Episodic Memory in Lifelong Language Learning

Cyprien de Masson d’Autume, Sebastian Ruder, Lingpeng Kong, Dani Yogatama
DeepMind
London, United Kingdom
{cyprien,ruder,lingpenk,dyogatama}t@google.com

Abstract

We introduce a lifelong language learning setup where a model needs to learn from
a stream of text examples without any dataset identifier. We propose an episodic
memory model that performs sparse experience replay and local adaptation to
mitigate catastrophic forgetting in this setup. Experiments on text classification and
question answering demonstrate the complementary benefits of sparse experience
replay and local adaptation to allow the model to continuously learn from new
datasets. We also show that the space complexity of the episodic memory module
can be reduced significantly (~50-90%) by randomly choosing which examples to
store in memory with a minimal decrease in performance. We consider an episodic
memory component as a crucial building block of general linguistic intelligence
and see our model as a first step in that direction.

1 Introduction

The ability to continuously learn and accumulate knowledge throughout a lifetime and reuse it
effectively to adapt to a new problem quickly is a hallmark of general intelligence. State-of-the-art
machine learning models work well on a single dataset given enough training examples, but they
often fail to isolate and reuse previously acquired knowledge when the data distribution shifts (e.g.,
when presented with a new dataset)—a phenomenon known as catastrophic forgetting (McCloskey &
Cohenl [1989; Ratcliff, [1990).

The three main approaches to address catastrophic forgetting are based on: (i) augmenting the loss
function that is being minimized during training with extra terms (e.g., a regularization term, an
optimization constraint) to prevent model parameters learned on a new dataset from significantly
deviating from parameters learned on previously seen datasets (Kirkpatrick et al.l 2017; Zenke et al.|
2017} |Chaudhry et al.| 2018)), (ii) adding extra learning phases such as a knowledge distillation phase,
an experience replay (Schwarz et al., 2018; [Wang et al.,[2019), and (iii) augmenting the model with
an episodic memory module (Sprechmann et al., 2018)). Recent methods have shown that these
approaches can be combined—e.g., by defining optimization constraints using samples from the
episodic memory (Lopez-Paz & Ranzato, 2017;|Chaudhry et al.,[2019).

In language learning, progress in unsupervised pretraining (Peters et al.| 2018; [Howard & Ruder,
2018} Devlin et al.| [2018)) has driven advances in many language understanding tasks (Kitaev & Klein
2018; |Lee et al.,[2018). However, these models have been shown to require a lot of in-domain training
examples, rapidly overfit to particular datasets, and are prone to catastrophic forgetting (Yogatama
et al.,2019), making them unsuitable as a model of general linguistic intelligence.

In this paper, we investigate the role of episodic memory for learning a model of language in a lifelong
setup. We propose to use such a component for sparse experience replay and local adaptation to allow
the model to continually learn from examples drawn from different data distributions. In experience
replay, we randomly select examples from memory to retrain on. Our model only performs experience
replay very sparsely to consolidate newly acquired knowledge with existing knowledge in the memory
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Figure 1: An illustration of our model and how it interacts with the key-value memory module during
training (left) and inference (right). During training, newly seen examples are used to update the
base model and stored in the memory. At certain intervals, we sample examples from the memory
and perform gradient updates on the base model (experience replay). During inference, we retrieve
examples whose keys are similar to a test example under consideration to fine-tune the model (local
adaptation). We use the fine-tuned model to make a prediction and then discard it—keeping the base
model for other predictions.

into the model. We show that a 1% experience replay to learning new examples ratio is sufficient.
Such a process bears some similarity to memory consolidation in human learning (McGaugh| [2000).
In local adaptation, we follow Memory-based Parameter Adaptation (MbPA;|Sprechmann et al.,|2018)
and use examples retrieved from memory to update model parameters used to make a prediction of a
particular test example.

Our setup is different from a typical lifelong learning setup. We assume that the model only makes one
pass over the training examples, similar to|Chaudhry et al|(2019). However, we also assume neither
our training nor test examples have dataset identifying information (e.g., a dataset identity, a dataset
descriptor). We argue that our lifelong language learning setup—where a model is presented with
a stream of examples without an explicit identifier about which dataset (distribution) the examples
come from—is a realistic setup to learn a general linguistic intelligence modelﬂ Our experiments
focus on lifelong language learning on two tasks—text classification and question answering

Our main contributions in this paper are:

e We introduce a lifelong language learning setup where the model needs to learn from a
stream of examples from many datasets (presented sequentially) in one pass, and no dataset
boundary or dataset identity is given to the model.

e We present an episodic memory model (§2) that augments an encoder-decoder model with a
memory module. Our memory is a key-value memory that stores previously seen examples
for sparse experience replay and local adaptation.

e We leverage progress in unsupervised pretraining to obtain good memory key representations
and discuss strategies to manage the space complexity of the memory module.

e We compare our proposed method to baseline and state-of-the-art continual learning methods
and demonstrate its efficacy on text classification and question answering tasks (§4).

2 Model

We consider a continual (lifelong) learning setup where a model needs to learn from a stream of
training examples {x,y;}7_,. We assume that all our training examples in the series come from
multiple datasets of the same task (e.g., a text classification task, a question answering task), and each
dataset comes one after the other. Since all examples come from the same task, the same model can
be used to make predictions on all examples. A crucial difference between our continual learning

! Contrast this with a more common setup where the model learns in a multitask setup (Ruder;2017; McCann
et al., 2018).

IMcCann et al.| (2018) show that many language processing tasks (e.g., classification, summarization, natural
language inference, etc.) can be formulated as a question answering problem.



setup and previous work is that we do not assume that each example comes with a dataset descriptor
(e.g., a dataset identity). As a result, the model does not know which dataset an example comes
from and when a dataset boundary has been crossed during training. The goal of learning is to find
parameters W that minimize the negative log probability of training examples under our model:

T
L(W) == "logp(y: | z1; W).
t=1

Our model consists of three main components: (i) an example encoder, (ii) a task decoder, and (iii) an
episodic memory module. Figure [T shows an illustration of our complete model. We describe each
component in detail in the following.

2.1 Example Encoder

Our encoder is based on the Transformer architecture (Vaswani et al., 2017)). We use the state-of-the-
art text encoder BERT (Devlin et al.l 2018) to encode our input ;. BERT is a large Transformer
pretrained on a large unlabeled corpus on two unsupervised tasks—masked language modeling and
next sentence prediction. Other architectures such as recurrent neural networks or convolutional
neural networks can also be used as the example encoder.

In text classification, x; is a document to be classified; BERT produces a vector representation of

each token in x,, which includes a special beginning-of-document symbol CLS as x; ¢. In question

. . . . sti
answering, x; is a concatenation of a context paragraph x$°"* and a question """ separated by

a special separator symbol SEP.

2.2 Task Decoder

In text classification, following the original BERT model, we take the representation of the first token
24,0 from BERT (i.e., the special beginning-of-document symbol) and add a linear transformation
and a softmax layer to predict the class of x;.

exp(w:xt,o)

yey XP(Wy Xi0)

p(yt:C|iL't):Z

Note that since there is no dataset descriptor provided to our model, this decoder is used to predict all
classes in all datasets, which we assume to be known in advance.

For question answering, our decoder predicts an answer span—the start and end indices of the
correct answer in the context. Denote the length of the context paragraph by M, and a{*"" =
{2559, ..., 28} Denote the encoded representation of the m-th token in the context by x§%,*".
Our decoder has two sets of parameters: Wy, and Weyq. The probability of each context token being

the start of the answer is computed as:

T
context €xXp (wsmrtxg?yrgext)
p(start = 2™ | x1) = —3; .
0 Z exp(w,T. Xconlexl)
n=0 start*t,n
We compute the probability of the end index of the answer analogously using weyq. The predicted
answer is the span with the highest probability after multiplying the start and end probabilities. We
take into account that the start index of an answer needs to precede its end index by setting the

probabilities of invalid spans to zero.

2.3 Episodic Memory

Our model is augmented with an episodic memory module that stores previously seen examples
throughout its lifetime. The episodic memory module is used for sparse experience replay and local
adaptation to prevent catastrophic forgetting and encourage positive transfer. We first describe the
architecture of our episodic memory module, before discussing how it is used at training and inference
(prediction) time in §3]

The module is a key-value memory block. We obtain the key representation of x; (denoted by u;)
using a key network—which is a pretrained BERT model separate from the example encoder. We



freeze the key network to prevent key representations from drifting as data distribution changes (i.e.
the problem that the key of a test example tends to be closer to keys of recently stored examples).

For text classification, our key is an encoded representation of the first token of the document to be

classified, so u; = x; o (i.e., the special beginning-of-document symbol). For question answering,
question
t

we first take the question part of the input . We encode it using the key network and take the
question

first token as the key vector uy; = Ty For both tasks, we store the input and the label (x;, y:)
as its associated memory value.

Write. If we assume that the model has unlimited capacity, we can write all training examples into
the memory. However, this assumption is unrealistic in practice. We explore a simple writing strategy
that relaxes this constraint based on random write. In random write, we randomly decide whether
to write a newly seen example into the memory with some probability. We find that this is a strong
baseline that outperforms other simple methods based on surprisal (Ramalho & Garnelo, |2019) and
the concept of forgettable examples (Toneva et al.|[2019)) in our preliminary experiments.We leave
investigations of more sophisticated selection methods to future work.

Read. Our memory has two retrieval mechanisms: (i) random sampling and (ii) K -nearest neigh-
bors. We use random sampling to perform sparse experience replay and K -nearest neighbors for
local adaptation, which are described in §E]below.

3 Training and Inference
Algorithm [T]and Algorithm [2] outline our overall training and inference procedures.

Sparse experience replay. At a certain interval throughout the learning period, we uniformly
sample from stored examples in the memory and perform gradient updates of the encoder-decoder
network based on the retrieved examples. Allowing the model to perform experience replay at every
timestep would transform the problem of continual learning into multitask learning. While such a
method will protect the model from catastrophic forgetting, it is expensive and defeats the purpose of
a lifelong learning setup. Our experience replay procedure is designed to be performed very sparsely.
In practice, we randomly retrieve 100 examples every 10,000 new examples. Note that similar to the
base training procedure, we only perform one gradient update for the 100 retrieved examples.

Local adaptation. At inference time, given a test example, we use the key network to obtain
a query vector of the test example and query the memory to retrieve K nearest neighbors using
the Euclidean distance function. We use these K examples to perform local adaptation, similar to
Memory-based Parameter Adaptation (Sprechmann et al.,2018). Denote the K examples retrieved
for the i-th test example by {x¥, yf}fg{:l. We perform gradient-based local adaptation to update
parameters of the encoder-decoder model-—denoted by W—to obtain local parameters W to be

used for the current prediction as follows

K
W, = argmin A|W — W3 — > ay logp(y} | =f; W), (1)
W k=1

where ) is a hyperparameter, «y, is the weight of the k-th retrieved example and Zle ap = 1.
In our experiments, we assume that all K retrieved examples are equally important regardless of
their distance to the query vector and set o, = % Intuitively, the above procedure locally adapts
parameters of the encoder-decoder network to be better at predicting retrieved examples from the
memory (as defined by having a higher probability of predicting y¥), while keeping it close to the
base parameters W. Note that W is only used to make a prediction for the i-th example, and the

30ur preliminary experiments suggest that using only the question as the key slightly outperforms using the
full input. Intuitively, given a question such as “Where was Barack Obama from?” and an article about Barack
Obama, we would like to retrieve examples with similar questions rather than examples with articles about the
same topic, which would be selected if we used the entire input (question and context) as the key.

* Future work can explore cheaper alternatives to gradient-based updates for local adaptation (e.g., a Hebbian
update similar to the update that is used in plastic networks; Miconi et al., 2018).



parameters are reset to W afterwards. In practice, we only perform L local adaptation gradient steps
instead of finding the true minimum of Eq.

Algorithm 1 Training Algorithm 2 Inference
Input: training examples (x;, y;)7_,, replay Input: test example x;, parameters W, mem-
interval R ory M
Output: parameters W, memory M Output: test prediction ¥;
fort=1to T do Compute query representation u; from x;.
if t mod R = 0 then Find K nearest neighbors of u; from M.
Sample S examples from M. W, <~ W
Perform gradient updates on W. {expe- for! =1to L do
rience replay } Perform a gradient update on W to mini-
end if mize Eq. [T] {local adaptation}
Receive a training example (x;, y:). end for
Perform a gradient update on W to mini- y; = arg max, p(y | @i; W;)

mize —log p(y; | @; W).
if store example then
Write (@, y;) to memory M.
end if
end for

4 Experiments

In this section, we evaluate our proposed model against several baselines on text classification and
question answering tasks.

4.1 Datasets

Text classification. We use publicly available text classification datasets from|Zhang et al.|(2015)) to
evaluate our models (http://goo.gl/JyCnZq). This collection of datasets includes text classification
datasets from diverse domains such as news classification (AGNews), sentiment analysis (Yelp,
Amazon), Wikipedia article classification (DBPedia), and questions and answers categorization
(Yahoo). Specifically, we use AGNews (4 classes), Yelp (5 classes), DBPedia (14 classes), Amazon
(5 classes), and Yahoo (10 classes) datasets. Since classes for Yelp and Amazon datasets have similar
semantics (product ratings), we merge the classes for these two datasets. In total, we have 33 classes
in our experiments. These datasets have varying sizes. For example, AGNews is ten times smaller
than Yahoo. We create a balanced version all datasets used in our experiments by randomly sampling
115,000 training examples and 7,600 test examples from all datasets (i.e., the size of the smallest
training and test sets). We leave investigations of lifelong learning in unbalanced datasets to future
work. In total, we have 575,000 training examples and 38,000 test examples.

Question answering. We use three question answering datasets: SQuAD 1.1 (Rajpurkar et al.|
2016)), TriviaQA (Joshi et al., [2017)), and QuAC (Choi et al., [2018]). These datasets have different
characteristics. SQuAD is a reading comprehension dataset constructed from Wikipedia articles. It
includes almost 90,000 training examples and 10,000 validation examples. TriviaQA is a dataset
with question-answer pairs written by trivia enthusiasts and evidence collected retrospectively from
Wikipedia and the Web. There are two sections of TriviaQA, Web and Wikipedia, which we treat
as separate datasets. The Web section contains 76,000 training examples and 10,000 (unverified)
validation examples, whereas the Wikipedia section has about 60,000 training examples and 8,000
validation examples. QuAC is an information-seeking dialog-style dataset where a student asks
questions about a Wikipedia article and a teacher answers with a short excerpt from the article. It has
80,000 training examples and approximately 7,000 validation examples.

4.2 Models
We compare the following models in our experiments:

e ENC-DEC: a standard encoder-decoder model without any episodic memory module.
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e A-GEM (Chaudhry et al.,[2019): Average Gradient Episodic Memory model that defines
constraints on the gradients that are used to update model parameters based on retrieved
examples from the memory. In its original formulation, A-GEM requires dataset identifiers
and randomly samples examples from previous datasets. We generalize it to the setting
without dataset identities by randomly sampling from the episodic memory module at fixed
intervals, similar to our method.

e REPLAY: a model that uses stored examples for sparse experience replay without local
adaptation. We perform experience replay by sampling 100 examples from the memory and
perform a gradient update after every 10,000 training steps, which gives us a 1% replay rate.

e MBPA (Sprechmann et al.| 2018)): an episodic memory model that uses stored examples
for local adaptation without sparse experience replay. The original MbPA formulation has
a trainable key network. Our MbPA baseline uses a fixed key network since MbPA with a
trainable key network performs significantly worse.

e MBPAY: an episodic memory model with randomly retrieved examples for local adapta-
tion (no key network).

e MBPA++: our episodic memory model described in §2]
e MTL: a multitask model trained on all datasets jointly, used as a performance upper bound.

4.3 Implementation Details

We use a pretrained BERTg4sg model (Devlin et al.,|201 8f]as our example encoder and key network.
BERTgasEg has 12 Transformer layers, 12 self-attention heads, and 768 hidden dimensions (110M
parameters in total). We use the default BERT vocabulary in our experiments.

We use Adam (Kingma & Bal|2015) as our optimizer. We set dropout (Srivastava et al.l 2014)) to 0.1
and A in Eq. to 0.001. We set the base learning rate to 3e~° (based on preliminary experiments,
in line with the suggested learning rate for using BERT). For text classification, we use a training
batch of size 32. For question answering, the batch size is 8. The only hyperparameter that we tune is
the local adaptation learning rate € {5e =3, le~3}. We set the number of neighbors K = 32 and the
number of local adaptation steps L = 30. We show results with other K and sensitivity to L in §4.3]

For each experiment, we use 4 Intel Skylake x86-64 CPUs at 2 GHz, 1 Nvidia Tesla V100 GPU, and
20 GB of RAM.

4.4 Results

The models are trained in one pass on concatenated training sets, and evaluated on the union of the
test sets. To ensure robustness of models to training dataset orderings, we evaluate on four different
orderings (chosen randomly) for each task. As the multitask model has no inherent dataset ordering,
we report results on four different shufflings of combined training examples. We show the exact
orderings in Appendix [A] We tune the local adaptation learning rate using the first dataset ordering
for each task and only run the best setting on the other orderings.

A main difference between these two tasks is that in text classification the model acquires knowledge
about new classes as training progresses (i.e., only a subset of the classes that corresponds to a
particular dataset are seen at each training interval), whereas in question answering the span predictor
works similarly across datasets.

Table [I] provides a summary of our main results. We report (macro-averaged) accuracy for clas-
sification and F} scoreE] for question answering. We provide complete per-dataset (non-averaged)
results in Appendix [B] Our results show that A-GEM outperforms the standard encoder-decoder
model ENC-DEC, although it is worse than MBPA on both tasks. Local adaptation (MBPA) and
sparse experience replay (REPLAY) help mitigate catastrophic forgetting compared to ENC-DEC, but
a combination of them is needed to achieve the best performance (MBPA++).

Our experiments also show that retrieving relevant examples from memory is crucial to ensure that

the local adaptation phase is useful. Comparing the results from MBPA++ and MBPA'%¢, we can

>https://github.com/google-research/bert
8 Fy score is a standard question answering metric that measures n-grams overlap between the predicted
answer and the ground truth.
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Table 1: Summary of results on text classification (above) and question answering (below) using
averaged accuracy and F score respectively (see Appendix [A]for the dataset orderings).

Order ENC-DEC A-GEM REPLAY MBPA MBPA™™ MBPA++ \ MTL
i 14.8 70.6 67.2 68.9 59.4 70.8 73.7
ii 27.8 65.9 64.7 68.9 58.7 70.9 73.2
ii 26.7 67.5 64.7 68.8 57.1 70.2 73.7
iv 4.5 63.6 44.6 68.7 57.4 70.7 73.7
class.-avg. 18.4 66.9 57.8 68.8 58.2 706 | 73.6
i 57.7 56.1 60.1 60.8 60.0 62.0 67.6
ii 55.1 58.4 60.3 60.1 60.0 62.4 67.9
iii 41.6 52.4 58.8 58.9 58.8 614 67.9
v 58.2 57.9 59.8 61.5 59.8 62.4 67.8
QA-avg. 53.1 56.2 57.9 60.3 59.7 62.4 \ 67.8
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Figure 2: Performance on test examples corresponding to the first dataset seen during training as
training progresses.

see that the model that chooses neighbors randomly is significantly worse than the model that finds
and uses similar examples for local adaptation. We emphasize that having a fixed key network is
crucial to prevent representation drift. The original MBPA formulation that updates the key network
during training results in a model that only performs slightly better than MBPA' in our preliminary
experiments. Our results suggest that our best model can be improved further by choosing relevant
examples for sparse experience replay as well. We leave investigations of such methods to future
work.

Comparing to the performance of the multitask model MTL—which is as an upper bound on
achievable performance—we observe that there is still a gap between continual models and the
multitask modelﬂ MBPA++ has the smallest performance gap. For text classification, MBPA++
outperforms single-dataset models in terms of averaged performance (70.6 vs. 60.7), demonstrating
the success of positive transfer. For question answering, MBPA++ still lags behind single dataset
models (62.0 vs. 66.0). Note that the collection of single-dataset models have many more parameters
since there is a different set of model parameters per dataset. See Appendix [C] for detailed results of
multitask and single-dataset models.

Figure 2] shows F} score and accuracy of various models on the test set corresponding to the first
dataset seen during training as the models are trained on more datasets. The figure illustrates how
well each model retains its previously acquired knowledge as it learns new knowledge. We can see
that MBPA++ is consistently better compared to other methods.

4.5 Analysis

Memory capacity. Our results in assume that we can store all examples in memory (for all
models, including the baselines). We investigate variants of MBPA++ that store only 50% and 10%
of training examples. We randomly decide whether to write an example to memory or not (with
probability 0.5 or 0.1). We show the results in Table 2] The results demonstrate that while the

7 Performance on each dataset with the multitask model is better than or comparable to a single dataset model
that is trained only on that dataset. Averaged performance of the multitask model across datasets on each task is
also better than single-dataset models.



Table 3: Results for different # of retrieved ex-
amples K.

8 16 32 64 128

class. 684 693 70.6 713 71.6
QA 60.2 60.8 62.0 - -

Table 2: Results with limited memory capacity.
10% 50% 100%

class. 67.6 703 70.6
QA 61.5 61.6 620

performance of the model degrades as the number of stored examples decreases, the model is still
able to maintain a reasonably high performance even with only 10% memory capacity of the full
model.

Number of neighbors. We investigate the effect of the number of retrieved examples for local
adaptation to the performance of the model in Table[3] In both tasks, the model performs better as
the number of neighbors increasesﬁ Recall that the goal of the local adaptation phase is to shape the
output distribution of a test example to peak around relevant classes (or spans) based on retrieved
examples from the memory. As a result, it is reasonable for the performance of the model to increase
with more neighbors (up to a limit) given a key network that can reliably compute similarities between
the test example and stored examples in memory and a good adaptation method.

Computational complexity. Training MBPA++ takes as much time as training an encoder-decoder
model without an episodic memory module since experience replay is performed sparsely (i.e., every
10,000 steps) with only 100 examples. This cost is negligible in practice and we observe no significant
difference in terms of wall clock time to the vanilla encoder-decoder baseline. MBPA++ has a higher
space complexity for storing seen examples, which could be controlled by limiting the memory
capacity.

At inference time, MBPA++ requires a local adapta-
tion phase and is thus slower than methods without
local adaptation. This can be seen as a limitation of
MBPA++ (and MBPA). One way to speed it up is
to parallelize predictions across test examples, since
each prediction is independent of others. We set the
number of local adaptation steps L = 30 in our exper-

iments. Figure[3|shows L ~ 15 is needed to converge ——————

to an optimal performance. ’ ]Ulocallsada;gatiorisstepw B

Figure 3: F} scores for MBPA++ and MBPA
as the # of local adaptation steps increases.
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Comparing MBPA++ to other episodic memory mod-
els, MBPA has roughly the same time and space com-
plexity as MBPA++. A-GEM, on the other hand, is
faster at prediction time (no local adaptation), although at training time it is slower due to extra
projection steps and uses more memory since it needs to store two sets of gradients (one from the
current batch, and one from samples from the memory). We find that this cost is not negligible when
using a large encoder such as BERT.

Analysis of retrieved examples. In Appendix [D} we show (i) examples of retrieved neighbors
from our episodic memory model, (iii) examples where local adaptation helps, and (iii) examples
that are difficult to retrieve. We observe that the model is able to retrieve examples that are both
syntactically and semantically related to a given query derived from a test example, especially when
the query is not too short and relevant examples in the memory are phrased in a similar way.

5 Conclusion

We introduced a lifelong language learning setup and presented an episodic memory model that
performs sparse experience replay and local adaptation to continuously learn and reuse previously
acquired knowledge. Our experiments demonstrate that our proposed method mitigates catastrophic
forgetting and outperforms baseline methods on text classification and question answering.

8We are not able to obtain results for question answering with K = 64 and K = 128 due to out of memory
issue (since the input text for question answering can be very long).
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A Dataset Order

We use the following dataset orders (chosen randomly) for text classification:

(i) Yelp — AGNews — DBPedia -+ Amazon — Yahoo.
(ii)) DBPedia — Yahoo — AGNews — Amazon — Yelp.
(ii1) Yelp — Yahoo — Amazon — DBpedia — AGNews.
(iv) AGNews — Yelp — Amazon — Yahoo — DBpedia.

For question answering, the orders are:

(i) QUAC — TrWeb — TrWik — SQuAD.
(i) SQUAD — TrWik — QuAC — TrWeb.
(iii) TrWeb — TrWik — SQuAD — QuAC.
(iv) TrWik — QuAC — TrWeb — SQuAD.

B Full Results

We show per-dataset breakdown of results in Table[I]in Table ] and Table [5|for text classification and
question answering respectively.

C Single Dataset Models

We show results of a single dataset model that is only trained on a particular dataset in Table 6]

D Analysis of Retrieved Examples

We analyze retrieved examples to better understand how our model uses its episodic memory.
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Table 4: Per-dataset results on text classification for each ordering and model.

Order Model Dataset
1 2 3 4 5
ENC-DEC 1.1 0.0 0.0 4.3 68.7

A-GEM 42.5 89.8 96.0 56.8 68.2
REPLAY 38.2 83.9 954 50.3 67.9
MBPA 42.0 90.4 96.1 52.0 63.9
MBPA™ 35.2 80.4 88.2 45.9 47.2
MBPA++ 45.7 91.6 96.3 54.6 65.6

ENC-DEC 0.0 0.0 3.1 57.9 48.9
A-GEM 80.1 50.3 91.3 57.3 50.6
REPLAY 75.0 53.7 86.0 58.1 50.7

MBPA 96.0 58.4 89.0 54.4 46.6

MBPA™d 82.0 41.7 81.9 47.1 40.8

MBPA++ 95.8 63.1 92.2 55.7 47.7

ENC-DEC 0.0 0.0 1.3 114 93.9
A-GEM 41.1 55.0 54.6 93.3 93.6
REPLAY 23.6 36.8 25.0 94.5 93.8

MBPA 433 60.9 51.6 95.8 92.5

MBPA™d 35.2 33.6 42.1 92.3 82.3

MBPA++ 443 62.7 54.4 96.2 934

ENC-DEC 0.0 0.0 0.0 14.1 8.1
A-GEM 90.8 449 602 654 569
REPLAY 704 332 398 461 33.4

MBPA 89.9 429 526 629  95.1

MBPARM 784 377 458 424 829

MBPA++ 91.8 449 557 653 958

ii

iii

v

Examples of retrieved neighbors. We show examples of retrieved neighbors from memory given
a test query in Table[7] We observe that the model is generally able to retrieve relevant examples from
the memory. In question answering, nearest neighbors tend to be examples that are both syntactically
and semantically related. In text classification, they tend to be articles that discuss the a similar topic.

Examples where local adaptation helps. In Table 8] we show two test examples where our model
answers incorrectly before local adaptation, but correctly after. In the first case, we can see that
training examples retrieved from memory are thematically related to the test example. In the second
case, since the query is shorter, retrieved training examples tend to be more syntactically related.
Although we only show the two nearest neighbors for each query here, our analysis provides an
insight on ways our model uses its memory to improve predictions.

Relevant examples that are difficult to retrieve. In Table [9] we show two relevant training
examples (as judged by humans) that are difficult to retrieve by the model (they are not in the 1,000
nearest neighbors) for the query what was the name of bohemond s nephew. The two relevant
training examples ask about the nephew of a person, which is relevant for the given query. However,
since they are phrased differently to the query, they are far in the embedding space, which is why a
nearest neighbor method fails to retrieve these training examples. Our analysis shows that a better
embedding and/or retrieval method can potentially improve the performance of our model.
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Table 5: Per-dataset results on question answering for each ordering and model.
Dataset

1 2 3 4

ENC-DEC 34.1 54.2 56.0 85.5
A-GEM 36.7 51.8 53.4 82.5
REPLAY 40.9 56.7 57.2 85.8

MBPA 45.6 56.1 57.9 83.4

MBPARM 41.5 56.7 57.2 85.8

MBPA++ 47.2 57.7 58.9 84.3

ENC-DEC 61.9 64.2 29.3 65.0
A-GEM 64.2 62.5 434 63.5
REPLAY 67.0 64.1 44.9 65.2

MBPA 69.9 63.4 43.6 63.3

MBPARM 67.5 62.5 46.5 63.7

MBPA++ 72.6 63.4 50.5 63.0

ENC-DEC 30.7 31.2 45.6 58.7
A-GEM 47.6 47.0 57.4 57.4
REPLAY 46.6 454 53.9 58.3

MBPA 52.5 54.6 74.5 54.3

MBPA™RM 54.1 54.3 71.1 55.9

MBPA++ 56.0 56.8 78.0 54.9

ENC-DEC 55.5 37.1 54.8 85.4
A-GEM 54.8 38.8 53.4 84.7
REPLAY 56.9 41.8 56.4 86.1
MBPA 58.0 47.2 574 83.3
MBPA™Rnd 55.5 43.0 54.6 85.9
MBPA++ 59.0 48.7 58.1 83.6

Order Model

il

ii

v

Table 6: Performance of a standard encoder-decoder model on each dataset in our experiments. We
report accuracy for text classification and F} score for question answering. We also show results
from a multitask model for comparisons.

Task Dataset Single Model Multitask
AGNews 93.8 94.0
Yelp 50.7 50.3
. . Amazon 60.1 58.8
Text Classification Yahoo 63.6 67 1
DBPedia 30.5 95.9
Average 60.7 73.2
QuAC 54.3 56.4
SQuAD 86.1 85.7
Question Answering Trivia Wikipedia 62.3 64.0
Trivia Web 62.4 64.4
Average 66.0 67.6
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Table 7: Examples of queries and retrieved nearest neighbors for question answering (top) and
text classification (truncated, bottom). We also show the corresponding Euclidean distances in
parentheses.

Query: in what country is normandy located

(17.48) in what area of france is calais located
(20.37) in what country is st john s located
(22.76) in what country is spoleto located
(23.12) in what part of africa is congo located
(23.83) on what island is palermo located

Query: fears for t n pension after talks unions representing workers at turner newall say they
are disappointed after talks with stricken parent firm federal mogul

(37.32) union anger at sa telecoms deal south african unions describe as disgraceful use of public
money to buy telecoms shares for former government officials

(47.60) us hurting anti mine campaign anti landmine activists meeting in nairobi say us is setting bad
example by not joining worldwide ban

(49.03) woolworths ordered to extend alh takeover deadline independent takeovers panel has headed
off woolworths 39 attempts to force resolution in takeover battle for liquor retailer australian leisure
and hospitality alh

(50.42) price hike for business broadband small net firms warn they could be hit hard by bt s decision
to raise prices for business broadband

(51.08) job fears as deutsche culls chiefs deutsche bank is streamlining management of its investment
banking arm raising fears that jobs may be lost in city german bank is reducing number of executives
running its investment banking

Table 8: Two examples where local adaptation helps.

Context: david niven ( actor ) - pics , videos , dating , & news david niven male born mar
1, 1910 james david graham niven , known professionally as david niven , was an english
actor and novelist [... ]

Query: in 1959, for which film did david niven win his only academy award ?

First two training examples retrieved from memory (2 nearest neighbors):

in which of her films did shirley temple sing animal crackers in my soup ?

in 1968 , which american artist was shot and wounded by valerie solanis , an actress in one
of his films ?

Context: dj kool herc developed the style that was the blueprint for hip hop music . herc
used the record to focus on a short , heavily percussive part in it : the " break " . [...]

Query: what was the break ?

First two training examples retrieved from memory (2 nearest neighbors):
what was the result ?
what was the aftermath ?

Table 9: Relevant examples that are difficult to retrieve from memory.

Query: what was the name of bohemond s nephew

Relevant examples not retrieved (Euclidean distances to the query in parentheses):
(87.88) who was the nephew of leopold
(103.96) who is the nephew of buda king casimer iii the great
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