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Abstract

We study the use of the Wave-U-Net architecture for speech enhancement, a model1

introduced by Stoller et al for the separation of music vocals and accompaniment.2

This end-to-end learning method for audio source separation operates directly in3

the time domain, permitting the integrated modelling of phase information and4

being able to take large temporal contexts into account. Our experiments show5

that the proposed method improves several metrics, namely PESQ, CSIG, CBAK,6

COVL and SSNR, over the state-of-the-art with respect to the speech enhancement7

task on the Voice Bank corpus (VCTK) dataset. We find that a reduced number of8

hidden layers is sufficient for speech enhancement in comparison to the original9

system designed for singing voice separation in music. We see this initial result as10

an encouraging signal to further explore speech enhancement in the time-domain,11

both as an end in itself and as a pre-processing step to speech recognition systems.12

1 Introduction13

Audio source separation refers to the problem of extracting one or more target sources while sup-14

pressing interfering sources and noise[18]. Two related tasks are those of speech enhancement and15

singing voice separation, both of which involve extracting the human voice as a target source. The16

former involves attempting to improve speech intelligibility and quality when obscured by additive17

noise [7, 9, 18]; whilst the latter’s focus is on separating music vocals from accompaniment [12].18

Most audio source separation methods operate not directly in the time-domain, but with time-19

frequency representations as input and output (front-end). Since 2017, the U-Net architecture on20

magnitude spectrograms has achieved new state of the art results in audio source separation for21

music [6] and speech dereverbration [2]. Also, neural network architectures operating in the time22

domain have recently been proposed for speech enhancement [9, 11]. These approaches have been23

combined in the Wave-U-Net [12] and applied to singing voice separation. In this paper we apply the24

Wave-U-Net to speech enhancement and show that it produces results that are better than the current25

state of the art.26

The remainder of this paper is structured as follows. In section 2, we briefly review related work27

from the literature. In section 3, we introduce briefly the Wave-U-Net architecture and its application28

to speech. Section 4 presents the experiments we conducted and their results including comparison29

to other methods. Section 5 concludes this article with a final summary and perspectives for future30

work.31

2 Related work32

Source separation of audio has seen great improvement in recent years through deep learning models33

[5, 8]. These methods, as well as more traditional ones, mostly operate in the time-frequency domain,34

from deep recurrent architectures predicting soft masks, such as [4], to convolutional encoder-decoder35
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Figure 1: The Wave-U-Net architecture following [12].

architectures like that of [1]. Recently, the U-Net architecture on magnitude spectrograms has36

achieved new state of the art results in audio source separation for music [6] and speech dereverbration37

[2].38

Also recently, models operating in the time domain have been developed. The development of39

Wavenet [17] inspired other developments, including [9, 11]. The SEGAN [9] architecture was40

developed for the purpose of speech enhancement and denoising. It employs a neural network in41

the time-domain with an encoder and decoder pathway that successively halves and doubles the42

resolution of feature maps in each layer, respectively, and features skip connections between encoder43

and decoder layers. It offers state-of-the-art results on the Voice Bank (VCTK) dataset ([14]).44

The Wavenet for Speech Denoising [11], another architecture to operate directly in the time domain,45

takes its inspiration from [17]. It has a non-causal conditional input and a parallel output of samples46

for each prediction and is based on the repeated application of dilated convolutions with exponentially47

increasing dilation factors to factor in context information.48

3 Wave-U-Net for Speech Enhancement49

The Wave-U-Net architecture of [12] combines elements of both of the abovementioned architectures50

with the U-Net. The overall architecture is a one-dimensional U-Net with down and upsampling51

blocks.52

As per the spectrogram-based U-Net architectures (e.g. [6]), the Wave-U-Net uses a series of53

downsampling and upsampling blocks to make its predictions, whilst at each level of the network, the54

time resolution is halved. At the final level, as described by [12], in estimating the two target sources,55

a 1D convolution prepares the features at each audio sample for source prediction of each sample. To56

yield an estimate of the target sources, a tanh nonlinearity follows, succeeded by a final LeakyReLU.57

In applying the Wave-U-Net architecture to the application of speech enhancement, our objective58

is to separate a mixture waveform m ∈ [−1, 1]Lm×C into K source waveforms S1, ..., SK with59

Sk ∈ [1, 1]LS×C for all k ∈ 1, ...,K,C as the number of audio channels and Lm and LS as the60

respective numbers of audio samples. In our case of monaural speech enhancement we have K = 261

and C = 1.62
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Table 1: Objective evaluation - comparing the mean results of the untreated noisy signal, the Wiener-,
SEGAN- and Wave-U-Net-enhanced signals. Higher scores are better for all metrics.

Metric Noisy Wiener SEGAN Wave-U-Net
PESQ 1.97 2.22 2.16 2.40
CSIG 3.35 3.23 3.48 3.51
CBAK 2.44 2.68 2.94 3.32
COVL 2.63 2.67 2.80 2.95
SSNR 1.68 5.07 7.73 9.77

Table 2: Objective evaluation - mean results, comparing variations of the Wave-U-Net model with
different numbers of layers, without fine-tuning applied.

Metric 12-layer 11-layer 9-layer
PESQ 2.40 2.38 2.41
CSIG 3.49 3.47 3.54
CBAK 3.23 3.22 3.23
COVL 2.95 2.92 2.97
SSNR 9.79 9.95 9.87

4 Experiments63

4.1 Datasets64

We use the same VCTK dataset [14] as the SEGAN [9], which is available publicly, encouraging65

comparisons with future speech enhancement methods.66

The dataset includes clean and noisy audio data at 48kHz sampling frequency. However, like the67

SEGAN, we downsample to 16kHz for training and testing. The clean data are recordings of sentences,68

sourced from various text passages, uttered by 30 English-speakers, male and female, with various69

accents – 28 intended for training and 2 reserved for testing [16]. The noisy data were generated by70

mixing the clean data with various noise datasets, as per the instructions provided in [9, 14, 15].71

With respect to the training set, 40 different noise conditions are considered [9, 16]. These are72

composed of 10 types of noise (2 of which are artificially-generated1 and 8 sourced from the73

DEMAND database [13], each mixed with clean speech at one of 4 signal-to-noise ratios (SNR)74

(15, 10, 5, and 0 dB). In total, this yields 11, 572 training samples, with approximately 10 different75

sentences in each condition per training speaker.76

The separate test set with 2 speakers consists of a total of 20 different noise conditions: 5 types of77

noise sourced from the DEMAND database at one of 4 SNRs each (17.5, 12.5, 7.5, and 2.5 dB)78

[14, 15]. This yields 824 test items, with approximately 20 different sentences in each condition per79

test speaker [14, 15].80

4.2 Experimental setup81

As per [12], our baseline model trains on randomly-sampled audio excerpts, using the ADAM82

optimization algorithm, a learning rate of 0.0001, decay rates β1 = 0.9 and β2 = 0.999 and a batch83

size of 16. We specify a network layer size of 12 with 16 extra filters per layer, downsampling block84

filters of size 15 and upsampling block filters of size 5 like in [12]. We train for 2,000 iterations with85

mean squared error (MSE) over all source output samples in a batch as loss and apply early stopping86

if there is no improvement on the validation set for 20 epochs. We use a fixed validation set of 1087

randomly selected tracks. Then, the best model is fine-tuned with the batch size doubled and the88

learning rate lowered to 0.00001, again until 20 epochs have passed without improved validation loss.89
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4.3 Results90

To evaluate and compare the quality of the enhanced speech yielded by the Wave-U-Net, we mirror91

the objective measures provided in [9]. Each measurement compares the enhanced signal with the92

clean reference of each of the 824 test set items. They have been calculated using the implementation93

provided in [7] 2. The first metric is that of the Perceptual Evaluation of Speech Quality (PESQ) -94

more specifically the wide-band version recommended in ITU-T P.862.2 (from –0.5 to 4.5) [7, 9].95

Secondly, composite measures of metrics that aim to computationally approximate the Mean Opinion96

Score (MOS) that would be produced from human perceptual trials are computed [11]. These are:97

CSIG, a prediction of the signal distortion attending only to the speech signal [3] (from 1 to 5); CBAK,98

a prediction of the intrusiveness of background noise [3] (from 1 to 5); and COVL, a prediction of99

the overall effect [3] (from 1 to 5). Last is the Segmental Signal-to-Noise Ratio (SSNR) [10] (from 0100

to∞).101

Table 1 shows the results of these metrics for comparison across different speech enhancement102

architectures. As a comparative reference, it also shows the results of these metrics when applied:103

directly to the noisy signals; to signals filtered using the Wiener method, based on a priori SNR104

estimation; and to the SEGAN-enhanced signal, as provided in [9]. The results indicate that the105

Wave-U-Net is the most effective model for speech enhancement.106

Table 2 shows the performance differences between different variations of the Wave-U-Net, with107

different numbers of layers.3 In this experiment no fine-tuning was performed, which explains the108

difference between the 12-layer Wave-U-Nets in Table 1 and in Table 2. The results suggest that109

fine-tuning does not make a meaningful difference, except on the CBAK measurement, and that110

smaller models perform better. This is likely due to the size of the receptive field, where for speech111

the optimal size is probably smaller than for music.112

5 Conclusions113

5.1 Summary114

The Wave-U-Net combines the advantages of several of the most recent successful architectures for115

music and speech source separation and our results show that it is particularly effective at speech116

enhancement. The results improve over the state of the art by a good margin even without significant117

adaptation or parameter tuning. This indicates that there is great potential for this approach in speech118

enhancement.119

5.2 Future work120

In comparison to the SEGAN architecture, it is possible that the advantage stems from the upsampling121

that avoids aliasing, which should be further investigated. The results indicate that there is room for122

increasing effectiveness and efficiency by further adapting the model size and other parameters, e.g.123

filter sizes, to the task and expanding to multi-channel audio and multi-source-separation.124
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