaugmentation technique. 
 
We used 40 layer deep Wide-resnet model for MNIST, Kuzushiji MNIST and Fashion MNIST 
dataset. And we used 200 layer deep Resnet model for Caltech 101 dataset. 
 
For Caltech 101 dataset we used following hyper-parameters: 
We used train test split of 90:10. 
Batch Size : 16 
Number of epochs model trained : 270 epochs 
We used SGD optimizer with Nestrov momentum and weight decay(L2 penalty) of 0.0001 
We used a learning rate of 0.1 to train the model which is decayed by a factor of 10 after epoch 
90,180 and 240. 
 
 
 For MNIST dataset we used following hyperparameters: 
Batch size : 512 
Number of epochs for training model : 300 epochs  
We used SGD optimizer with Nestrov momentum and weight decay(L2 penalty) of 0.0002 
 

Scope of Improvement 
This paper proposes search for data augmentation policy as search on small/proxy task which is 
transferable larger dataset. This formulation takes a makes a strong assumption that proxy task 
provides a predictive information of the larger task. They didn’t compare their result with random 
grid search for finding policy. 
 
This method find policy for a specific dataset, though our experiments proved them to be effective 
for other datasets as well. Another scope of improvement is that they try to search a optimal 
augmentation policy across variety of dataset which can be finetuned with the small amount of 
training data for other dataset in a meta-learning fashion. 
 
 

 



 
Intermediary Updates: 
 

● (24 Nov)  
CALTECH-101 isn’t running on WideResnet 40, shifted to ResNet200;. 
FAA exhibits consistent yet small improvements over basic-augment training. 
 

● (18 Nov)  
Followed unofficial codebase (scratch coded), reverified results of FAA 
Training on both MNIST and KMNIST takes ~3X longer to converge 
Lot of instability/oscillation in training, stabilizes in the late epochs 
 

● (12 Nov)  
In FAA, Hyperparameters closely resemble values from AutoAugment [2] paper. 
I won’t be exploring the direction of Generative models for augmentation. 
I read some of the 26 different augmentation techniques used in the paper  
I am looking deeper into the 3 main ideas of the paper from online resources: 
..Density matching search 
..Exploit-Explore Bayesian Optimization 
..Tree-Parzen Estimator 
From an initial analysis, it looks like this method may not always translate well for bigger 
datasets/models but more tests beyond ImageNet are needed. 

 
 
 

 


