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Abstract—Machine learning-based prediction of solar flares
has become an important application of data science in space
weather research. Spatiotemporal magnetic field data of solar ac-
tive regions captured by solar imaging observatories are mapped
into multivariate time series data to facilitate temporal window-
based solar flare prediction. Existing methods of solar flare
prediction leveraging multivariate time series data rely heavily on
statistical features for the representation learning of individual
time series instances. In this work, we used Deep Learning, more
specifically Long Short Term Memory (LSTM) Networks for
learning representations of multivariate time series instances that
map into multiple flare classes. This work enables the end-to-end
multivariate time series classification bypassing the requirements
of hand-engineered features. Our experiments on a real-life solar
flare dataset show better prediction performance in comparison
with state-of-the-art baseline methods.

Index Terms—Flare prediction; Time series; LSTM

I. INTRODUCTION

Solar flares are considered to be one of the most intense

solar events caused by a sudden burst of magnetic flux from

the solar surface. Ultraviolet and X-ray radiation of solar

flares can have disastrous effects on life and infrastructure

in both space and ground. From the radiation exposure-based

health risks of the astronauts to the disruption in GPS and

radio communication and damages in electronic devices, costs

of replacement/repairing of infrastructure after major flaring

events can rise up to trillions of dollars [1].

Due to the potentially hazardous impacts of the solar flares,

the prediction of solar flares given a predefined time window

has become a hot research topic in the heliophysics community

in recent years. Since the theoretical relationship between mag-

netic field influx and flare occurrence in solar active regions

(AR) is not yet established, space weather researchers rely

on data science-based approaches for predicting solar flares.

The primary data source used in these efforts is the images

captured by the Helioseismic Magnetic Imager (HMI) housed

in Solar Dynamics Observatory (SDO). HMI images (captured

in near-continuous time) contain spatiotemporal magnetic field

data of solar active regions. For performing temporal window-

based flare prediction of an AR instance, the spatiotemporal

magnetic field data of that region is mapped into a multivariate

time series (MVTS) instance [2]. The variables in the MVTS

instance consist of solar magnetic field parameters. The time

series represented by the magnetic field parameters are ex-

tracted based on two time windows: prediction window (the

Fig. 1: Multivaraite time series instance with predefined observation
and prediction window, and flare class label

time window before which the flare happens), and observation

window (the time window during which the AR parameter

values are calculated). Each MVTS instance is labeled as one

of six classes - Q, A, B, C, M, and X, where Q represents flare

quiet active regions, and other labels represent flaring events

with increasing intensity. In Fig. 1, we show the data model

of a labeled MVTS instance.

Modeling flare prediction as multivariate time series classi-

fication resulted in higher accuracy in comparison with the

single timestamp-based magnetic field vector classification

models [3]. MVTS classification-based flare prediction was

performed in two steps. Firstly, MVTS representations were

learned by the summarization of the individual time series

through predefined statistical features. This step embeds the

MVTS instances into a low-dimensional space. Secondly,

traditional classifiers are trained by the MVTS embeddings.

The two-step process of MVTS classification relies heav-

ily on hand-engineering of statistical features and choice

of downstream classifiers, which eventually complicates the

application of these models in datasets with varying properties.

Therefore, in this work, we propose an end-to-end MVTS

classification approach leveraging deep learning-based se-

quence models. We use Long Short Term Memory (LSTM)

networks for learning the representations of the MVTS in-

stances. We train the model by sequentially feeding vectors

representing magnetic field parameters into LSTM cells, and

optimize the cell weights through gradient descent and back-

propagation. Our model does not rely on hand-engineered
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statistical features for learning low-dimensional representa-

tions of the individual time series, and incorporates automated

feature learning for flare prediction.

The contributions made by this paper are listed below.

1) Representing MVTS instances as temporal sequences of

high-dimensional vectors.

2) Replacing current embedding followed by classification
methods by an end-to-end classification method by using

sequence modeling.

3) Experimentally demonstrating the better performance of

our model in comparison with state-of-the-art baselines

on a benchmark solar flare prediction dataset.

The rest of the paper is organized as follows. In section II,

we discuss the related work. We present our sequence model-

based flare classification model at section III. In section IV,

we present the experimental findings. Finally, we discuss our

future work and conclude the paper in section V.

II. RELATED WORK

Theo is one of the earliest flare prediction systems [4]. It

was an expert system that required human inputs. To predict

different flare classes, it used a set of sunspots and magnetic

field properties. In 1987, the Space Environment Center (SEC)

of the National Oceanic and Atmospheric Administration

(NOAA) adopted Theo for rule-based flare prediction.

Most of the later research efforts of flare prediction were

based on data science. Data-driven flare prediction models

stemmed from both linear and nonlinear statistics. Datasets

used in these models were collected from line-of-sight mag-

netogram and vector magnetogram data. Line-of-sight mag-

netogram contains only the line-of-sight component of the

magnetic field, while vector magnetogram contains the full-

disk magnetic field data [5]. NASA launched Solar Dynamics

Observatory (SDO) in 2010. Since then, SDO’s instrument

Helioseismic and Magnetic Imager (HMI) has been mapping

the full-disk vector magnetic field every 12 minutes [6]. Most

of the recent flare prediction models use the near-continuous

stream of vector magnetogram data found from SDO.

Linear statistical models aimed at finding the AR magnetic

properties that are highly correlated with the occurrences of

flares. Cui et al. [7] and Jing et al. [8] studied flare correlations

with the line-of-sight magnetogram-based active region fea-

tures. Before the launch of SDO, Leka and Barnes [9] collected

vector magnetogram data from Mees Solar Observatory on

the summit of Mount Haleakala, and used linear discriminant

analysis (LDA) for flare classification.

Nonlinear statistical models are mostly machine learning-

based classifiers. On line-of-sight magnetogram-based AR

datasets, Yu et al. [10] used C4.5 decision tree, Song et al. [11]

used logistic regression, Ahmed et al. [12] used the artificial

neural network, and Al-Ghraibah et al. [13] used relevance

vector machine as classification models. Bobra et al. [14]

used Support Vector Machine (SVM) on the AR parameters

derived from SDO-based vector magnetograms. Nishizuka et

al. [15] used both line-of-sight and vector magnetograms and

compared the performance of three classifiers - k-NN, SVM,

and Extremely Randomized Tree (ERT).

Temporal window-based flare prediction was introduced by

Angryk et al. [2], which extends the earlier single timestamp-

based models. They published a curated and labeled multivari-

ate time series dataset for predicting flares that might appear

in an active region after a given period of time. This dataset

contains 33 vector magnetogram parameter values recorded in

12 minutes cadence to create 12 hours observation window-

based multivariate time series instances. Each multivariate

time series instance is labeled as one of five flare classes.

Hamdi et al. [3] used statistical summarization of individual

time series for computing low dimensional representations of

MVTS instances, and applied k nearest neighbors, logistic

regression, and decision tree classifiers for binary classification

of intense flares (M and X classes), and less intense flares or

flare quiet active regions (Q, A, B, and C classes). Ma et.

al. [16] introduced multivariate time series decision trees that

approached the flare forecasting problem using clustering as

a preprocessing step. Among other solar events classification,

MVTS representation was used for Solar Energetic Particle

(SEP) prediction [17].

Our work introduces an end-to-end learning paradigm for

classifying MVTS instances of different flare classes. While

our model is not limited to hand-engineered statistical features,

it can achieve better prediction performance through deep

learning-based sequence learning models.

III. SEQUENCE MODEL-BASED FLARE CLASSIFICATION

A. Notations and Preliminaries

Each solar active region resulting in different flare classes

(or staying as a flare quiet region) after a given prediction win-

dow represents a solar event. The solar event i is represented

by a multivariate time series instance mvtsi, and associated

by a class label yi. The class label yi represents the flare quiet

state, or flare classes of different intensities. The multivariate

time series instance mvtsi ∈ R
T×N is a collection of

individual time series of N magnetic field parameters, where

each time series contains periodic observation values of the

corresponding parameter for an observation period T . We

denote the vector of t-th timestamp as x<t> ∈ R
N , and the

time series represented by j-th parameter as Pj ∈ R
T . After

the observation period T and prediction period L, the event is

labeled by the active region state (flare quiet or different flare

classes). The active region state of a particular timestamp is

found from the NOAA records of flaring events. Fig. 1 shows

the data model of a MVTS-based solar event.

B. Data Preprocessing

Since the magnetic field parameter values are recorded

in different scales, we perform z-score normalization of

each individual time series of each MVTS instance. At

mvtsi, parameter-based individual time series are denoted

by P1, P2, . . . , PN . For each individual time series Pj , we

perform z-normalization as follows.
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Fig. 2: Representation learning of an MVTS instance through LSTM, fully connected (FC), and softmax layers

x
(j)
k =

x
(j)
k − μ(j)

σ(j)

Here, x
(j)
k is the k-th value of the time series Pj , where

1 ≤ k ≤ T , μ(j) is the mean of time series Pj , and σ(j) is

the standard deviation of the time series Pj .

C. LSTM-based MVTS classification

Instead of considering a single MVTS instance as a col-

lection of univariate time series instances, we consider it a

sequence of high-dimensional timestamp vectors. The times-

tamp vector x<t> ∈ R
N represents the magnetic filed state

of the active region (N parameter vales) in the timestamp t.
In the forward pass, at each timestamp, the timestamp vector

x<t> is input to the LSTM cell. The last output (hidden

representation) is input to a fully connected layer for getting

a low-dimensional embedding, which is finally fed into a

softmax layer (representing number of classes).

In Fig. 2, input sequence to LSTM cell is

x<1>, x<2>, x<3>, ..., x<T>, cell state representations

are c<0>, c<1>, c<2>, ..., c<T−1>, and hidden state

representations are h<0>, h<1>, h<2>, ..., h<T>. After

randomly initializing c<0> and h<0>, we update the cell

state and hidden state of the timestamp t by following LSTM

equations [18].

c̃<t> = tanh(Wc[h
<t−1>, x<t>] + bc)

Γu = σ(Wu[h
<t−1>, x<t>] + bu)

Γf = σ(Wf [h
<t−1>, x<t>] + bf )

Γo = σ(Wo[h
<t−1>, x<t>] + bo)

c<t> = Γu � c̃<t> + Γf � c<t−1>

h<t> = Γo � tanh(c<t>)

We denote number of dimensions of the cell state rep-

resentation c<t> and hidden state representation h<t> of

the LSTM cell as Nh. The concatenation of hidden state

of previous timestamp and the input of current times-

tamp is [h<t−1>, x<t>] ∈ R
Nh+N . The candidate cell

state representation is c̃<t> ∈ R
Nh . The weight matrices

are Wc,Wu,Wf ,Wo ∈ R
Nh×(Nh+N), and bias terms are

bc, bu, bf , bo ∈ R. Subscripts u, f , and o represents the activa-

tions of update gate, forget gate, and output gate respectively,

while � refers to elementwise multiplication, and σ represents

sigmoid activation.

We consider h<T> as the final representation of the input

MVTS, which we further input into a linear (fully connected)

layer. In this layer, Wl ∈ R
C×Nh , and bl ∈ R, where C is the

number of classes. After this layer, we have a C-dimensional

representation of the MVTS instance.

z<t> = ReLU(Wlh
<T> + bl)

Finally, we input z<t> into a softmax layer, whose number

of units is equal to the number of classes. The softmax layer

gives us the normalized class probabilities, and we finally get

ŷ<t> ∈ R
C .

ŷ<t> =
ez

<t>

∑C
j=1 e

z<t>
j

The predicted labels of training MVTS instances are

matched against true labels, and Stochastic Gradient Descent-

based optimizer updates the weight and bias parameter values

of LSTM cell and the fully connected layer through Back-

propagation algorithm.

Other sequence models such as Recurrent Neural Network

(RNN) [19], and Gated Recurrent Unit (GRU) [20] can be

easily integrated in our model by simply replacing the LSTM

cells with RNN or GRU cells. We prefer LSTM cells for its

comparative efficiency in handling long range dependencies in

time series data.

IV. EXPERIMENTS

In this section, we demonstrate our experimental findings.

We compared the multiclass classification performance of our

model with three other baselines on a benchmark MVTS-based
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TABLE I: Multiclass classification performance of the proposed method with the baselines

Measures FLT LTV TS-SUM RNN LSTM
Accuracy 0.259± 0.012 0.323± 0.02 0.609± 0.091 0.427± 0.025 0.628 ± 0.03
Precision (X) 0.232± 0.024 0.342± 0.041 0.712± 0.054 0.534± 0.031 0.757 ± 0.028
Recall (X) 0.264± 0.053 0.392± 0.043 0.772± 0.024 0.631± 0.028 0.947 ± 0.023
F1 (X) 0.244± 0.032 0.362± 0.04 0.741± 0.034 0.582± 0.019 0.841 ± 0.014
Precision (M) 0.254± 0.012 0.324± 0.033 0.522± 0.031 0.411± 0.014 0.594 ± 0.018
Recall (M) 0.26± 0.023 0.331± 0.061 0.552 ± 0.022 0.402± 0.03 0.544± 0.014
F1 (M) 0.257± 0.026 0.327± 0.042 0.537± 0.023 0.406± 0.029 0.568 ± 0.02
Precision (BC) 0.232± 0.044 0.263± 0.024 0.453± 0.033 0.282± 0.031 0.495 ± 0.013
Recall (BC) 0.241± 0.053 0.212± 0.02 0.472 ± 0.014 0.261± 0.021 0.409± 0.023
F1 (BC) 0.236± 0.041 0.234± 0.024 0.462± 0.041 0.271± 0.031 0.448 ± 0.031
Precision (Q) 0.324± 0.034 0.343± 0.044 0.583± 0.045 0.483± 0.024 0.603 ± 0.024
Recall (Q) 0.251± 0.042 0.362± 0.071 0.663± 0.034 0.413± 0.042 0.683 ± 0.023
F1 (Q) 0.282± 0.014 0.352± 0.013 0.62± 0.043 0.445± 0.032 0.64 ± 0.024

solar flare prediction dataset. We used PyTorch 1.7.1 with

CUDA 11.3 for implementing our LSTM-based MVTS classi-

fier. We conducted all of our experiments in a Windows server

having a single processor (AMD Ryzen 7 with 3700 × 3600
MHz speed, 8 cores, and 16 threads), one NVIDIA GeForce

RTX 3070 GPU (5888 CUDA cores), and 32 GB memory.

The source code of our model and the experimental dataset

are available at our GitHub repository. 1

A. Dataset description

As the benchmark dataset of our experiments, we used the

solar flare prediction dataset published by the Data Mining

Lab of Georgia State University [2]. Each MVTS instance in

the dataset is made up of 33 individual time series of active

region magnetic field parameters. The time series instances are

recorded at 12 minutes intervals for a total duration of 12 hours

(60 time steps). The MVTS instances are labeled according to

the largest solar flare that occurred after 12 hours (five different

classes: X, M, C, B, and Q). Therefore, the dataset has the

number of the observation points T = 60, and the number of

dimensions in timestamp vectors N = 33, while the prediction

window is L = 12 hours.

Since solar flares are rare events, the original data release

(with 4,098 MVTS instances of X, M, B, C, and Q classes)

suffers from high class imbalance problem, e.g., there are

much fewer ”X” class (extreme flares) instances in comparison

with ”Q” class (no flares) instances. To remove this class

imbalance, we undersampled the dataset, and merged B and

C classes (less intense flaring events) into a single class (BC).

Our experimental dataset consists of 1,354 instances evenly

distributed across four classes (X, M, BC, and Q).

B. Baseline methods

We evaluated our LSTM-based MVTS classification model

with four other baselines.

• Flattened vector method (FLT): This is a naive method,

where each 60 × 33 MVTS instance is flattened into a

1, 980-dimensional vector.

• Vector of last timestamp (LTV): This method was in-

troduced by Bobra et al [14], where vector magnetogram

1https://github.com/ahsan-muzaheed/SolarFlareClassification2021

data (feature space of all magnetic field parameters) were

used for classification. Since the last timestamp of the

MVTS is temporally nearest to the flaring event, we

sampled the vector of the last timestamp (33-dimensional)

to train the downstream classifier.

• Time series summarization-based MVTS representa-
tion (TS-SUM): This method, proposed by Hamdi et

al [3] summarizes each individual time series of length

T by eight statistical features: mean, standard deviation,

skewness, and kurtosis of the original time series, and the

first-order derivative of the time series. As a result, we

get a 8× 33-dimensional vector space, which is used for

classifier training and test.

• Recurrent Neural Network (RNN): As the fourth base-

line, we replace LSTM cells of our model (Fig. 2)

with standard RNN cells, where the number of hidden

dimensions is 128, and number of training epochs is 500.

The first three baselines are embedding followed by classi-
fication methods. After performing the embedding of MVTS

instances using the aforementioned methods, we use logistic

regression classifier with L2 regularization. In all experiments,

we split the dataset into train and test using stratified holdout

method (two-third for training and one-third for test). In LSTM

model, 128 is used as the number of dimensions in cell state

and hidden state representations, number of epochs in training

is 500, and learning rate in stochastic gradient decent is 0.01.

C. Multiclass classification performance

In Table I, we show the classification performances of our

LSTM-based MVTS classifier along with that of the baseline

methods. For a comprehensive classification report, we show

accuracy along with precision, recall, and F1 of each class.

We performed five experiments with different train/test sets

sampled by stratified holdout and reported the mean and

standard deviation of the experiments. From the results, it is

visible that the LSTM-based MVTS classification model out-

performs all other baselines in almost all measures. Although

the time series summarization-based method classifies flare

classes almost in similar accuracy to our model, with datasets

of more instances and experiments of longer training time, our

model can perform even better.
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(a) Multiclass classification accuracy with increasing training data

(b) F1 of X class with increasing training data

Fig. 3: Multiclass classification with varying training set size.

D. Classification varying training set size

To verify the adaptability of our model with bigger training

datasets, we experimented by varying the training set size.

We varied the training set size from 10% to 90% of the

dataset size, while tested the models with the rest of the

instances (Fig. 3). We performed stratified train/test sampling

with a given training set size, and evaluated the classification

performance of the classifiers five times with five distinct

training and test sets. In Fig. 3a and 3b, we plotted the

mean accuracy values and mean F1 (X class) values found

in all runs of different train/test samples with different preset

training data size. Although all models become more accurate

with the gradual increase of training set size, we observe

more consistent and steep increasing patterns in LSTM and

RNN models. It proves that with sufficiently large datasets,

deep learning models can outperform the traditional classifiers

or embedding methods in a larger margin. The time series

summarization-based method shows promising performance

throughout the experiments, but the generalization capability

of this model can be limited in a more complex dataset due to

its less flexible learning methodology. In comparison with deep

learning-based and time series summarization-based methods,

Fig. 4: Multiclass classification performance of LSTM and RNN-
based models with varying number of hidden dimensions.

the LTV model performs poorly, which proves the importance

of time series for robust flare prediction.

E. Varying dimensionality of sequence models

The performance of deep learning-based sequence models

such as LSTM and RNN depend greatly on the number

of dimensions in the latent/hidden space. In both networks,

the increase of dimensionality in hidden space reduces the

underfitting tendency, while increases the computation cost

and overfitting tendency. We computed the test accuracy of

four-class classification on our MVTS dataset using stratified

holdout sampling strategy, while changing the number of

hidden dimensions in the range of 32, 64, ..., 256 in the cases

of both LSTM and RNN-based networks. We observed that the

LSTM-based network shows more stable performance with the

varying number of hidden dimensions, in comparison with the

RNN-based network. In Fig. 4, we show the mean accuracy of

both models in five runs with different network initialization

and different sets of training data. Although this experiment

shows the performance of sequence models by tuning one

hyperparameter, i.e., the number of hidden dimensions, tuning

other hyperparameters such as learning rate, linear layers,

optimization algorithms, etc can result in better performances.

F. Binary classification performance

In addition to classifying the solar active regions in different

flare classes, a major use case in data-driven flare prediction

is the binary classification, i.e., distinguishing major flaring

events from minor flaring events or flare quiet events. In this

experiment, we considered X and M class MVTS instances

as flaring events, while we considered all other instances

as non-flaring events. This transformation makes the dataset

imbalanced, because non-flaring instances outnumber flaring

instances. In Fig. 5, we show the binary classification perfor-

mances of all models in terms of classification accuracy along

with precision, recall, and F1 of flaring and non-flaring classes.

In binary classification, the LSTM-based model outperforms

all other baselines. We observe the similar performance of the
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Fig. 5: Binary classification performance of all baselines

models as that of multiclass classification. Although the RNN-

based model performed poorer than the TS-SUM method, the

RNN-based model is an end-to-end classification model, which

might outperform TS-SUM with more training data, more

complex model, and more efficient hyperparameter search.

V. CONCLUSION

In this work, we presented an end-to-end deep learning-

based flare prediction model that leverages sequence models

such as LSTM for learning representations of multivariate time

series instances. In contrary to other state-of-the-art MVTS

classification models, our proposed model is free of predefined

(hand-engineered) statistical features for learning low dimen-

sional representations of high dimensional multivariate time

series data. Our experiments on a real-life solar flare prediction

dataset demonstrate the superior performance of our model in

performing multiclass and binary MVTS classification.
In the future, we look forward to designing more complex

models such as: (1) introducing more than one linear layer

before the final softmax layer, (2) adding additional layers in

LSTM cells, and (3) learning the LSTM representation of each

univariate time series whose concatenation will be fed into a

series of linear layers. We also plan to apply our models in

other MVTS-based solar event datasets [21], datasets where

multivariate time series data are generated from other sources

such as functional MRI (fMRI) time series data of different

brain regions [22], and representation learning of dynamic

graphs [23] where graph neural network-based temporal graph

representations can be combined through sequence models.
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