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Abstract

In this work, we propose a novel deep learning (DL)-based method to reduce the dose of
Gadolinium-based contrast agents administered in brain MRI examinations. In contrast to
recent DL approaches, we explicitly focus on accurately predicting contrast enhancement
signals and synthesizing realistic images, leveraging contrast signals from subtraction im-
ages of pre- and post-contrast T1-weighted image pairs. By training our model to only
extract and enhance contrast signals, and by conditioning its layers on relevant physi-
cal parameters, we demonstrate its effectiveness across diverse datasets, including data at
different dose levels from various scanners, field strengths, and contrast agents.
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1. Introduction

Gadolinium-based contrast agents (GBCAs) play a vital role in diagnosing neuropathologies,
yet they pose challenges due to cost, patient discomfort, potential health risks, including
nephrogenic systemic fibrosis (Kanda et al., 2014; Schieda et al., 2018), and environmen-
tal pollution (Brünjes and Hofmann, 2020). Current guidelines advocate the reduction of
GBCA dosage while still enabling reliable diagnosis (ACR Committee on Drugs and Con-
trast Media, 2023). To address this challenge, recent DL-based methods (Pasumarthi et al.,
2021; Ammari et al., 2022) aim to predict synthetic contrast-enhanced (CE) standard-dose
images from pre-contrast and low-dose CE pairs. However, these approaches tend to blur
images unrealistically. Thus, distributional losses (Pasumarthi et al., 2021; Pinetz et al.,
2023) are typically used to balance noise synthesis and texture preservation. Unfortunately,
these losses tend to hallucinate (Cohen et al., 2018; Antun et al., 2020), which potentially
could lead to the generation of false positive CE signals (Haase et al., 2023).
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Figure 1: Visualization of our dose reduction and contrast enhancement DL approach.

2. Method

In this work, we disentangle GBCA signal enhancement from synthesizing realistic images
by focusing on the differential contrast signal encoded in subtraction images of pre- and
post-contrast T1-weighted MRI images. In detail, we consider pre-contrast xPC ∈ Rn

images and post-contrast images acquired after administering the standard-dose xSD ∈ Rn

or a lower-dose xLD ∈ Rn. We fix the weight-dependent standard dose to dSD = 1. Hence,
low-dose CE images are acquired with dose dLD ∈ (0, 1). Figure 1 illustrates the three
essential steps of our novel approach.

To extract the differential contrast signal, we first register the pre-contrast xPC and
post-contrast x{LD,SD} images rigidly and radiometrically as performed by Pinetz et al.
(2023). To harmonize the noise of the initial subtraction images z̃LD = xLD − xPC and
z̃SD = xSD−xPC, we roughly estimate the noise levels σLD, σSD using negative intensities in
the brain since these are not affected by the contrast agent. Then, we robustly estimate the
local mean m{LD,SD} ∈ Rn and standard deviation s{LD,SD} ∈ Rn using large Gaussian filter
kernels by masking out outliers. After correcting for spatially varying noise, we multiply
both subtraction images by σLD to homogenize the noise, i.e.

zLD :=
z̃LD −mLD

sLD
σLD ≈ σLD

z̃SD −mSD

sSD
=: zSD. (1)

As a result, the two subtraction images differ essentially only in the CE regions.
Next, we compute the contrast signal image ySD from the standard-dose subtraction im-

age zSD. This image serves as the ground truth for training the CNN. To avoid synthesizing
noise, we extract the CE mask pSD = f(zSD) := sigmoid(wzSD + b) ∈ [0, 1]n. Here w, b ∈ R
are chosen to trade-off noise suppression and preservation of faint CE signals. Applying this
mask to the standard-dose subtraction image, we get the target image ySD = pSD ⊙ zSD.

Using the low-dose subtraction image zLD along with xLD as inputs, we train a CNN to
predict the associated contrast signal ŷSD. Consequently, the task of the CNN is to suppress
noise and artifacts and increase the contrast signal of the low-dose subtraction image zLD.
The CNN is conditioned on metadata to account for physical parameters affecting the CE
behavior. Along the administered dose dLD, we consider the scanner’s field strength B ∈
{1.5, 3} and the GBCA’s relaxivity rB ∈ R+. In addition, we include an estimate of the
noise level σLD of the low-dose subtraction image.
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Figure 2: The top row depicts a 33% low-dose sample, where the yellow zoom highlights a
lesion. The bottom row shows a case with a 10% low-dose image and the lesion
is marked by the yellow circles.

To focus the learning problem on CE regions and the brain, we used a registered brain
atlas mask and the CE mask pSD to weigh the Huber distance. We trained all competing
models on 608 PC, LD, and SD T1-weighted images acquired with Philips Ingenia 1.5/3T
and Achieva 1.5/3T scanners using different GBCA types and dose levels prospectively
collected at the University Hospital Bonn. Further details, regarding the different steps,
training and dataset can be found in the preprint by Pinetz et al. (2024).

3. Results

A qualitative comparison of Ammari et al. (2022) (Am-3D), Pasumarthi et al. (2021) (Pa-
2.5D), and our approach on two test samples is shown in Figure 2. The CE signal strength
in pathological regions (highlighted by the yellow circles) is well visible for Am-3D, despite
strong blurring and non-linear intensity transform. Pa-2.5D yields better image quality but
the contrast strength in pathological regions is not well captured (overshooting at the top
and undershooting at the bottom). In contrast, our approach yields the best image quality
and predicts the CE more accurately. For a more detailed numerical evaluation of synthetic
and real low-dose datasets and external data, we refer to the associated preprint (Pinetz
et al., 2024).

4. Conclusion

In this abstract, we introduced a novel method for reducing GBCA dosage by leveraging
subtraction images. Our conditional CNN effectively cleans and enhances degraded subtrac-
tion images derived from low-dose and pre-contrast images to extract the contrast signal.
Furthermore, incorporating meta-information from the acquired images, such as the type
and dosage of the injected GBCA or the scanner’s field strength is beneficial for predicting
the enhancement strength more accurately.
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