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ABSTRACT

Expectation learning is a continuous unsupervised learning process which uses
multisensory bindings to modulate unisensory perception. As humans, we learn
to associate a barking sound with the visual appearance of a dog, and we contin-
uously fine-tune this association over time, as we learn, e.g., to associate high-
pitched barking with small dogs. In this work, we address the problem of build-
ing a computational model that captures two important properties of expectation
learning, namely continuity and the lack of any external supervision other than
temporal co-occurrence. To this end, we present a novel hybrid neural model
based on audio/visual autoencoders and a recurrent self-organizing network for
stimulus reconstruction and multisensory binding. We demonstrate that the pro-
posed model is capable of learning concept bindings, i.e. dog barking with dogs,
by evaluating it on unisensory classification tasks for audi-visual stimuli using
the 43,500 Youtube videos in the animal subset of the AudioSet corpus. In addi-
tion, our analysis and discussion explain how the expectation learning mechanism
enforces the generation of high-level bindings and how they contribute to audio-
visual recognition.

1 INTRODUCTION

Multisensory binding is one of the most important processes that humans use to understand their
environment. By using different sensory mechanisms, we are able to collect and process distinct
information streams from the same experience which leads to a highly complex association learning.
This mechanism allows us to improve the perception of individual stimuli (Frassinetti et al. (2002)),
solve contextual, spatial and temporal conflicts (Diaconescu et al. (2011)), and progressively acquire
and integrate novel information (Dorst & Cross (2001)).

An important process of multisensory binding is known as the expectation effect (Yanagisawa (2016)
(2016)). When perceiving an event, we compare it to other events we have experienced before, and
make certain assumptions based on our experience. For instance, when seeing a cat, we expect it
to meow and not to bark. This effect modulates our multisensory association in terms of top-down
expectation. In consequence, when a cat barks to us, we assume that our perception is inconsistent,
and assume that either unisensory perception failed, the spatial or temporal attention was misleading,
or we create a new species of a barking cat. For each of these scenarios, our brain adapts to the
situation and we update our multisensory knowledge. This learning process referred to learning
by expectation (Ashby & Vucovich (2016)), strongly suggests the role of unsupervised learning for
multisensory binding, and leads to an adaptive mechanism for learning of novel concepts (Ellingsen
et al. (2016)).

In this work, we propose a novel method that mimics the human ability to perform expectation
learning and ask the following questions:

Q.1 How can we build a computational model that allows for continuous unsupervised learning
of multisensory bindings?

Q.2 Can we adapt the expectation learning from humans to this model and use it to generate
expected unisensory visual stimuli from auditory stimuli and vice versa?

Q.3 Can we exploit the generated expected stimuli to improve unisensory classification?
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In Section 2 we investigate several other multisensory integration approaches and identify a lack
of methods that are both unsupervised and continuous. To address Q.1, we employ autoencoders
to learn auditory and visual representations, which allows for unsupervised learning. As a novelty
and core mechanism to address continuity, we propose to link the autoencoders with a recurrent
Grow-When-Required (GWR) neural network that changes its size as demanded, thus allowing for
the continuous learning of multisensory binding (see Section 3). We address Q.2 by hypothesizing
that the recurrent GWR network learns prototypes of multisensory bindings, which allows us to
reconstruct auditory information from visual stimuli and vice-versa. For example, when perceiving
the sound of a cat, we expect the model to reconstruct the image of a cat, while when a dog enters a
scene, the sound of the dog will be reconstructed.

This expectation learning mechanism is described in Section 4. By extending the GWR association
mechanism, we expect the model to be able to create concept-level bindings. Specifically, we hy-
pothesize that by activating the neural units that represent prototypical concepts such as cats, dogs,
and horses, the model will reconstruct prototypical auditory and visual stimuli in the absence of
any sensory input. Our novel method is inspired by the multisensory imagery effect (Spence &
Deroy (2013)), i.e., the ability of humans to simplify absent stimuli into concepts, and to use the
abstract concepts to reconstruct unisensory information to enhance the overall perception. with Q.3
we ask whether this effect can be used to improve the classifiaction performance and hypothesize
that our approach improves unisensory classification by reconstructing unisensory stimuli based on
multisensory bindings.

To the best of our knowledge, there exists no standard benchmark to evaluate audio-visual bindings.
Therefore, we propose a series of experiments to measure how far the expectation learning mech-
anism improves unisensory classification. To this end, we employ the Youtube AudioSet corpus
(Gemmeke et al. (2017)), which contains human-labeled samples of Youtube videos based on the
audio information. We select the animal subset of the corpus consisting of 44k samples to train
the multisensory bindings in an unsupervised manner. We then exploit the multisensory bindings
by using them to train a classifier for 24 different animal classes. We then employ the classifier to
recognize absent stimuli, i.e., recognizing auditory stimuli when visual stimuli is present and vice-
versa. In Section Section 5 we summarize our efforts to perform a fair and thorough evaluation of
our model. We perform the experiments in three steps and assess the contribution of each step of
the expectation and binding mechanism to compare it with state-of-the-art solutions for unisensory
classification. In Section Section 6 we summarize the results of our experiments. We show that
the expectation learning improved the recognition of unisensory stimuli and it presents competitive
performance with state-of-the-art solutions.

To confirm our hypotheses, we discuss the results in Section 7, providing evidence that correlates our
network behavior with the multisensory imagery effect. Also, we discuss the capabilities and limi-
tations of our model. We conclude in Section 8 that the expectation learning mechanism improves
the quality of the multisensory association by providing a better unisensory classification.

2 RELATED WORK

Most existing computational models for multisensory learning apply explicit weighted connections
while integrating the sensor information which are learned using early (Wei et al. (2010)) or late (Liu
et al. (2016); de Boer et al. (2016)) fusion techniques. These weighted connections are usually tuned
in a data-driven manner, whereby the data distribution directly affects the multisensory binding.
Such existing methods have the drawback that they require supervision and that they are sensitive to
the training data distribution when performing the multisensory integration. More accurate models
apply the neurophysiological findings on unisensory biasing for multisensory computational models
(Pouget et al. (2002); Rowland et al. (2007); Kayser & Shams (2015)). Such models, although
similar to the brain’s neural behavior, are usually not feasible to be used on real-world data, as they
are mostly applied to simple stimuli scenarios, and do not scale well. There exist other complex
models that implement attention mechanisms based on multisensory information, but the most recent
focus in this area is on data-driven fusion models (Hori et al. (2017); Barros et al. (2017); Mortimer
& Elliott (2017)). The introduction of expectation learning would give these models the ability to
adapt better to novel situations and learn with its own errors in an online and continuous way.
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Figure 1: An overview of the proposed model with the audio/visual autoencoder structures and the
self-organizing binding layer.

Recent contributions make use of data-driven learning for multisensory representations Arandjelovic
& Zisserman (2017); Senocak et al. (2018); Owens & Efros (2018); Kim et al. (2018). Such solutions
make use of different transfer learning and attention mechanisms to improve unisensory recognition
and localization. Although they present impressive result in this specific tasks, they still rely on
strongly labelled data points or are not suitable for online learning given that they have a exten-
sive training proceeding. In particular, the work by Arandjelović & Zisserman (2017) introduces a
data-driven model for multisensory binding with bottom-up modulation for spatial attention. Their
model uses the network’s activity to spatially identify which part of an image a certain sound is
related to. Although the model is data-driven, the authors claim that it learns real-world biasing on
a multisensory description for unisensory retrieval by using a large amount of real-world training
data. Their results show that the model can also use a number of unisensory channels to compensate
absent ones and identify congruent and incongruent stimuli. Overall, this approach has produced
impressive results on spatial location and cross-sensory retrieval.

A similar approach was presented by Zhou et al. (2017), but focused on audio generation. Their
model relies on a sequence-to-sequence generator to associate audio events to visual information.
The same generator is use to generate audio for newly presented video scenes. This requires an
external teacher to identify congruent and incongruent stimuli which makes it impossible to be used
in online learning scenarios. Also, all of them are deeply dependent on an end-to-end deep learning
strategy. Furthermore, it cannot learn novel information without the need of extensive retraining the
entire model again.

3 MULTISENSORY TEMPORAL BINDING

To reconstruct auditory and visual stimuli, we developed neural networks based on autoencoders for
each of the unisensory channels. These networks encode high-dimensional data into a latent rep-
resentation and reconstruct real-world audio-visual information. The binding between auditory and
visual information is realized by means of a recurrent GWR network. The GWR is a self-organizing
network that learns to create conceptual prototypes of a data distributions in an unsupervised, in-
cremental learning manner. To address the temporal aspects of coincident binding, we extend the
Gamma-GWR (Parisi & Wermter (2017)) which endows prototype neurons with a number of tem-
poral contexts to learn the spatiotemporal structure of the data distribution. An overview of our
model is illustrated in Figure 1
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3.1 VISUAL CHANNEL

To process high-level information in the visual channel, we realized a variational autoencoder (VAE)
(Kingma & Welling (2013)) which enforces the encoded latent variables to follow a Gaussian distri-
bution. The VAE produced better results when recognizing the animals from the AudioSet dataset
when compared to normal deep autoencoders. We hypothesize that this improvement is due to the
great variance on the image quality, perspective and resolution of the visual information of our
dataset. Most likely the VAE learns to represent the important characteristics of the animals through
the latent vector sampling, instead of learning to reconstruct the entire encoded image.

To train the VAE, we implemented a composite loss function based on the image reconstruction error
and the Kullback-Leibler (KL) divergence between the encoded representation and a the Gaussian
unit. This composite loss function is important to enforce that the encoded representations learn
general concepts of the animals, instead of reconstructing input images from memorized parameters.

Our model receives as input a 128x128 color image. The input data is processed by our encoding
architecture which is composed of a series of four convolution layers, with a stride of 2x2, and
kernel sizes of dimension 3x3. The first convolution layer has three channels and the subsequent
three layers have 64 filters. The latent representation starts with a fully connected layer with 128
units. We compute the standard deviation and mean of this layer’s output, generate a Gaussian
distribution from it and sample an input for another fully connected hidden layer with 64 units,
which is our final latent representation. The decoding layer has the same structure as our encoding
layer but in the opposite direction and applying transpose convolutions.

3.2 AUDITORY CHANNEL

For the auditory channel, we implement a recurrent autoencoder based on Gated Recurrent Units
(GRU) (Cho et al. (2014)). Recurrent units allow us to reconstruct audio with better quality than us-
ing non-recurrent layers since auditory signals are sequential, and each audio frame depends highly
on previous contextual information.

As input and output of the auditory autoencoder, we compute a Mel spectrum which we generate
from the raw waveform. To reconstruct the audio from the output Mel spectrum, we employ a convo-
lutional bottleneck CBHG network model (Lee et al. (2017)) which consists of a 1-D convolutional
bank, a highway network and a bi-directional GRU layer. This network receives as input the Mel
spectrum, and outputs a linear frequency spectrum which is then transformed into waveform using
the Griffin Lim algorithm. This approach of transforming Mel coefficients to a linear spectrum and
then to waveform achieved better audio synthesis quality than performing Griffin Lim on the Mel
spectrum directly (Wang et al. (2017)), and it improves the audio data of our expectation learning
approach.

We performed hyperparameter optimization for the autoencoder and found that an audio spectrum
window length of 50ms, a window shift of 12.5 ms with 80 Mel coefficients and 1000 linear fre-
quencies yield best results. We also found that 80 units for the dense bottleneck layer and two GRU
layers with 128 units each for both the encoder and decoder network are sufficient for achieving a
high audio quality. An additional number of Mel coefficients, GRU layers, and neural units did not
significantly improve the reconstruction quality. The number of bottleneck units is important for the
multisensory binding as it determines the number of connections between the binding layer and the
audio encoder and decoder.

3.3 SELF-ORGANIZING TEMPORAL BINDING

To learn coincident bindings between audio and visual stimuli, we use an unsupervised binding layer.
This layer is implemented as a recurrent GWR network, which is an unsupervised model for learning
spatiotemporal prototype representations. The layer receives as input the latent representation of
our visual and auditory channels which occur coincidentally. To synchronize the two data streams,
we resample video and audio streams to a temporal resolution of 20 frames per second, i.e., each
video frame is associated with 12.5 ms of auditory information. In contrast to traditional self-
organizing models with winner-take-all dynamics for the processing of spatial patterns, the Gamma-
GWR (Parisi & Wermter (2017)) computes the winner neuron taking into account the activity of the
network for the current input and a temporal context. Each neuron of the map consists of a weight
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vector wj and a number K of context descriptors ckj (with wj , ckj ∈ Rn). As a result, recurrent
neurons in the map will encode prototype sequence-selective snapshots of the input. Given a set of
N neurons, the best-matching unit (BMU), b, with respect to the input x(t) ∈ Rn is computed as:

b = arg min
j∈N

(
α0‖x(t)− wj‖2 +

K∑
k=1

αk‖Ck(t)− cj,k‖2
)
, (1)

Ck(t) = β · wI(t−1) + (1− β) · cI(t−1),k−1, (2)

where αi and β ∈ (0; 1) are constant values that modulate the influence of the current input with
respect to previous neural activity, wI(t− 1) is the weight of the winner neuron at t − 1, and
Ck ∈ Rn is the global context of the network (Ck(t0) = 0).

New connections are created between the BMU and the second-BMU of an input. When a BMU
is computed, all the neurons the BMU is connected to are referred to as its topological neighbors.
Each neuron is equipped with a habituation counter hi ∈ [0, 1] expressing how frequently it has
fired based on a simplified model of how the efficacy of a habituating synapse reduces over time. In
the Gamma-GWR, the habituation rule is given by ∆hi = τi · κ · (1− hi)− τi, where κ and τi are
constants that control the decreasing behavior of the habituation counter (Marsland et al. (2002)).
To establish whether a neuron is habituated, its habituation counter hi must be smaller than a given
habituation threshold hT . The network is initialized with two neurons and, at each learning iteration,
it inserts a new neuron whenever the activity of the network a(t) of a habituated neuron is smaller
than a given threshold aT , i.e., a new neuron r is created if a(t) < aT and hb < hT . The training of
the neurons is carried out by adapting the BMU b and its topological neurons n according to:

∆wi = εi · hi · (x(t)− wi), (3)

∆ck,i = εi · hi · (Ck(t)− ck,i), (4)
where εi is a constant learning rate. The learning process of the Gamma-GWR is unsupervised
and driven by bottom-up sensory observations, thereby either allocating new neurons or adapting
existing ones in response to novel input. In this way, fine-grained multisensory representations can
be acquired and fine-tuned through experience.

As an extension of the Gamma-GWR, we implement temporal synapses for the purpose of predict-
ing future frames from an onset frame. We implement temporal connections as sequence-selective
synaptic links that are incremented between those two neurons that are consecutively activated.
When the two neurons i and j are activated at time t− 1 and t respectively, their synaptic link P(i,j)

is strengthened. Thus, at each learning iteration, we set ∆P(I−1,b) = 1, where I − 1 and b are
respectively the indexes of the BMUs at time t − 1 and t. As a result, for each neuron i ∈ N , we
can retrieve the next neuron v of a prototype sequence by selecting

v = arg max
j∈N\i

P(i,j). (5)

This approach results in the learning of trajectories of neural activations that can be reconstructed in
the absence of sensory input.

4 EXPECTATION LEARNING

As the self-organizing layer is updated in an unsupervised Hebbian manner, it learns to associate
audio-visual stimuli online. That means that the binding process is entirely data-driven, without the
necessity of supervision. More specifically, after finding the BMU related to a unimodal perceived
stimulus, the associated absent stimuli will be reconstructed based on the prototypical concept that
this neuron learned. This is possible because each neuron in the self-organizing layer processes the
union of the auditory and visual encodings at training time, where both signals are provided.

This reconstruction and expectation learning capability is the basis for our following proposal of
a re-training mechanism for the self-organizing layer. We first pre-train our self-organizing bind-
ing to generate prototype neurons with strong audio-visual encodings. This allows the model to
learn a prior association between auditory and visual concepts. After the network has learned these
associations, we use unknown data to fine-tune the bindings with the expectation learning.
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We first encode a visual or auditory stimulus (s), and compute the BMU (bav) using only the asso-
ciated auditory or visual weights:

bav = arg min
j∈N

(
α0‖s(t)− w̃s

j‖2 +

K∑
k=1

αk‖C̃
s

k(t)− c̃j,k‖2
)
, (6)

where w̃s
j represents the audio or visual representation encoded on the neuron’s weights. In this case,

the global context of the network at any time step (C̃
s

k(t)) is represented by the stimulus encoding,
the same happens with the BMU context (̃cj,k). We then use the auditory and vision parts of the
multisensory representation stored on bav to reconstruct the auditory (a′) and visual (v′) information
using the specific channel decoding Dv for vision and Da for audio:

a′ = Da(ba),

s′ = Dv(bv).
(7)

By doing this for both perceived auditory and visual signals, we create two extra pairs of multisen-
sory stimuli by combining the perceived auditory and visual ones with the reconstructed auditory
and visual. We bind the encoded information of the reconstructed audio-visual information with
the original perceived stimuli and re-train the self-organizing layer with the new pairs. By pairing
the perceived and the reconstructed stimuli representations, we enforce the self-organizing layer
to learn concepts and not instances of the animals. In consequence, animals which sound similar
will be paired together, and connections of coincident stimuli will be learned with relatively small
amounts of training data. Incongruences will cause the model to pair different audio-visual stimuli,
thus creating new prototype neurons, but these will be forgotten quickly by the self-organizing layer
as they occur less frequently.

5 EXPERIMENTAL SETUP

Our goal is to evaluate the performance of the model to reconstruct audio/visual stimuli based on
unimodal perception. Also, we intend to evaluate the conceptual relations learned by the network.
Although there exists several datasets with multimodal information, the animal subset of the Au-
dioSet corpus (Gemmeke et al. (2017)) presents a unique advantage for our evaluation: It contains
natural scenarios with different levels of conceptual binding, including broader prototype associa-
tions like images of cats linked to meowing, but also more fine-grained associations like high-pitched
barking liked to with small dogs.

Each video in the dataset has a duration of 10s and it is possible that, e.g., there is both a cat and a
dog present in the video. As there are no standard published results on this specific task for the Au-
dioSet corpus, we run a series of baseline recognition experiments that serves as main comparison to
measure our model’s performance. To obtain a precise measure of the contribution of the expectation
learning, we decided to cluster some overlapping classes and use 16 single labels, one per video:
Cats (”Cat” + ”Meow”+ ”Purr”), Dogs (”Bark”+”Dog”+”Howl”), Pigs (”Oink” + ”Pig”), Cows
(”Moo”+”Cattle, bovinae”), Owls (”Owl” + ”Coo”), Birds, Goats, Bee (”Bee, was, etc..”), Chick-
ens (”Chicken, rooster”), Ducks (”Duck”), Pidgeons (”Pidgeon, dove”), Crows (”Crow”), Horses
(”Horse”), Frogs (”Frogs”), Flies (”Fly, housefly”), Lions (”Roaring cats (lions, tigers)”). We used
the unbalanced training subset consisting of approximately 43.500 videos to train our model and
evaluated it with the test subset consisting of approximately 20.000 videos. The labels of this dataset
were crowdsourced based on the video descriptions.

We perform two sets of experiment: one to evaluate the contribution of the expectation learning to
the multisensory binding and one to compare the performance of our model with currently successful
deep learning models for unisensory recognition.

The first set of experiments is divided into three steps. In Exp1 we train the multisensory bindings of
the GWR using half of the training subset in order to guarantee that the model learned strong audio-
visual prior bindings. In Exp2 we continue the training of the Exp1 network using the other half of
the training subset. This experiment serves as a baseline for learning bindings without expectation
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Table 1: Mean accuracy, in percentage, and standard deviation of our experiments: the baselines
results, training the network with half and all the samples of the training set and reconstructing the
absent modality using the expectation mechanism.

Model Audio Vision
Exp1 - Prior binding association 58.5 (3.1) 69.0 (3.9)

Exp2 - Without expectation 66.4 (2.4) 86.8 (3.2)
Exp3 - With expectation 70.8 (3.2) 89.8 (1.9)

Inception V3 (Ioffe & Szegedy (2015)) - 90.4 (1.3)
SoundNet (Aytar et al. (2016)) 68.5 (2.4) -

and as a main comparison point for the contribution of the expectation learning mechanism. And
finally, Exp3, where we repeat the continuation of the training of the Exp1 network with the other
half of the training subset but now using the expectation learning mechanism when creating the
GWR associations.

To evaluate the performance contribution of each of our experimental steps on the association learn-
ing, we implemented a supervised classifier for each of the channels channel (auditory and visual).
It receives as input the encoded representation from the GWR of a perceived audio or visual stimuli.
To evaluate the capability of the model to learn meaningful associations, we classify always an ab-
sent stimuli, i.e. when perceiving an auditory stimuli, the network uses the associated visual stimuli
as input to the classifier and vice-versa. That means that when perceiving 50ms of audio, we have an
associated representation of 4 frames and vice-versa. As the videos from the AudioSet dataset have
a lenght of 10s, we use a simple voting scheme to obtain the final label. For every 50ms for audio
and every 4 frames for video we produce one label and after having all the labels for a 10s video,
we select the one which appears more often.

Each classifier is composed of a dense layer with 128 units and an output softmax layer. We opti-
mized our autoencoders and classifier to maximize the recognition accuracy on the training subset
using a tree-structured Parzen estimator (TPE) (Bergstra et al. (2011)) and use the optimal parame-
ters through all of our experiments.

Our second set of experiments was designed to evaluate how our proposed model compares to deep
learning networks for auditory and visual stimuli recognition. We compare our model with the
Inception V3 network (Ioffe & Szegedy (2015)) for the visual stimuli, and the SoundNet (Aytar
et al. (2016)) for the auditory stimuli. These models present competitive results on different audio-
visual recognition tasks Kiros et al. (2018); Jiang et al. (2018); Kumar et al. (2018); Jansen et al.
(2018). Herein, our goal is not to propose the best benchmark model for audio-visual recognition,
but to assess the contributions of the expectation learning on the reconstruction of absent stimuli.

For all experiments, we trained the models 10 times and report the mean accuracy and standard
deviation for each modality. We used the same 10% of the training subset as a validation set for
each experiment, and used an early stopping mechanism based on the accuracy of the validation
subset to prevent overfitting.

6 RESULTS

Our final results are depicted in Table 1. Our first experiment, Exp1, demonstrates that training the
model with half of the data, to create strong binding associations, was enough to obtain a baseline
performance. Continuing to train the model using standard GWR associations (Exp2) gives as an,
expected, improvement of 8% of recognition accuracy for audio and more than 17% for vision when
compared to Exp1 experiment. The results of Exp3 shows that the expectation mechanism improved
the recognition of unisensory stimuli, when compared to Exp2. We obtained an improvement of
more than 4% on audio and 3% on vision.

The performance of the network follows the general behavior of other models to recognize vision
stimuli better than auditory stimuli. This effect is demonstrated by the results of the SoundNet and
Inception-V3 models. This is probably due the dataset presenting challenging audio stimuli with
much background noise.
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Figure 2: Mean accuracy per class, in percentage, of the reconstructed absent stimuli. We compare
audio and visual reconstruction with the results when training the network with all the samples of
the training set.

When compared to SoundNet and Inception-V3, our expectation model (represented by Exp3 exper-
iment) presents better auditory recognition, and comparable vision recognition performance. The
auditory stimuli is more affected, as it presents much more noisy information. The network then
relies more on the visual stimuli and creates neurons with strong visual encoding. This effect is rep-
resented by creating neurons with similar visual encoding associated to different auditory encoding.
When training with expectation learning, the network created an average of 5400 neurons, while
training without the expectation it created 4000 neurons.

The latent representation from the auditory and visual channels encode different characteristics of
the stimulus, which are then bound by our self-organizing layer. The expectation learning enforced
the generation of robust bindings, especially for distinct animals. The network ended up creating
specific neurons for cats and dogs, and shared neurons for chickens and ducks, for example. This
explains the improvement on the recognition of the reconstructed stimuli of easily separable animals,
as illustrated in Figure 2.

7 DISCUSSION

As the self-organizing layer is updated in an unsupervised manner, it learns to associate audio-
visual stimuli online. Moreover, by activating the BMU related to a specific perceived stimulus,
the associated absent stimuli can be reconstructed based on the concept that this neuron learned.
However, the reconstructed data is, of course, not identical to the original data. For example, when
processing an image of a dog, the network will reconstruct an appropriate barking sound, but not
exactly the sound that this specific dog would make. This mimics precisely the multisensory imagery
effect (Spence & Deroy (2013)) of humans, who tend to simplify and cluster absent stimuli when
asked to reconstruct them. For example, every time one sees a small yellow bird, the person will
expect it to sound very similar to the ones she/he has seen before. This is an important effect that
helps our model to reconstruct concepts instead of specific instances.

To provide an indication of this effect, and as an additional indicator for multisensory concept for-
mation, we perform an overlapping analysis to estimate how well the model is binding and clustering
audio-visual information. To this end, we first train the model with the expectation learning mech-
anism and then we classify every single neuron of the GWR using both audio and visual classifiers
which generate two labels for each neuron: one for auditory and one for visual information. The to-
tal overlap between visual and auditory labels for each prototype neuron in our self-organizing layer
is 93%, suggesting that our prototype neurons are very concise when storing audio-visual informa-
tion. Performing the same experiment on the network training without the expectation mechanism
gave us an overlap of 85% of the neurons.
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Figure 3: Example of the reconstruction output. The left image displays the audio reconstruction
when the visual stimulus is perceived. The right image displays the vision reconstruction when the
audio stimulus is perceived.

Another effect that we investigate is multisensory correspondence (Spence & Driver (2000)). The
effect causes humans not only to associate dogs with barking, but also, more specifically, small
dogs with high-pitched barking. The associations between the stimuli are continuously reinforced
as perceptive stimuli are experienced.

We observed this effect in some examples where the variety of animals was higher, such as the
dogs. We illustrate one of these examples in Figure 3. The figure depicts the reconstruction of visual
information based on an auditory stimulus of different dogs barking. A high-pitch barking generated
images related to a small dog. Furthermore, when the simultaneous barking of more than one dog
is processed, the network generates an image of several dogs. We expect this effect to become more
visible with larger datasets that contain more diverse samples.

One important limitation of our approach is that both multisensory imagery and multisensory cor-
respondence only occurs when both auditory and visual stimuli can be understood and represented
as a simplified concept. A human cannot reconstruct precisely the characteristics of how the voice
of a person will sound when reading a text, for example. Our experiments demonstrate that our
model learns to associate high-level animal concepts, and even multisensory correspondences, but
would not be applied to reconstruct information that demands a much higher precision, i.e.person
identification.

8 CONCLUSION

Multisensory binding is a crucial aspect of how humans understand the world. Consequently, the
development of computational systems able to adapt this aspect into information processing is im-
portant to many research fields. An extensive number of models has been proposed that incorporate
different aspects of multisensory binding. However, our approach combines several novelties. It
combines a Grow-When-Required (GWR) network with autoencoders to realize continuous unsu-
pervised expectation learning. In addition, we propose to exploit expectation learning by recon-
structing stimuli that can be used as additional training data to generate a significant positive effect
on perceptive tasks like classification. We are, therefore, the first to introduce a quantitative metrics
to measure the quality of multisensory bindings, while at the same time providing a novel proof-of-
concept for a data augmentation mechanism to improve the accuracy and performance of unimodal
classification methods.

An interesting future research direction is to also address spatial expectation, because this would
provide a complementary component to integrate contextual, temporal, and spatial correspondence.
Realizing the transfer of learned multisensory bindings is another unexplored research area that we
plan to investigate as a follow-up to this work.
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robiology shaping affective touch: expectation, motivation, and meaning in the multisensory con-
text. Frontiers in psychology, 6:1986, 2016.

Francesca Frassinetti, Nadia Bolognini, and Elisabetta Làdavas. Enhancement of visual perception
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9 APPENDIX

9.1 TRAINING PARAMETERS

9.1.1 VISION CHANNEL

Table 2 exhibits all the important parameters used to train our visual channel. We used ADAM
optimizer with an adaptive learning rate.

Table 2: Training parameters of the Vision channel

Parameter Value
Epochs 200

Batch size 32
Optimizer ADAM (Adaptive Learning rate)

Initial learning rate 0.05
ADAM beta1 0.9
ADAM beta2 0.999

9.1.2 AUDITORY CHANNEL

Table 3 exhibits all the important parameters used to train our auditory channel. We follow the same
training procedure as the vision channel, and also use ADAM optimizer with an adaptive learning
rate.

Table 3: Training parameters of the Auditory channel

Parameter Value
Epochs 250

Batch size 32
Optimizer ADAM

Initial learning rate ADAM (Adaptive Learning rate)
ADAM beta1 0.9
ADAM beta2 0.999

9.1.3 SELF-ORGANIZING BINDING LAYER

Table 4 exhibits all the important parameters used to train our gamma Growing-When-Required
(GWR) network. We use a small insertion threshold, which helps the network to maintain a limited
number of neurons, reinforcing the generation of high-abstract clusters.

9.2 DETAILED EXPERIMENTAL RESULTS

9.2.1 BASELINE EXPERIMENTS

Table 5 details the mean accuracy of our baseline experiments (SoundNet and Inception V3) for
each of the classes of the evaluation subset.
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Table 4: Training parameters of the Auditory channel

Parameter Value
Epochs 50

Insertion threshold 0.01
Context size 4

Initial Gamma Weights 0.64391426, 0.23688282, 0.08714432, 0.0320586
βb 0.5
εb 0.2
εn 0.003

Table 5: Detailed results in accuracy (in %) and standard deviation for our baseline experiments.

Animal SoundNet Inception V3
Cats 90,2 (3.2) 94,8 (2.4)
Dogs 92,5 (4.1) 96,7 (2.5)
Pigs 80,7 (3.7) 95,6 (3.4)

Cows 83,8 (3.5) 94,8 (1.7)
Owls 71,8 (1.4) 87,8 (1.0)
Birds 62,7 (2.2) 90,6 (3.6)
Goats 60,2 (3.9) 95,8 (2.1)
Bee 63,1 (1.1) 91,2 (4.7)

Chickens 59,8 (3.0) 96,8 (2.3)
Ducks 68,7 (4.1) 85,1 (1.7)

Pidgeons 76,8 (2.6) 92,5 (3.1)
Crows 67,9 (1.8) 91,3 (2.7)
Horses 43,6 (3.7) 69,8 (4.1)
Frogs 57,8 (1.4) 79,8 (2.5)
Flies 53,1 (1.3) 89,8 (1.9)
Lions 63,5 (3.4) 94,5 (2.5)

9.3 EXPECTATION LEARNING EXPERIMENTS

Table 6 exhibits the detailed accuracy per class when evaluating our expectation learning model with
the evaluation subset. Here we detail the results based on reconstructed audio, when the audio is
absent on the perceived stimuli, and on reconstructed vision, when the vision is absent. We detail
the experiments with and without the expectation.

9.4 EXAMPLES

Figure 4 illustrates some selected examples of impact of the expectation learning. The image exem-
plifies cases where the network trained with expectation learning improved the recognition. Each
row shows an input audio example (and the class associated to it), and the reconstruction of a net-
work trained with and without the expectation.
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Table 6: Detailed accuracy (in %) for our baseline experiments.

Animal Class Audio Vision
- Without Expectation With Expectation Without Expectation With Expectation

Cats 87,6 (3.2) 93,8 (2.1) 93,8 (1.9) 95,6 (2.1)
Dogs 89,5 (3.6) 94,4 (2.9) 94,6 (2.2) 97,5 (1.8)
Pigs 84,6 (3.2) 86,5 (3.7) 87,5 (1.4) 93,4 (1.7)

Cows 85,9 (4.1) 86,7 (2.7) 90,4 (1.6) 93,4 (2.8)
Owls 71,8 (3.7) 74,9 (2.9) 80,7 (1.8) 84,7 (1.9)
Birds 60,1 (2.6) 63,7 (1.9) 86,7 (4.7) 89,7 (3.7)
Goats 50,2 (1.6) 60,7 (3.7) 90,4 (2.8) 93,2 (1.9)
Bee 53,7 (2.7) 62,1 (3.9) 89,5 (2.7) 91,7 (3.1)

Chickens 63,8 (1.9) 60,7 (2.1) 93,8 (1.7) 95,7 (1.9)
Ducks 66,9 (1.9) 70,5 (2.8) 79,5 (1.6) 84,6 (2.9)

Pidgeons 83,6 (4.7) 83,8 (2.6) 92,6 (2.7) 94,7 (2.9)
Crows 62,1 (1.9) 68,3 (2.2) 90,1 (2.0) 93,4 (2.8)
Horses 32,8 (2.6) 41,6 (3.9) 63,7 (3.1) 67,8 (1.8)
Frogs 51,8 (3.7) 59,4 (2.7) 80,6 (2.7) 82,1 (3.4)
Flies 57,8 (3.0) 58,3 (2.5) 84,9 (1.6) 86,7 (2.6)
Lions 60,3 (2.9) 68,5 (2.6) 90,4 (2.4) 93,2 (3.8)

Figure 4: Examples of reconstructed images for the same perceived auditory stimuli of a network
trained with and another network trained without expectation learning.
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